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Abstract 

Computer graphics are usually achieved by using some 
traditional programming languages (Fortran, Pascal, C, 
etc.). In this paper an extensive use of the general-purpose 
numerical computation programs (NCPs) in the computer 
graphics field is proposed instead of. The paper describes 
the main advantages of this kind of programs, and several 
examples of how they can be successfully applied to 
computer graphics and visualization. Moreover, the paper 
briefly introduces several functions and commands 
developed by the authors, which will be successfully 
applied to solve a visualization problem coming from the 
automotive industry.  
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1. INTRODUCTION 

Computer graphics play a fundamental role in engineering 
design, capturing the visual and quantitative aspects of the 
geometric objects. For example, in the automotive industry, 
one is interested not only to obtain the curves and surfaces 
holding some prescribed constrains but also to join all these 
geometric entities together and to visualize the resulting 
picture in order to take care the aesthetic features and the 
general look of the product.  

Many of the most important programs for computer 
graphics have been written in traditional programming 
languages (Fortran, Pascal, C, etc.) However, in the last 
recent years, the general-purpose numerical computation 
programs (NCPs) are gaining more and more popularity. 
Today, they are well established as a powerful alternative 
to the traditional programming languages in many different 
areas, as mechanical engineering, signal processing, quality 
control, electronic circuits, etc.  

In this context, it would seem natural to wonder if the 
NCPs could be applied, instead of the traditional 
programming languages, in the computer graphics field. 
The present paper tries to answer this question by 
following the next sequence: Section 2 describes the main 
advantages of this kind of programs. In addition, the main 
reasons to justify our choice of MATLAB as the NCP to be 

used in this paper are also discussed in this section. Then, 
Section 3 introduces some additional commands we need to 
implement in order to solve some interesting problems 
related to CAGD and computer graphics. This section also 
includes a wide description of the main MATLAB 
graphical commands, options and utilities that will be 
useful for rendering surfaces. As an application, Section 4 
shows how they can be successfully applied to solve a 
given visualization problem coming from the automotive 
industry. Today, many industries are concerned about the 
possibility to transfer their information by Internet, 
avoiding other possible and slower transference ways.  
Section 5 discusses such a possibility for the visual 
information, through the MATLAB-VRML connection. 
Finally, the paper closes with the main conclusions and 
remarks of this work.  

2. ADVANTAGES OF THE  NCP 

In this section we show the main advantages of the NCPs, 
which justify our proposal to apply them to the computer 
graphics field. Then, we proceed to choose the program to 
be used along the paper.  

2.1 Why to use NCPs for Computer 
Graphics? 
There are many reasons to explain why we propose the 
NCPs to be used in the computer graphics field. Some of 
them are listed below: 
• The NCPs are easier to use, because: 
− they incorporate many mathematical and programming 

commands and libraries 
− their algorithms are very optimized 
− they have a powerful and user-friendly interface 
• The NCPs are very powerful, because: 
− their programming languages incorporate not only the 

procedural but also the functional programming 
including, in several cases, pattern recognition and 
object-oriented programming.  

− they have a very remarkable graphical capabilities. 
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Based on these considerations, our research group 
undertook the ambitious task to apply the NCPs to 
computer graphics. The following paragraphs are devoted 
to show how this work has been performed, indicating the 
main advantages of our approach.  

2.2 Choosing the NCP: MATLAB 
Evidently, not all the NCPs offer the same advantages and 
features. Therefore, the first thing to be done in this line is 
to choose the program to work with. After a careful 
analysis, our final choice was MATLAB (see the 
MathWorks Home Page at: http://www.mathworks.com). In 
this choice we took into account some features as: 

• Spreading. MATLAB is used for hundreds of thousands 
of industrial, government and academic users around 
the world. Its last versions are available for Microsoft 
Windows 9x and NT, Macintosh and Linux personal 
Computers, as well as UNIX workstations from Sun, 
Hewlett-Packard, IBM, Silicon Graphics and Digital, 
and Open VMS computers.  

• Graphical capabilities, which raise many of the current 
graphics-oriented programs (see Section 3.2).   

• Since MATLAB is based on C, it runs faster than other 
analyzed symbolic and numerical programs. Moreover, 
its basic element is an array that does not require 
dimensioning, so it takes less time to be computed.    

