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Abstract 
 
Volume visualization is a powerful engineering tool. 
However, the visualization of a three dimensional volume 
is computationally expensive taking significant amounts of 
time to produce the images on conventional computers. 
Parallel processing offers the possibility of rendering the 
volume in acceptable times. This paper discusses 
hierarchical and distributed clusteral models with dynamic 
cluster re-sizing and caching which are used in 
combination with dynamic task and data management 
strategies to provide an efficient parallel implementation 
for volume visualization on a large distributed memory 
multiprocessor system.  
  
Keywords: Parallel, Volume Visualization, Data 
management, Task Management, Load balancing, 
Clustering 
 
1. INTRODUCTION 
 
Volume visualization enables users to “peer” into complex 
three dimensional volume data sets and extract meaningful 
information as to their structure and complexity [3,5]. By 
manipulating a view point the user can examine the 
volume from any direction. Such a tool is increasingly 
important as volume data, for example, medical data from 
CAT or MRI scanners, is used more frequently. 
 
One straightforward method of representing volumetric 
data sets is by a three-dimensional regular grid of volume 
elements (known as voxels).  As the view point is moved, 
volume rendering techniques are used to produce an image 
of the volume from each new viewing position. The 
computational effort required to render a single image of a 
complex volume is significant and may take many 
minutes, even hours, to render on a conventional machine. 
Parallel processing offers the potential of significantly 
reducing this rendering time.  However, volume data sets 
exhibit certain characteristics which complicate their 
visualization on multiprocessor systems: 
 

   The volume data is typically very large - far larger than 
can be accommodated on a single processor. Thus, a 
parallel implementation of a volume rendering algorithm 

must be able to cope with data sets which are distributed 
amongst many processors. The correct distribution of the 
data, and the minimization of the communication latency 
associated with a remote data fetch, are fundamental to 
any efficient parallel solution to volume visualization 
[6,12,16]. 
 
    In a parallel implementation of volume visualization, 
the tasks required to render one image may be quite 
different from that necessary to produce the image from 
a different view point, and may vary in computational 
complexity. Therefore, efficient load balancing schemes 
will be necessary to maximize overall system 
performance. 
 

If anything approaching an interactive visualization system 
is to be achieved on a distributed memory multiprocessor 
system then the issues of data and task management and 
communication must be effectively addressed. This paper 
discusses a number of strategies and shows how coherence 
in task distribution requirements can be exploited to 
improve significantly the overall performance of the 
parallel solution.  
 
2. RAY CASTING 
 
A number of techniques have been developed for volume 
rendering. The “splatting method”, for example, although 
frequently used for sequential implementations [17], 
require large overlapping of data portion of each 
processing elements for large splat sizes which is 
important for a good quality picture. For an efficient 
volume visualization with splatting, a large amount of data 
redistribution is necessary to achieve even load balancing 
across the parallel system. Ray casting, on the other hand, 
is a simple technique, well suited for parallel processing 
[3,7,9,14]. 
 
An early ray casting model for volume rendering was 
presented in [9]. The renderer casts a group of rays from 
the view point through the image plane to the volume data. 
Each ray now travels through the volume data. The 
renderer interpolates this data to generate new sample 
points at the intersection points along the path of the ray. 
The path terminates when the volume data is exhausted or 
the accumulated opacity along the ray equals one. The 
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early termination of the process allows optimization of the 
ray casting method. Opacity and intensity are accumulated 
along the rays during these processes. Finally, the volume 
is shaded according to light transmission and reflection. 
 
The volume data is usually sampled at a regular interval by 
rays sent into the volume data from the view point passing 
through each pixel in the image plane, as shown in Figure 
1. An interpolation function is used to reconstruct the 
object from the discrete values at the image space. In a 
sequential implementation for rendering the discrete 
volume data, the process proceeds pixel by pixel.  
 

 
 

Figure 1: Ray casting 
 

The rendering algorithm traces the rays through the voxels 
until they hit a surface and then assigns an intensity 
inversely proportional to the distance from the eye. The 
radiation transfer equation with single scattering 
approximations is used to simulate transmission of light 
through the volume and model reflectance from the 
layered volume.  Opacity and inverse transparency are 
defined as scalar functions and evaluated at the nearest 
face of each cell along the ray's path. This path is stepped 
along until the entire cell has been traversed with 
evaluations of the scalar field, shading function, opacity, 
and texture mapping [9]. 
 
