

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Parallel Object-Oriented Modeling and Visualization in OpenMV
Environment

Victor Ivannikov, Sergei Morozov, Vitaly Semenov, Oleg Tarlapan

Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

Moscow, Russia

Reinhard Rasche, Thomas Jung

Research Institute for Computer Architecture and Software Technology (GMD FIRST)

Berlin, Germany

Abstract
OpenMV (Open Modeler&Visualizer) is a programming
environment intended for development of a wide range of
applications, such as geometry modeling, simulation,
computational mathematics, scientific visualization, computer
graphics. Developed applications have a common open
architecture that includes an object-oriented kernel being
invariant with respect to various areas and problems, unified
graphic user interface and class libraries specific for considered
application areas. Functionality of an OpenMV application is
determined mainly by completeness of included libraries and
semantics of their classes.

The object-oriented kernel supports representation of final
graphic scene as a composition of connected typed distributed
data and algorithms and provides uniform mechanisms for
composing complex scenes and scenarios from separate instances
of library classes as well as for their serial and parallel
interpretation.

Combining “entity-relationship” paradigm and an original object-
oriented approach to modeling and visualization, OpenMV offers
more flexibility, extensibility and reusability than traditional
visualization and animation systems based on data flow paradigm
and allows users to develop complex integrated parallel
applications for essentially different areas on the same
conceptual, methodological, instrumental and programming basis.

The research was funded by Russian Foundation of Basic
Research (98–01–00321), German Ministry of Research and
Technology (01 IR 701 — VolVis) and INTAS (96–0778).

Keywords: Mathematical modeling, Scientific visualization,
Object-oriented programming, Parallel computing,
CAD/CAM/CAE systems.

1. INTRODUCTION

Currently mathematical modeling and visualization play
central role in the analysis of complex phenomena and are
successively applied in both science and industry.
Development of modeling and visualization applications,
such as CAD/CAM/CAE systems, was always a difficult
task connected with integrating different-purpose
components, providing a wide functionality, implementing

convenient user interface, porting into different parallel
computer platforms. Some of these problems have been
partially resolved in visualization and animation systems
utilizing open modular architectures and exploiting data
flow paradigm [1]. Applicability of object-oriented
paradigm to development of reusable visualization and
animation software has been also actively examined and a
lot of promising approaches and architectures have been
proposed and probed [2].

Indeed, using an open object-oriented system, we hope that
it may be relatively easy expended by appropriate set of
specific classes and, thus, may be suited for considered
application areas, particular problems and technical
requirements. For example, we expect that complete
CAD/CAM/CAE applications integrating needed
components for geometry modeling, physical simulation,
mathematical problem solving, visualization, rendering
may be developed by this way. Nevertheless, we foresee
serious obstacles to use many widespread systems for
creation of complex applications mainly because of not
sufficient generality of architectures and flexibility of
mechanisms by means of objects may interact with each
other. Mentioned aspects have principal value for
integrating different-purpose components as well as for
their parallel implementation within the same application
imposing strong requirements upon uniform representation
of different kinds of objects, general mechanisms for their
interaction, common rules of manipulation by them. For
scientific visualization applications these aspects concern
many actual problems connected with computational
steering, collaboration, high-performance computing [3].

Main drawbacks of data flow paradigm usually applied in
visualization and animation systems are inter-connectivity
mechanisms specifying rules for composition of separate
objects into a scene and ways by means of which objects
interact with each other while the scene is constructed. This
paradigm predetermines serial composition of techniques
applied to intermediate data and excludes the other possible
ways of object’s interaction. Nevertheless, such capabilities
may be useful enough for composing and interpreting

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

complex scenarios encountered in meaningful particular
applications and, thus, may provide needed generality for
customizing open system to specific problems. It is
essential that semantics of objects and their interactions in
applications to be developed may not be priory known and
the system architecture should provide uniform inter-
connectivity and interaction mechanisms without any
concretizing implemented data and techniques.

In our research we follow to “entity-relationship” paradigm
that seems to be more natural and complete to suit
generality and flexibility requirements imposed by
integrating goals. Extending traditional data flow
paradigm, it permits more sophisticated object’s interaction
schemes to be important for some topics of geometry
modeling, computational mathematics, scientific
visualization considered in the paper. The paradigm is
successively combined with object-oriented approach
within OpenMV architecture to develop complex
integrated parallel applications for modeling and
visualization.