It must be noticed that, in spite of our choice, the same 
results can be obtained by using some other NCPs. For 
example, SCILAB (see [1] for details) is a free software 
whose programming and graphical capabilities are very 
similar (although slightly lower for our purposes) to those 
of MATLAB. However, we think this last one is more 
popular and used in academic and industrial environments.  

3. APPLYING MATLAB TO CAGD AND 
COMPUTER GRAPHICS 

The aim of this section is twofold: on the one hand, Section 
3.1 introduces some additional commands we need to solve 
a visualization problem described in Section 4 and other 
interesting problems related to CAGD and computer 
graphics. On the other hand, Section 3.2 describes the main 
MATLAB commands, options and utilities that will be 
useful for rendering surfaces.   

3.1 Building numerical libraries for CAGD 
Once the program is chosen, the following task to be done 
is the implementation of an extensive set of numerical 
libraries for CAGD. By "extensive" we mean the libraries 
must contain all the relevant geometric entities in the sense  
that if a given geometric entity is useful in CAGD, it must 
be incorporated to the system. Of course, libraries must be 
continuously updated, so the system must be flexible 

enough to allow the programmer to improve the algorithms 
and codes in an efficient, quick and easy way.  

MATLAB incorporates some useful commands for CAGD. 
For instance, its kernel includes a basic command for 
interpolation through cubic splines and some other 
commands for interpolation in one and several variables. 
However, the system lacks of many of the most important 
mathematical entities for CAGD, such as Bézier and B-
spline curves and surfaces, which must be implemented. 
The powerful MATLAB functional programming offers us 
the possibility to implement these functions in a short, 
elegant and simple code. As an illustration, the following 
script calculates and displays the Bézier curve of a given 
set of two- or three-dimensional points:  
 
function Bezier(ptos)    % main function 
[n,d]=size(ptos); 
n=n-1; 
bt=ptos'*mij(n)*ti(n); 
if d==2 
plot(bt(1,:),bt(2,:),ptos(:,1),ptos(:,2),'r-.p') 
else 
plot3(bt(1,:),bt(2,:),bt(3,:), ... 
      ptos(:,1),ptos(:,2),ptos(:,3),'r-.p') 
end 
rotate3d 
 
function T=ti(n)        % generating the t^i 
m=1; 
t=0:0.05:m;             % step=0.05 
T=[]; 
for i=0:n 
   T= [T;t.^i]; 
end 
 
function M = mij(n) 
for i=0:n 
   for j=0:n 
     M(i+1,j+1)=(-1)^(ji)*binom(n,j)*binom(j,i); 
   end 
end 
M=M(1:n+1,1:n+1); 
 
function c=binom(n,i)   % defining the binom function 
if i==n | i==0 
   c=1; 
elseif i<n & i>=0 
   c=factorial(n)/(factorial(i)*factorial(n-i)); 
else 
   c=0; 
end 
 
function f=factorial(n)   %defining the factorial function  
if n==1 
   f=1; 
else 
   f=n*factorial(n-1); 
end 
 

Table 1: MATLAB code for the Bézier curves. 
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We remark that this example has been chosen primarily for 
simplicity, rather than to correspond to a valuable code or a 
very complicated algorithm. However, some questions 
deserve to be pointed out: as the reader may appreciate, we 
use the matrix form for the Bézier curves (see, for example, 
[2] pag. 58). This is not a chance: MATLAB handles 
vectors and matrices in a straightforward and intuitive way. 
Furthermore, there are typically many different ways to 
formulate a given problem in MATLAB; in almost all 
cases, however, the best performance is expected when 
matrix formulation is applied. The simple idea of 
organizing data in a matrix form yields to programs that are 
more efficient and easier to understand. Thus, Table 2 
shows the corresponding code for Bézier surfaces (which 
can be easily derived from Table 1): 
 
function SupBezier(ptos) 
[m,n,o]=size(ptos); 
for k=1:3 
b(:,:,k)=ti(m-1)'*mij(m-1)'*ptos(:,:,k)... 
         *mij(n-1)*ti(n-1); 
end 
surf(b(:,:,1),b(:,:,2),b(:,:,3)), hold on, 
mesh(ptos(:,:,1),ptos(:,:,2),ptos(:,:,3)), 
hidden off 
plot3(ptos(:,:,1),ptos(:,:,2),ptos(:,:,3),'bp') 
rotate3d 
 

Table 2: MATLAB code for the Bézier surfaces. 
 