3. PARALLEL IMPLEMENTATION 
 
Recently, many parallel algorithms for volume rendering 
have been developed, for example [11,12].  Early parallel 
approaches targeted volume rendering directly on 
specialized, and thus expensive, hardware. Here, we 
consider parallel volume visualization on a general 
purpose MIMD system; a network of transputers.  
 
A single computational element of a parallel rendering 
algorithm may be chosen as the calculation of the local 
color and opacity contribution of an intersection of a voxel 
of the volume data with a ray cast through a pixel of the 
image plane.  Parallel volume rendering may now be 
classified as either image partitioning or volume 
partitioning depending on how these computational 

elements are combined as tasks in the parallel 
implementation [13].  Figure 2 shows the difference 
between these two approaches in two dimensions. In this 
figure we assume there are three processing elements and 
that a third of the volume data is accommodated at each 
processing element. 
 

 
 

Figure 2: Division of data and tasks (a) Image partitioning 
(b) Volume partitioning  

 
    Image-partition techniques initially partition the image 
plane evenly amongst the processors. Each processor 
calculates the pixel values for its image portion. The 
work load at each processor is proportional to the 
number of scan lines of the image plane to be computed. 
As can be seen in Figure 2 (a), with large distributed 
volume data sets, image partitioning may require a 
processing element to fetch data items from other 
processing elements in order to complete its tasks. 
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   To ensure an even load balance it must be possible to 
migrate some tasks from those processing elements 
allocated complex tasks to those whose initial allocation 
contained scan lines which were computationally easier 
to compute. As each processing element is responsible 
for the rendering tasks of its region, there is no need for 
an additional combination of partial results to produce 
the final image. 
 
  The volume-partition method performs the 
reconstruction and re-sampling tasks with the portion of 
the volume data held at each processing element. 
Because there is no world model, processing elements 
may only compute partial results of the tasks from their 
allocated portion of the volume data. In order to 
rendering the final image, it is necessary, therefore, to 
combine the partial results computed by several 
processing elements, as shown for a single pixel in 
Figure 2 (b). 
 
   The advantage of this method is, of course, there is no 
need for a processing element to fetch potentially large 
amounts of volume data from other processing elements. 

 
In this paper we have used volume partitioning for our 
parallel implementation in order to reduce the need to 
communicate data across the system. To exploit the task 
and data coherence that such an approach offers, clusteral 
models with dynamic cluster re-sizing and clusteral 
models with caching have been introduced. 
 
3.1. Task Management 
 
Volume partitioning requires each processing element to 
perform the local color and opacity calculations for the 
intersection of the rays with the volume data held at that 
processing element. This volume data is evenly distributed 
amongst the processing elements prior to the start of any 
visualization. This data remains in situ at the processing 
elements throughout the entire volume visualization, 
however, the nature of the tasks associated with this data 
will vary according to the selected view point. 
  
Volume partitioning does have a disadvantage. This 
technique is unable to fully exploit the “early termination” 
optimization of ray casting.  Early termination may occur 
if an opaque layer hides the rest of the volume from a cast 
ray or the opacity accumulation exceeds a certain level. A 
front-to-back opacity accumulation technique is able to 
determine this situation and thus stop any further 
computation of tasks on the path of the considered ray. 
Such early termination may save a substantial amount of 
computation, especially when considering high density 
objects [10]. With volume partitioning, processing 
elements can still take advantage of any early termination 
within the tasks they are considering, but the significance 
of this will vary according to the current view point. 

 
Exploiting any early termination and the position of the 
view point means that tasks have variations in 
computational complexity. Such variations may result in 
significant load imbalances within the system unless a load 
balancing scheme is adopted [2,4,15]. Task management 
ensures that tasks may migrate from processing elements 
which are struggling with high complexity tasks to those 
which have finished all their less difficult tasks. Migration 
of tasks implies that the data associated with the tasks 
must also be fetched to the task receiver.  Therefore, care 
must be taken to ensure that tasks migrate to processing 
elements which are physically “close” to the task's source 
in order to maintain the benefits of low communication 
overheads of volume partitioning.  
  