In section 2 we present object analysis and design for
modeling and visualization applications and describe
underlying principles of the OpenMV kernel. Section 3 is
devoted to some aspects of unified development of
integrated parallel applications. In section 4 an example of
complex modeling and visualization parallel scenario is
considered to illustrate achieved advantages. In
conclusions we address to more detailed information about
current status of OpenMV and outdraw area of potential
applications.

2. AN OBJECT-ORIENTED KERNEL FOR
MODELING AND VISUALIZATION

We think final graphic scene of an application as a
composition of connected typed data taking part in all
processes of application, including modeling, visualization
and rendering, as well as algorithms constructing,
transforming, deleting these data and realizing mentioned
above processes. We distinguish passive data-objects that
control only own behavior and active algorithm-objects
that can govern behavior of other objects through message
passing in classic object-oriented style. Construction of
final scene involves defining instances of data and
algorithm classes, setting relationships between them,
composing scenario from separate data and algorithm
objects and its interpretation. An approach based on
subdivision of active and passive objects reproduces to
some extent Bailin’s methodology known as object-
oriented requirement specification [4] and has been
successively applied to development of mathematical
software [5].

Consider an object-oriented kernel of OpenMV
environment in more details.

Basic abstract class is Object that expresses arbitrary data
and algorithms taking part in modeling and visualization.
Objects may be read, written in/out files, created,
connected, transformed, viewed, copied, distributed over
processes and deleted as application runs. To manipulate
uniformly by different kinds of objects and to provide
kernel functionality Object encapsulates identification key,
version number, logical displacement in scene (will be
explained later) and numbers of processes over which it
has been distributed. These attributes are shared by all
scene objects, classes of which are derived from Object.

Besides common attributes each concrete object obj ∈
Object has own set of attributes defining its internal state
and behavior as well as a set of typed links. Links are
external ports of objects by means of which they may
connect with other ones. A type of separate link Link ⊆
Object predetermines potential capability of the object obj
to connect with any other ones lobj ∈ LinkObject, type of
which satisfies to link type or, by another words, is its
subtype LinkObject ⊆ Link.

Availability of connections in a scene means functional
dependence of its objects and, consequently, necessity of
their joint consideration and analysis. Being set each
connection defines usage relations between a main object
having a link and auxiliary objects involving to it. We
consider single and multiple connections. Single
connection defines one usage relation between pair of
objects considered as main and auxiliary ones. Multiple
connection should be used when one main object interacts
with a subset of auxiliary objects of the same generic type
through one link lobj_i ∈ LinkObject_i ⊆ Link, i = 1,...,n,.
The number of objects n involved into multiple connection
may be arbitrary and depends only on particular scenario
realized in an application.

To differ ways by which objects may interact, all links and
connections corresponding them are classified as input,
output and mixed (input/output). Having links and
participating in connections, a main object uses data and
methods of auxiliary objects and, therefore, may change
states of connected objects. It is suggested that the main
object is capable to change states of auxiliary objects via
output and mixed links, and is not capable to influence on
input objects. The main object depends only on input
objects and mixed objects and does not depend on output
objects. The main object and auxiliary objects involved
into mixed connections are mutually dependent. Thus,
described dependence relations based on classification of
links of interacting objects may be established.

To develop parallel applications we need to refine the
concept of object from implementation viewpoint. We
differ objects that may be located only at any of the
processes initiated by the application and objects that may
be distributed over a set of the processes. Local objects are
implemented by traditional methods of sequential

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

programming. An implementation of global objects is
based essentially on parallel programming. For brief we
omit details connected with possible techniques for data
partition and consider that each global object may be
scattered and gathered in accordance with some generic
rule specifying a subset of processes over which the object
to be distributed and a way of its geometric, physical, logic
or any else partition.

Encapsulating described behavior and properties of objects,
the class Object specifies the following groups of methods
common for its concrete instances:

• creation (construct, destroy, copy; read, write in/out
file),

• identification (identify an object, its class, parent class,
version; verify whether the object belongs to given
type),

• inter-connectivity (get number of links, their classes,
types; connect objects),

• parallel processing (transmit (send, receive) a local
object, distribute a global object),

• scene information (get parameters of a scene, logical
arrangement of an object in a scene).