In MATLAB each command or group of them is stored 
into a file, which is called a M-file. When several M-files 
for solving similar problems of a certain field are written 
(as it is our case) they can be collected together into special 
directories (Toolboxes). The toolbox for CAGD developed 
by the authors and described in this paper deals with the 
following functions and topics: 

• Bézier curves. As shown before, the toolbox deals with 
two- and three-dimensional curves. The cases of single 
and composite Bézier curves are also considered. 
Curves can take both the rational and non-rational form. 

• Bézier surfaces. As in the case of curves, Bézier 
surfaces have been implemented in MATLAB (see 
Figure 6 for an example).  

• B-spline curves. Commands work with two- and three-
dimensional curves, for any order and knots vector  
(periodic, non-periodic or non-uniform), and different 
weights (rational curves). NURBs are therefore 
considered here as a particular case. 

• B-spline surfaces. All the options described for B-
spline curves are also available here (for example, 
Figures 1 and 2 corresponds to a B-spline and a NURB 
surface, respectively).  

• Two- and three-dimensional transformations. Since 
all these transformations are not available directly in 
MATLAB, they were implemented in the toolbox.  

• Projections and perspectives. MATLAB only 
supports some kinds of projections and perspectives. 
The toolbox incorporates all of them.  

3.2 MATLAB graphics commands 
MATLAB provides a set of powerful high-level graphical 
routines for displaying both two- and three-dimensional 
graphics. However, since we are mainly concerned about 
the three-dimensional pictures, the following description is 
restricted to this case (which includes the 2-D case for 
many commands). In the following we describe the most 
important MATLAB features for computer graphics (the 
corresponding commands are denoted in courier font style). 
 
(1). Plotting 3-D data. They can be displayed as line plots 
(plot3 command) or rectangular grids (mesh, surf). 
The mesh command generates a wireframe view of the 
surface (as in Figure 2). On the contrary, surf shows a 
colored, faceted view. For example, Figure 1 shows a 3x3-
order B-spline surface (obtained by using the commands 
described in Section 3.1), defined by the z-coordinate of 
points above a grid in the x-y plane.  
 
 
 
 
 
 
 
 

Figure 1: A 3x3-order periodic B-spline surface with: 
(left) a faceted shading; (right) an interpolated shading. 

 
(2). Hidden line removal. In MATLAB, mesh plots 
remove hidden lines by default. You can disable hidden 
line removal through the hidden off command. A 
typical example is shown in Figure 2: on the left, a NURB 
surface is displayed as a wireframe plot. On the right, the 
hidden line removal is off, so the back part of the surface 
becomes visible now. 
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Figure 2: Example of a NURB surface with the hidden line 
removal: (left) on; (right) off. 

(3). Color. User may enhance the information content of 
the surface plots by changing their colors, either using the 
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RGB triplets or a predefined range of colors called 
colormap. Moreover, colors can be assigned by means of 
a relevant function. For example, the del2 command 
applies the same color to regions exhibiting similar 
curvature. This effect can be visually established by a 
simple comparison of Figures 3 (left) and (right).  
 

 
Figure 3: Using color for geometric information. Color 

indicates:(left) heights; (right) curvature. 
 
(4). Texture mapping. By this, we mean a technique for 
mapping a 2-D image onto a 3-D surface by transforming 
color data so that it conforms the surface plot. Texture 
mapping has become a very important topic, allowing to 
applying a texture, such a wood grain, to a surface. In 
MATLAB, to apply texture mapping is as easy as setting 
the FaceColor option of the three-dimensional surface to 
texturemapping.  
 
f=imread(‘rusia.jpg’);  
f2=double(f)/255; 
a=SupBSpline(3,3);       %generates a Bspline surface 
surface_handle=surf(a(:,:,1),a(:,:,2),a(:,:,3)); 
set(surface_handle,'EdgeColor','none',... 
    'FaceColor','texturemap','cdata',f2); 
set(gca,'box','on'); 
 

Table 3: MATLAB code for the texture mapping. 
 

Table 3 lists a simple code for texture mapping and Figure 
4 illustrates this process: the image in the middle is mapped 
onto the surface, giving the picture on the right. Note that 
the color data can be any image; in this case, a scanned 
photograph. Furthermore, you can map any image onto the 
surface, no matter their sizes. Finally, the mapping process 
can be total or partial (in this last case, you must indicate 
the size of the image to be mapped). 