For further improvement of the clusteral model for parallel 
volume visualization on a distributed memory parallel 
system, dynamic cluster re-sizing and caching strategies 
are introduced. Dynamic cluster re-sizing  rearranges the 
task grain size for each sequential frame by re-sizing of 
each processing elements clusters' portion. Thus, 
efficiency of parallel volume visualization will be 
improved gradually. In the course of volume visualization, 
after a few frames, the system will reach an even load 
distribution. A second strategy uses caching technique so 
that a task migration policy ensures that the same task 
must migrate to the same processing elements. Such a 
caching strategy may reduce the amount of data 
redistribution and may improve system performance by 
making reuse of data previously fetched. 
 
3.2. Data Management 
 
Applications with data requirements which are such that 
the total number of data items is small enough to be 
accommodated at each processing element, termed a world 
model, may be solved without recourse to additional 
fetching of data items.  Volumetric data sets are typically 
represented by a three-dimensional regular grid of voxels. 
The size of data for even a moderately complex volume 
data is substantial, precluding a world model. Thus, a 
parallel implementation of a volume rendering algorithm 
must be able to operate on data sets which are distributed 
amongst many processors.  The correct distribution of the 
data, and the minimization of the communication latency 
associated with a remote data fetch, are thus fundamental 
to any efficient parallel solution to volume visualization 
[6,7,8]. 
 
Volume partitioning allows the distribution of the data 
amongst the processing elements to be determined in 
advance. The data associated with the tasks allocated to a 
processing element is known and available locally 
[7,8,18]. Even when tasks migrate to other processing 
elements in the course of load balancing, the data 
requirements for these tasks can specified in the migrating 
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task packet. This enables the necessary data items to be 
prefetched from the task's source.  Provided these known 
data item can be fetched sufficiently quickly, they should 
thus be available in the local memory of the processing 
element executing the task when required. The efficiency 
of the underlying communication system is fundamental to 
the rapid delivery of data requests and this can be 
increasingly effective with the correct choice of 
configuration [2]. 
 
3.3. Caching for Clusteral Models 
 
In the data management strategy, the local memory at each 
processing element, which we term the local cache, 
assumes the röle of the cache memories of conventional 
processors. The purpose of the cache, which has an access 
time of up to ten times faster than main memory, is to store 
those portions of the main memory contents which are in 
current use by the processor. The use of a cache with 
careful design can improve the average access time of the 
memory considerably, and this is directly attributable to 
the property of locality of reference. Thus, the access time 
for a data manager to fetch data item from a remote 
“memory” location will be substantially higher than a 
fetch from its local cache. Coherence is used to ensure a 
high “cache-hit” ratio. 
 
The spatial coherence in the problem domain and the 
temporal coherence together with the preferred biased task 
allocation provides the data manager with a good estimate 
of the future data requirements of the tasks being 
computed at a processing element. The data manager can 
now use this information to prefetch  those data items 
which are likely to be used by subsequent tasks being 
performed at that processing element.  If the data manager 
is always correct with its prediction, then a data item will 
always be available locally when required by the 
application process and thus the process is never delayed 
awaiting a remote fetch. 
 
A cache normally consists of the cache directory and the 
random access memory. The cache is divided into a 
number of block frames of equal size which correspond to 
the blocks which make up the main memory. Information 
in the cache directory identifies the contents of the cache 
at any particular time.  Two key design parameters 
characterize a cache memory: the placement policy, and 
the replacement policy. For cache management  four basic 
placement policies have been used, namely direct, fully-
associative, set-associative and sector mappings. Only the 
first three are suitable for data management in message 
passing systems. 
 
Set-associative mapping represents a compromise between 
the simplicity of the direct mapping and the performance 
of the fully-associative mapping [6,7]. A simple mapping 
technique comparable with direct mapping is used to 

determine the set in which a data item may reside. The set 
must then be searched to test if the data item is present. 
Here, the set-associative organization attempts to provide 
the performance of full-associativity with the simplicity of 
a direct mapped cache, and has become the most common 
placement policy for memory management systems. 
 
A replacement policy is necessary to determine which 
cache positions will be overwritten when the cache 
becomes full. In cache management systems, Least 
Recently Used (LRU) has been the most popular of the 
replacement policies. When a data item is referenced, it is 
marked as being the most recently used, and all the others 
are modified accordingly. Then when a write occurs the 
least recently used entry is selected for overwriting. 
 