The basic OpenMV concepts are also data-objects dat∈
Data ⊂ Object and algorithm-objects alg ∈ Algorithm ⊂
Object. Abstract classes Data, Algorithm are derived from
Object and inherit its behavior and properties. The class
Data expresses entity of various data encountered in
applications of modeling and visualization. Its instances
may control only own behavior and, therefore, may have
only input links. The class Algorithm represents various
algorithms, transforms, operations, auxiliary utilities
realizing all processes in modeling and visualization
applications. The algorithms are active objects that control
both own behavior and behavior of auxiliary objects (not
only data) connected via their links. The algorithms may
not have input links, but necessarily have output and/or
mixed links.

Essential distinction of algorithms consists in their activity
that is realized when appropriate events occur in a scene. In
these cases the scene activates appropriate method for
running algorithms. It is suggested that all connections of
algorithms have been preliminary set to activation moment.
In opposite case the algorithm is considered as data-object
and is not activated to eliminate possible error situations.
While an algorithm is running, it sends messages to
connected objects to get states of input and mixed objects,
to perform needed operations over them, to update mixed
objects and to construct output objects.

Figure 1 gives an example of object interaction in
OpenMV. The example illustrates how typed data and
algorithms may be connected and interacted via typed

links. A hierarchy of classes specifies inheritance relations
between classes of data and algorithms. A scene diagram
specifies a particular scheme of connecting and interacting
objects. In the scene diagram data and algorithm instances
are shown as ovals and rectangles correspondingly. Links
of the objects are marked by points. Connections between
objects are shown as arrows.

dat3 ∈ Data3

dat5 ∈ Data4

dat1 ∈ Data1 dat2 ∈ Data2

dat4 ∈ Data4alg ∈
Algorithm1

link1

link4

link2

link3

Input link1 ∈ Data1,
link2 ∈ Data3

Output link4 ∈ Data4
In/Out link3 ∈ Data4

• Object
• Data

• Data1
• Data2

• Data3
• Data4

• Algorithm
• Algorithm1
• Algorithm2

Figure 1: Class hierarchy and interaction of typed objects

in OpenMV

Note that the accepted way to direct arrows corresponds to
data flows in the scenario. This circumstance reveals
similarity with traditional data flow diagram widely used in
visualization and animation systems. Nevertheless, the
scenario diagram expresses more general paradigm
“entity—relationship” that, to our opinion, is more
preferable in view of capabilities to specify more
sophisticated kinds of object interaction. The visualization
problem discussed below gives an example of data
interaction that could not be represented by data flow
diagram but it is naturally specified in terms of our
approach.

Finally, class Scene is a container class supporting ordered
representation (composition) of all data and algorithm
objects inserted in a scene and providing a wide
functionality needed for developed applications. A
resulting picture is constructed by intermediate
manipulating scene objects and by activating a conveyor
consisted of separate algorithms of the scene. Algorithms
of the scene conveyor are preliminary ordered and, then,
are activated sequentially or in parallel to solve partial
modeling and visualization problems. As the algorithms are
being performed, objects of the scene interact with each
other, which results to construction of new objects and
updating existing objects.

Instances of the class Scene are used for representation of
scenes as compositions of data as well as for specification
and interpretation of complex modeling and visualization
scenarios represented as compositions of data and
algorithms. The concept of scene envelops both data and
algorithms because iterative character of construction of a
final picture generated usually by means of gradual
correcting data properties, refining set of applied modeling
and visualization techniques, adjusting their parameters,
setting convenient views. Enumerated actions are very

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

closely connected with each other and are usually required
to reproduce studied phenomenon by more adequate and
more expressible way.

Having described representation of a scene, one can
modify it until desirable picture will be produced. The
same representation may be used for dynamic simulation
and animation of obtained results. This capability takes
place because a scenario once composed may be over and
over again applied to semantically equivalent data sets
generated in an application as well as inputted into it from
files or received from other processes.

Functionality of the class Scene is provided by abstracting
data and algorithms specific for particular applications to
be developed. The class defines following groups of
methods:

• creation (registry class of an object, construct an object
of given class, update version of an object, copy,
delete),

• identification (get an object by identification key,
select objects belonging to given type),

• inter-connectivity (connect an object with given
auxiliary objects, connect objects automatically),

• scenario interpretation (get physical and real time,
iteration number; plan a scenario (rank the scene,
arrange its objects), analyze latent objects; run a
separate algorithm and whole scenario),

• processing application events.