(5). Patches. Figure 5 shows two typical patches, obtained 
in MATLAB from the patch command. A patch is a 
graphic object that consists of one or more polygons that 
may or may not be connected. Patches are useful for 
modeling real-world objects such as airplanes or 
automobiles. In MATLAB, a patch is defined by specifying 
the coordinates of its vertices and some form of color data. 
Such coordinates can be introduced in two different ways: 
either indicating the coordinates of the vertices of each 

polygon (MATLAB connects them to form the patch) or 
indicating the coordinates of each unique vertex and a 
matrix specifying how to connect the vertices to form the 
faces.  

++

 
Figure 4: Texture mapping. 

 

Coming back to Figure 5, it consists of two pictures: the 
first one is displayed with the faceted option, whereas 
for the second one the selected option is interp, which is 
based on interpolation, so better quality is expected when 
using this option (as already appreciated in Figure 1).   

 
Figure 5: Choosing different options for the patch and the 

lighting: (left) faceted, gouraud; (right) interpolated, phong. 
 

Finally, we remark that many of the surfaces features (as 
features (4) and (7)) are shared by the patches too. Other 
example is the light sources appearing in Figure 5, which 
are described in the next section. 

(6). Lighting. This feature adds realism to a graphical 
scene. MATLAB supports three different ways for lighting 
calculations (the reader is referred to Chapter 16 of [3] for 
a more complete description about the shading models): 

• flat. Produces uniform color across each of the faces 
of the object. It is specially indicated for faceted 
surfaces.  

• gouraud. This algorithm calculates the colors at the 
vertices and then interpolates color across the faces (see 
Figure 6(left)). It is ideal for curved surfaces.  

• phong. This method interpolates the vertex normals 
across each face and then calculates the reflectance at 
each pixel (see Fig. 6(right)). This algorithm produces 
better results than gouraud but takes longer to render.  

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/ 



These shading models have been applied to Figure 5, 
namely, gouraud for the left picture and phong for the right 
one. In addition of the previous commands, there are others 
for creating light sources. You only must specify three light 
properties: 

• Color. The color of the light. 

• Style. It can be infinite (when the light source is 
placed at infinity, which means that light shines from 
the specified direction with parallel rays) or local (the 
light source is a point source, which radiates from the 
specified position in all directions).  

• Position. For infinite lights, indicates the direction. 
For local lights, the position of the light source.  

For example, Fig. 5(left) exhibits an infinite light. On the 
contrary, Fig. 5(right) receives four different lights: a local 
yellow light, in the front of the face, and three (two yellow 
and one green) infinite lights. This second figure also 
exhibits other light effects. For this reason, its 
corresponding code has been listed in Table 4.  
 
load vert_mann -ascii 
load faces_mann -ascii 
f=faces_mann+1; 
v=vert_mann; 
p=size(v); 
h=superf(f,v); 
set(h,'edgecolor','none', ... 
'SpecularStrength',4,'DiffuseStrength',2, ...   
  'AmbientStrength',1,'SpecularExponent',15, ... 
  'SpecularColorReflectance',0.2, ... 
  'FaceColor','interp'); 
colormap(copper(p(1,1))) 
lighting phong 
light('Style','Local','Color','y', ... 
      'Position',[3 -4 0]); 
light('Color','y','Position',[1 -2 -1]); 
light('Color','g','Position',[-3 -1 1]); 
light('Color','y','Position',[0 0 6]); 
material shiny 
axis vis3d off 
rotate3d 
 

Table 4: MATLAB code of Figure 5 (right). 
 

MATLAB enables to control the amount of both the 
specular (SpecularStrength command) and the 
diffuse reflection (DiffuseStrength command) from 
the object. Their values are shown in Table 4. 

Another interesting light property is the ambient light, that 
is, a directionless light that shines uniformly on all objects. 
In this paper we uses the AmbientStrength command, 
which determines the intensity of the ambient light on the 
particular object (the head in this case) and the 
SpecularExponent command, which determines the 
size of the specular highlight spot (the lower the parameter 

value is, the bigger the spot size). Finally, the  
SpecularColorReflectance command is used to 
determine the color of the specularly reflected light, ranged 
from a combination of the color of the object (defined by 
the colormap command in Table 4) and the color of the 
light source to this last one only.  