3.4. Clusteral Models 
 
Initial task allocation is implicit with the volume 
partitioning approach, that is, the tasks to be done at a 
processing element are determined by the portion of the 
volume data that was assigned initially. As shown in 
Figure 2 (b), the partial results of these tasks will need to 
be combined in order to produce the desired pixel values 
for rendering the image. Here we discuss two clusteral 
models, hierarchical and distributed, which may be used to 
facilitate this combining process. 
 
The need to combine the partial results may be solved by 
sending them all to the system controller where they can 
be combined prior to rendering. For a large number of 
processing elements, such an approach can cause a serious 
bottleneck at the system controller and lead to a significant 
degradation of overall system performance. A more 
efficient solution is to distribute at least some of the 
combining computations to the processing elements and 
have the system controller perform only a limited number 
of these operations. 
 
A straightforward approach to distributed combining 
would be to divide the image plane into a number of 
conceptual regions. Specific processing elements can now 
be assigned the job of combining all the partial results for 
one such region. While such an approach will avoid the 
bottleneck at the system controller, this static allocation 
takes no account as to how the tasks may be distributed 
within the system. The tasks which constitute a particular 
ray are determined by the current viewpoint. In volume 
visualization, this viewpoint is constantly moving. 
Therefore, the partial results may need to be sent from the 
processing elements where they were calculated, to the 
physically remote processing element which is doing the 
combining. 
 
The clusteral model exploits the coherence within task 
allocation to reduce "long distance" communication. A 
number of processing elements within the configuration 
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are conceptually grouped together to form a cluster, as 
shown for the 16-processing element torus in Figure 3. All 
the partial results from the processing elements of a cluster 
are combined within this cluster. 
 
A hierarchical cluster model allocates one processing 
element of the cluster to perform all the combinations 
within that cluster. Combining the partial results at this 
“central” combining processing element reduces 
communication within the cluster to a near-neighbor 
pattern. The additional computational effort required by 
this processing element to combine the partial results 
means that some of its own tasks may have to migrate to 
other processing elements in order to maintain an optimum 
load balance within the system. The implementation 
ensures that, where possible, a task will migrate to 
processing elements within the same cluster. This means 
that the movement of the data associated with the task only 
needs to be fetched from a neighboring processing 
element. In the event that load balancing requires that 
tasks should migrate outside a cluster then the system will 
allocate these tasks to idle processing elements as “close” 
as possible to where it originated. The partial results from 
these migrated tasks are returned to the appropriate cluster 
for combining. 
 
A distributed clusteral approach attempts to reduce the 
need for load balancing by having all processing elements 
within each cluster perform an equal portion of the 
combining operations. Although this may reduce the need 
to migrate tasks and their associated data, such a 
distributed model does have the disadvantage that the 
partial results are no longer passed to a neighbor, the 
central processing element, but may now be required to be 
passed further. In configurations where there is no 
alternative route between processing elements within a 
cluster, sending the partial results to the appropriate 
processing element will place an additional 
communication burden on the central processing element. 
  
3.5. Configuration 
 
The performance of a distributed memory multiprocessor 
depends in large part on the efficiency of the message 
transfer system that provides the interface between the co-
operating processing elements.  To achieve the most 
efficient performance, the configuration chosen should be 
well suited to the communication patterns inherent in the 
parallel implementation [2]. The communication patterns 
implicit in the clusteral models suggest either a tree or a 
torus would be the most suitable configuration for our 
parallel implementation of volume visualization. 
  
A tree of degree d and height h consists of a single 
processing element at the top level, the root processing 
element, connected to d other processing elements, each of 
which is a ”root” processing element of a subtree of degree 

d and height (h-1). The processing elements at the lowest 
level of the tree, the leaf processing elements, are only 
connected to their “parent” tree. Any leaf processing 
element wishing to communicate with another leaf 
processing element must thus do so via branch processing 
elements further “up” the tree.  
The hierarchical structure of a tree configuration makes it 
well suited to the clusteral approach. Each branch 
processing element combines the partial results from its 
immediate “children” and passes this result upwards. The 
system controller is situated at the root of the tree and 
performs any final combining of results before passing the 
newly computed pixel values to be rendered. 
 

 
 
Figure 3: Clusters within the 16-processing element torus 
 
A torus configuration consists of rings of rings of 
processing elements. To minimize the diameter of the 
torus it is preferable that the number of processing 
elements within the horizontal rings is approximately the 
same as the number of processing elements in the vertical 
rings. Figure 3 shows how the clusters may be defined 
within a 16-processing element torus. The system 
controller, labelled SC in the figure, once more performs 
any final combination of partial results prior to rendering.  
 