Discuss some features of manipulating whole scene and
interpretation of its corresponding scenario.

To simplify the connecting procedure a special mechanism
is provided to connect objects automatically. The
mechanism is based on type analysis performed for all
objects of a scene and inclusion of acceptable objects into
connections marked as automatic. All acceptable objects
are included in multiple connections. Only the first selected
objects are included in single connections. This technique
is very useful in cases when a type of a object
predetermines some semantic actions that should be
performed automatically. For example, it would be
convenient to draw geometric objects automatically just
after their construction and inclusion into a scene. In this
case the procedure drawing whole scene may be
implemented as an algorithm having input multiple link of
the geometric object type GeometryData ⊂ Data. Every
time when a new geometric object is constructed, it is
connected to the algorithm and may be automatically
drawn without any additional efforts.

Specifying scenario, an user arranges the algorithms in
logical order in which the scene should activate them.
Because this purpose may be difficult, the scene permits to
order algorithms automatically. As classified links of

objects correspond to dependence relations arising between
objects, the scene is capable to analyze connections
between objects, to determine character of their
dependence and to arrange them in desirable logical order.
Arrangement methods provided by the class Scene are
based on scene ranking. Ranking aims to assign to each
object a pair of integer numbers (rank and index) pointing
its place in a scenario diagram. Similar diagrams display
objects of a scene as geometric primitives connected by
arrows and are often used in visualization and animation
systems as effective tools for graphic representation of
scenarios and their visual programming.

Ranking establishes some logical order at which lower rank
objects don’t depend on higher rank objects, and
conversely, objects having a higher rank are dependent
only on lower rank objects. Ranking procedure is easily
formalized and implemented. After ranking has been
completed, objects having the same rank are indexed to
determine their full positions in a scenario diagram.

Capability of a scene to rank and to arrange objects is very
important for correct interpretation of a scenario because
the algorithms should be sequentially activated in logical
order, resulting to passing data through an algorithm
conveyor and to generating a final picture. If this order was
disturbed, there may occur different kinds of errors
connected with attempts to activate algorithms without
prepared input data.

If a scenario is executed repeatedly, latent objects may
exist at some iterations. Latent objects are the objects
whose state is not changed at the current iteration. If input
objects of an algorithm have not been changed at the
current iteration of a scenario, activation of the algorithm
cannot result to changes of output objects and, therefore,
has not any meaning. Latency analysis permits to exclude
redundant events activating latent algorithms and, thus, to
increase efficiency of whole scenario interpretation. A
scene accomplishes latency analysis by comparing versions
of input objects with their versions stored at the previous
iteration. Latency analysis should be performed as a
scenario is interpreted.

Finally, the class Scene provides a method for processing
typical events connected with OpenMV functionality. Such
events are directly dispatched to appropriate methods of the
scene.

The considered object-oriented kernel is general and
flexible enough to be used for development of various
applications at the same conceptual, methodological,
instrumental and programming basis. Indeed, to apply the
kernel one should not modify it any time to suit to a
particular problem, semantics of specific entities, their
relationships, and possible details of program
implementation.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Underlying mechanisms of inter-connecting and interaction
of objects implemented by the kernel allow to compose and
to interpret sophisticated scenarios encountered in real
applications without any serious modifications. In most
cases creation of an application is reduced to development
of an applied class library for representation of used
scientific data and for realization of modeling and
visualization methods specific for a particular area. Taking
into account benefits from object orientation of the kernel,
the implementation of applied libraries is significantly
simplified through exploiting principles of inheritance and
polymorphism in development of data and algorithm
classes.

A complete OpenMV application includes the object-
oriented kernel, expanded class libraries and an unified
graphic user interface. C++ language, graphic library
OpenGL and message passing interface MPI have been
used as standard implementation tools permitting to port
developed applications into different platforms.

The current version of OpenMV runs under UNIX/X
Window. The developed interface provides unified dialogs
for composing scenarios and their interpretation, scene
view windows, menus and toolbars. For clearness and
convenience the hierarchy of registered classes, the current
scenario diagram, the filtered list of scenario objects are
displayed in the dialogs. Edition of separate objects is also
performed through an unified dialog allowing the user to
set desirable values of their public attributes and to connect
objects via links. Performed unification of the interface
does not hinder its specialization for particular purposes.