(7). Reflectance properties. The reflectance properties of 
a object are described by the material command, which 
can take three different values: shiny, dull and metal, 
meaning that objects are made shiny, dull and metallic, 
respectively. Figure 5 corresponds to the first case.  

(8). Contouring. In scientific computing, the contour lines 
(obtained through intersections between a number of 
parallel planes and a given surface) are often of great 
importance. Relevant examples can be found in the medical 
area, for reconstructing and displaying the external surface 
of the organ under investigation (see [4] and references), in 
pattern recognition and computer vision [5], etc. The 
MATLAB contour and contour3 commands display 
the 2-D and 3-D isolines generated from values given by a 
matrix of heights in two and three dimensions, respectively. 
Figure 6 shows a contouring example: the Bézier surface 
on the left is intersected with a set of planes z=z0 for 30 
different values of z0. These intersections give a set of 
curves, which are shown in Figure 6 (right). 
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Figure 6: Example of a Bézier surface contouring. 

 

(9). Files management. This is a very powerful MATLAB 
feature. This program reads and writes images data in 
TIFF, JPEG, BMP, PCX, XWD and HDF formats. Thus, 
the imread command reads an image from a file in any of 
these formats. You can also save the image data using the 
imwrite function. Finally, the iminfo enables you to 
obtain information about graphic files, including the name 
of the file and its path, format, version, size (in bytes), 
width and height and number of bits. Additional 
information could be obtained, depending on the type of 
file you have. All these capabilities will be applied to create 
an IGES-MATLAB converter (see Section 4.1) and to 
transfer our MATLAB files to VRML (see Section 5).  

(10). Animation. Animation is one of the most important 
features in computer graphics. In automotive industry, the 
design process often requires to visualize the piece to be 
constructed. Sometimes, projections are enough to perform 
this task but some of the features of the piece can be more 
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easily appreciated by animating it. Although this paper 
cannot show any animation, it is interesting to point out 
that MATLAB allows to create movies either saving a 
number of different pictures and then playing them back or 
by continually erasing and then redrawing the objects on 
the screen. Of course, the first option is more advisable in 
situations in which each frame is fairly complex and cannot 
be redraw rapidly.  

Another interesting animation possibility comes from the 
new virtual reality programming languages. Since 
MATLAB can read many different file formats, this task 
becomes now easier for us. It just consists of translating the 
graphical MATLAB output to some of these languages. It 
allows a better visualization, since the designer can 
"navigate" by the graphical environment of the piece. This 
option is especially valuable when looking for piece 
defects, after the design process, and will be discussed in 
the next section.  
(11). Other properties. Of course, the previous MATLAB 
graphical commands list is not intended to be exhaustive. 
Some other interesting and useful properties are also 
available in MATLAB. For a more complete information 
about this topic, the reader is referred to [6]. 

4. APPLICATION TO AN AUTOMOTIVE 
EXAMPLE 

A year ago, our research group, at Cantabria University 
(Spain) established an agreement with CANDEMAT S.A. 
(http://www.candemat.com), a company devoted to both 
the automotive and the aerospace industries. The agreement 
includes the use of the previously described numerical 
Toolbox based on MATLAB and the implementation of the 
other ones for solving the problems arising in the company 
daily work. CANDEMAT builds moulds of pieces of cars 
and planes, which will be used later for testing by other 
associated companies. For doing this work, this company 
receives files (that are electronically transferred from the 
automotive and aerospace companies) containing the 
geometric information of the pieces to be shaped. This 
information is then processed by using the program CISC, 
developed at CANDEMAT and written in Visual BASIC.  

In general, CISC has been successfully used for many 
different tasks, being able to read these electronic files and 
apply numerical routines for dealing with the different 
geometric entities defined therein. However, the program 
has some strong limitations that can be improved in several 
directions. One of them refers to the visualization process. 
They would like to visualize the pieces under the following 
conditions: 

1. Although at the beginning the company worked with 
UNIX workstations, the software they required became 
more and more expensive. Today, company’s policy is 
oriented to the use of personal computers (PCs). This 
imposes the software for visualization to be available 

for personal computers and cheap enough to be 
installed in all the computers.  