3. A PARALLEL EXTENSION OF THE
KERNEL

Let’s discuss possibilities of development of parallel
applications with usage of the described object-oriented
kernel. We follow to practically important scheme of
asynchronous parallel computing governed by master
(main) process and realized by slave (auxiliary) processes.
Performing user’s commands, the master composes, plans a
scenario, distributes it over processes and manages them as
the scenario runs. Performing master commands, the slaves
load own partial scenarios and interpret them sequentially
in accordance with user’s one. Being started partial
scenarios allocated on master and slave processes run
concurrently. Problems connected with data distribution,
communication, synchronization, deadlocking, load
balancing are well known [6]. To resolve some of them
following communication scheme has been developed and
implemented. This scheme is oriented on parallel
interpretation of user’s scenario composed in usual
sequential manner and is intended for high-performance
computing at massively parallel systems and workstation
clusters.

Composing a scenario, the user assigns to algorithms
numbers of processes on which they should run. The
master plans (potentially, schedules) the scenario by means
of allocating local algorithms on assigned processes and
distributing global algorithms over them (in addition to
ranking and arrangement applied in sequential processing).
In view of the data required for algorithms may be
allocated by another way, the master reallocates and
redistributes them in accordance with given allocation of
algorithms. If objects cannot be reallocated in view of
connections with already allocated objects, the master
inserts additional transmitting and distribution instructions
to partial scenarios to create appropriate versions of the
objects on desirable processes. The transmitting
instructions are instances of the class Transmission ⊂
Algorithm that realize sending and receiving operations for
local objects. The distribution instructions are instances of
the class Distribution ⊂ Algorithm that realize
redistribution of global objects over assigned processes in
accordance with the specified generic rule. All these
instructions are interpreted within partial scenarios as usual
global algorithms. To guarantee that the applications are
free of deadlocks, the instructions are intermediately
inserted forward places corresponding to algorithms that
need appropriate data. The transmission instructions are
always assigned to process pairs matching sending and
receiving operations.

In consequence of the reallocation several versions of the
same objects may arise in different processes. To maintain
compatible representations of both user’s and partial
scenarios, the master stores virtual versions of all remote
objects independently from their real location. A virtual
version of the object is an instance of its class storing only
most common attributes specified in Object. Usage of
virtual versions allows the master to manage
simultaneously by different versions of objects avoiding
redundant storing all data encapsulated by real versions.
Virtual algorithms cannot be activated but are necessarily
processed by the master.

Described actions are connected with planning the user’s
scenario. At this stage the master prepares partial scenarios
and load them into slave processes by sending appropriate
commands and objects. To run it the master sends
commands for interpretation beginning to all slaves and
then runs own partial scenario. This sequence of actions is
repeated in dynamic modeling and animation.

At each iteration the partial scenarios are performed
asynchronously, overlapping computations and
communications. The necessary synchronization point is a
begin of partial scenarios. Potential synchronization points
are transmission instructions, distribution instructions and
global algorithms. In dependence on particular parallel
programming implementations the potential points may be
omitted and should not be specially controlled. For
example, transmission instructions synchronize pair of

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

processes in result of sending and receiving appropriate
local objects. Nevertheless, current MPI implementation
allows to exclude these points from the scenarios by
assigning strict object-connected tags to messages. The
master should not synchronize them specially if the
appropriate tag control discipline is accomplished within
global algorithm implementation.

To simplify development of parallel applications based on
the described “master—slave” scheme some extensions of
the kernel have been performed. Because of essential
differences in ways by which the master and slave
processes communicate, special classes SceneMaster ⊂
Scene and SceneSlave ⊂ Scene have been developed to
suit to corresponding master and slave applications. These
classes are derived from the Scene inheriting its
functionality and, partially, implementation. The class
SceneMaster provides additional methods for transmitting
local objects, distributing global objects and redefines
methods for planning and interpreting scenarios taking into
account needed management of parallel slave processes.
The class SceneSlave provides the only additional method
for dispatching master commands. A structure of the
master and slave applications as well as the scheme of their
communications are shown in figure 2.

An important advantage of the extended object-oriented
kernel is that it allows to exploit simultaneously different
kinds of parallelism within the same modeling and
visualization application.

• Fine-grain parallelism can be realized by usage of
parallel computational methods (rendering techniques
or something else) and by their implementation as the
global kernel algorithms.

• Coarse-grain (task or scenario) parallelism can be
exploited by distributing user’s scenario over processes
and by its parallel interpretation.

• Data flow parallelism can be also realized in cases
when the same scenario should be executed repeatedly
for semantically equivalent data sets. In particular, a
conveyor can be constituted from separate algorithms
allocated on different processes. A technique connected
with periodic running the same scenario on different
processes for different data sets can be also
implemented.

GUI

MASTER Application

SceneMaster

 GlobData1
 Distribute(GlobData1)
 GlobAlg1 (GlobData1, Data2)
 Data2
 Data3
 Alg2 (Data2, Data3, Data4)
 Data4
 ...

User Commands

Activation of methods

SLAVE1 Application

SceneSlave
 GlobData1
 Distribute(GlobData1)
 GlobAlg1 (GlobData1, Data2)
 Data3
 Send(Data3)
 ...

SLAVE2 Application

SceneSlave
 GlobData1
 Distribute(GlobData1)
 GlobAlg1 (GlobData1, Data2)
 Data2
 Receive(Data3)
 Data3
 Alg2 (Data2, Data3, Data4)
 Data4
 ...

Master
commands

Object (data
and algorithm)

flows

Figure 2: Structure of a parallel application

4. AN EXAMPLE OF PARALLEL
COMPLEX SCENARIO

The following example illustrates how a complex parallel
scenario integrating different-purpose components can be
composed and interpreted within the OpenMV
environment extended by applied class libraries. The
presented scenario is intended for studying behavior of
generator with nonlinear inertia. The model of the
generator is a system of ordinary differential equations
(ODE) with strange attractor [7].

To study behavior of the model and to determine attractive
domain in phase space it is convenient to construct phase
trajectories corresponding to different initial conditions of
appropriate Cauchy’s problem. A set of initial conditions
can be derived by composing a complex solid in interesting
domain in accordance with constructive solid geometry
model (CSG) [8] and by generating vertices on its
boundary representation. Then, a set of Cauchy’s problems
can be numerically solved and obtained results can be
visualized by coloring phase trajectories in accordance with
derivative magnitudes. A surface corresponding to given
magnitude can be also extracted to reveal properties of the
ODE function. Isosurface extraction can be performed by
different processes in parallel with construction of
trajectories. The described parallel modeling and

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

visualization scenario is given by Figure 4, obtained final
image is shown in Figure 3.

Discuss achieved advantages in our approach, restricting
ourselves by a fragment of the scenario connected with
geometry modeling. CSG model specifies complex solid in
terms of set-theoretic operations (union, subtraction,
intersection) over elementary solids (box, sphere, cylinder,
cone, prism, torus). CSG model can be developed in the
scope of the OpenMV environment by natural way.
Elementary solids and set-theoretic operations should be
considered as passive objects represented by the classes
CSGElement ⊂ CSGData ⊂ Data and CSGOperation ⊂
CSGData ⊂ Data correspondingly. Solids have not links.
Operations have pairs of input links by means of which
they connect with operands. Because operands may be both
geometry elements and operations, the links have type
CSGData.

Figure 3: Final image generated in OpenMV environment

Interacting with each other both CSG elements and
operations are capable to classify points relatively
themselves. For elements such classification is based on
simple geometric relations assigned to each element type.
For operations the classification is based on Boolean
analysis of similar results obtained for each operand.
Resulting operation corresponds to complex solid, passes
needed functionality for point classification and can be
used as a part of more sophisticated scenarios.

Being developed in the scope of the OpenMV
environment, the scenario can be flexibly recomposed for
particular problems by modifying separate fragments, data
and algorithms. The only restriction is that changed objects
should satisfy to link typing. This feature guarantees that
same scenario can be correctly applied in combination with
new data and algorithm types extending developed class
libraries. Summarizing achieved capabilities in object-
oriented development of applied class libraries, composing
and modifying complex parallel scenarios, OpenMV

provides a wide reusability for both implemented software
components and composed scenarios.

5. CONCLUSION

Thus, general topics connected with parallel object-
oriented modeling and visualization in OpenMV
environment have been considered. The environment
provides general and flexible tools to integrate modeling
and visualization components and to develop complex
parallel applications for different science and industry areas
at the same conceptual, methodological, instrumental and
programming basis.