2. The software should incorporate a powerful 
programming language and almost all the facilities 
described in the previous sections.  

3. If possible, the graphical output should be transferable 
to Internet, in order to visualize (even manipulate) it 
without having the same software and/or hardware. 
This question will be discussed in Section 5. 

Fortunately, all these conditions are satisfied when 
applying MATLAB and the added numerical routines. In 
the next paragraphs we are going to describe the steps we 
followed to perform this task.  

4.1 IGES-MATLAB Converter 
In many industrial areas, geometric information is given by 
employing different standard formats (IGES, DVA, SET, 
CATIA, etc.). A format is a way to express such an 
information as an alphanumeric text, following some well- 
established rules. Therefore, these formats represent the 
real-world objects, as the different pieces of a car (doors, 
bumpers, wings, etc.), in a mathematical formulation and 
are stored in electronic files (see Figure 7).  

 
Figure 7. Step I. The IGES files store the geometric 

information of the real-world objects. 
  

Of course, there are many different formats to be used, 
although they are reduced, in practice, to some few, that are 
considered as standards. Each of these standard format 
systems supports a different representation. Thus, IGES [7] 
only supports the B-spline representation, whereas VDA 
[8] uses the monomial one.  

Usually, CANDEMAT works with IGES files, so in the 
following we restrict ourselves to this standard format. This 
means that for being able to work with IGES files, we 
firstly need to create an IGES-MATLAB converter (see 
Figure 8).  
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Figure 8. Step II: Now, the IGES file is converted to 

MATLAB. 
 

This converter is a code written in MATLAB that extracts 
the useful part of the IGES file, in such a way that only the 
basic information for the curves and surfaces to be drawn is 
taken. Thus, as the section S only includes comments and 
user information, this part of the IGES file is ignored. 
Some information of the D section can also be removed. 
For more information about what these sections are and, in 
general, how a IGES file is organized, we refer the reader 
to [9] (see also [7] for more details).  

4.2 Using the CAGD toolbox for 
visualization  
Once the IGES file is converted to MATLAB, the next step 
(shown in Figure 9) consists of applying the commands and 
utilities described in Section 3.  

 
Figure 9. Step III: The commands from the CAGD toolbox 

are applied for displaying the curves and surfaces. 
 
This will give us a numerical and graphical output of the 
curves and surfaces forming the different pieces to be built. 
Figure 10 shows a typical output. In this example, a 
wireframe model of the back door of a car is obtained. The 
data file was read with the converter described in the 
Section 4.1. Then, the commands for B-spline curves 
defined in the Section 3.1 were applied to the obtained file.   
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Figure 10. Car door defined by 1727 B-spline curves. 

 

5. VISUALIZATION IN INTERNET 

The Virtual Reality Modeling Language (VRML) is a 
standard language to describe interactive 3-D objects and 
integrate them into scenes and virtual worlds. In the context 
of our project, VRML allows us to create interactive 
simulations and physical movement of the different pieces, 
looking for defects in the piece under analysis. Moreover, 
scenes and virtual worlds can be distributed and visualized 
throughout Internet by means of some plug-ins developed 
for Web browsers. Following the same way that in Section 
4.1, before using VRML we needed a MATLAB-VRML 
converter to transfer our files to the VRML format. 
Fortunately, we did not need to do that. There is a free 
software called VRMLplot, from Craig Sayers, (see [10]) 
for generating VRML files from the graphical MATLAB 
output (see Figure 11).  

 
Figure 11. Step IV: Using converter MATLAB-VRML.  

 

These files can be easily read by a Web browser, such as 
Netscape Navigator, and then, the interactive visualization 
is available (see Figure 12). Figure 13 shows an example of 
this visualization process.  
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Figure 12. Step V: Using a Web browser, the VRML files 

are displayed on the screen. 

 

 
Figure 13. Example of a VRML scene. 

 

6. CONCLUSIONS AND REMARKS 

In this paper we propose the use of the NCPs (in particular 
MATLAB) as a powerful alternative to the traditional 
programming languages in the computer graphics field. 
This idea has been supported by recent announcements of 
the use of MATLAB and Simulink by, among others, 
DaimlerChrysler and Motor Ford Company (see [11] for 
details). Other news in this line are arising around the 
world. Therefore, it is expected, for the next years, a strong 
growth of similar approaches to the one described in this 
paper. 
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