Having being initially developed as general-purpose
scientific visualization system, OpenMV offers class
libraries for representation of different kinds of scientific
data, such as meshes, fields, geometry primitives, solids,
scales, palettes, images, and for realization of many
visualization and rendering techniques, including methods
for extraction of isolines and isosurfaces, construction of
streamlines, glyph sets, generating slices, pseudo-coloring.
Availability of such libraries simplifies development of
numerous applications connected with solving
computational mechanics problems. Nevertheless, an area
of potential applications of OpenMV is significantly wider
and may envelop mathematical modeling, integrated
CAD/CAM/CAE systems, VRML technologies, animation
systems. Planned future works will be focused on creation
of complete applications in closed areas. The examples of
applications can be found in [9].

6. REFERENCES
[1] Ribarsky W. et al. Object-Oriented, Dataflow Visualization
Systems — A Paradigm Shift? // Proceedings IEEE Visualization
’92, pp. 384–387, October 1992.

[2] Object-Oriented and Mixed Programming Paradigms: new
directions in computer graphics / P. Wisskirchen (ed.), Springer,
1996.

[3] Jern M. Information Visualization — Trends in the late 90s //
Proceedings GraphiCon’96, Vol. 1, pp. 91–131, Saint-Petersburg,
1996.

[4] Bailin S.C. An Object-Oriented Requirements Specification
Method, Comm.ACM, Vol. 32, No. 5, 1989, pp. 608–623.

[5] Semenov V.A. Object systematization and paradigms of
computational mathematics // Programming and Computer
Software, No. 4, 1997.

[6] Lewis T.G. Foundations of Parallel Programming, IEEE CS
Press, 1994.

[7] Anichenko V.S. Complex oscillating in simple systems —
Moscow.: Science, 1990.

[8] Requicha A.A.G. and Voelcker H.B., Solid Modeling: Current
Status and Research Directions. // IEEE Computer Graphics and
Applications, Vol. 3, No. 7, 1983, pp.25–37.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Bolshaya Kommunisticheskaya st., 25, Moscow, 109004, Russia [9] The ISP RAS Scientific Visualization Group Home Page,
http://www.ispras.ru/~3D

e-mail: {ivan,sem,serg,oleg}@ispras.ru

Authors:

Dr. Reinhard Rasche, GMD FIRST staff Prof. Victor Ivannikov, Corresponding member of RAS, ISP RAS
director Dr. Thomas Jung, GMD FIRST staff
Full Dr. Vitaly Semenov, ISP RAS staff, leading scientist Address:
Dr. Sergei Morozov, ISP RAS staff, research scientist Research Institute for Computer Architecture and Software

Technology (GMD FIRST) Dr. Oleg Tarlapan, ISP RAS staff, research scientist
Rudower chaussee, 5, D–12489, Berlin, Germany Address:
e-mail: {drahnier,tj}@prosun.first.gmd.de Institute for System Programming of the Russian Academy of

Sciences (ISP RAS)

rr

r r

Trajectories

Scale

Palette

Image

Field

Initial
Conditions

Magenta Red

ODEImplicit
Algorithm

4

136 1

Cylinder1

Subtraction

Cylinder2

Bounding
Algorithm

3

5

55

NewtonSolver

F(x) x0

x

15

146 15

LinearSystem
Solver

A y

x

15

1516

Pseudo
Coloring

101 87

Surface

Coloring
81

Coloring
81

View

Rendering
Algorithm

12

119

Function
Evaluator

7

16

Mesh

Field

Surface

Function
Evaluator

7

16

IsoSurface
Algorithm

3

27

 Process 1 Process 2

Attractor
F(X)

Attractor
F(X)

 — G eom etryData
 — VolumeM esh ⊂ G eom etryData
 — SurfaceM esh ⊂ G eom etryData
 — Polylines ⊂ G eom etryData
 — CSG Data
 — Function
 — Field
 — Palette
 — ColoringRule
 — Scale
 — View
 — Pixmap
 — NonlinearSystemAlgorithm
 — LinearSystemAlgorithm
 — Vector
 — M atrix

1

2

3
4
5
6
7
8

9

10

11

12

15

16

13

14

Figure 4: An example of parallel modeling and visualization scenario

	1. INTRODUCTION
	2. AN OBJECT-ORIENTED KERNEL FOR MODELING AND VISUALIZATION
	3. A PARALLEL EXTENSION OF THE KERNEL
	4. AN EXAMPLE OF PARALLEL COMPLEX SCENARIO
	5. CONCLUSION
	6. REFERENCES