 
 

Table 1: Comparison of configurations 
 
Although tree configurations are conceptually better suited 
to the clusteral model, tori have lower diameters and 
average interprocessor distances, as shown in Table 1. The 
torus configurations are thus more appropriate for complex 
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communication patterns, such as those required for the 
parallel implementation of volume visualization [2]. 
 
 
 
4. RESULTS 
 
To show the performance improvements that the clusteral 
approach can provide by reducing communication 
overheads, two volume data sets: a volume frame of the 
Mandelbrot set in the quaternion, shown in Figure 8; and, 
a medical MRI scan of a human head, Figure 9, were 
visualized. The results have been obtained on a Meiko 
system of sixty four T800 transputers arranged in both tree 
and torus configurations with a volume data size of 128 X 
128 X 128 voxels for rendering and of 256 X 256 X 256 
voxels for visualization. For visualization  the volume data 
was rotated about an arbitrary axis and a set of frames 
were visualized. 
  

 
 

Figure 4: Tree configurations with and without 
hierarchical clustering  

 

 
Figure 5: Hierarchical clustering on tree and torus 

configurations 

 
The advantages of the clusteral approach can be seen in 
Figure 4. This graph compares the speed-up obtained 
using a random volume partitioning strategy with the 
hierarchical clusteral model on tree configurations.  The 
inherent bottlenecks for global communication in the tree 
configurations have an increasing effect on the system 
performance as the number of processing elements is 
increased.  Nevertheless, the benefits of using hierarchical 
clusters can clearly be seen. 
 
Figure 5 shows how the choice of configuration influences 
overall system performance. The graph shows speed-up 
obtained using hierarchical clustering on both tree and 
torus configurations. For lower numbers of processing 
elements the choice of configuration has little effect. 
However, for the larger systems, the lower diameters and 
average interprocessor distances of the torus 
configurations, and their lack of bottlenecks, provides an 
increasing improvement in system performance. 
 

 
 

Figure 6: A comparison of the clusteral approaches 
 

 
 

Figure 7: A comparison of the clusteral models with and 
without dynamic cluster re-sizing and caching   
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Figure 6 shows the speed-up obtained on the torus 
configurations for the distributed and hierarchical clusteral 
approaches, compared with no clustering. For the sake of 
clarity, only the results for the medical volume data are 
shown. As can be seen in the graph, for large 
configurations, the increasing communication overheads 
have an increasing effect on overall system performance. 
The hierarchical clustering implementation for rendering 
on the 64 processing element system produced a speed-up 
of 53.5, better than the distributed approach which had a 
speed-up of 44.1, and a significant improvement over the 
speed-up of 39.4 obtained for the implementation without 
the clusteral model. 
 
Finally, Figure 7 shows the speed-up on a torus for 
distributed clustering, hierarchical clustering, hierarchical 
clustering with dynamic cluster re-sizing  and hierarchical 
clustering with caching. Hierarchical clustering with  
cluster re-sizing offers the best performance for parallel 
volume visualization. Therefore average speed-up for 
volume visualization are given to show that the speed-up 
of parallel systems is improved by using cluster re-sizing. 
For a few frames, system performance may not be good as 
expected  but for a large number of image frames 
performance will be better as can be seen from the figure. 
 
On the other hand, a caching technique for clusteral 
models may be needed for further performance increase 
but this performance increase is limited for small rotation 
angles. For large rotations, cache coherence may be loosed 
so that caching may not be useful for large rotations. 
However, most of the volume visualization process can be  
taken as a sequence of small rotations. The hierarchical 
clustering implementation with cluster re-sizing for 
visualization on the 64 processing element system 
produced a speed-up of 50.1, better than the clustering 
with caching which had 48.6, hierarchical clustering which 
had speed-up 47.8, and a significant improvement over the 
speed-up of 41.2 obtained for the implementation with 
distributed clusteral model. 
 
5. CONCLUSION 
 
The results presented in this paper show that an efficient 
parallel implementation of volume visualization is possible 
using the volume partitioning method of allocating tasks. 
Addition of a clustering scheme to this approach reduces 
the communication overheads by enabling the combination 
of partial results to occur on processing elements which 
are “physically close” to those processing elements which 
performed the corresponding tasks. Although limited, 
there is still a need to communicate data amongst 
processing elements to facilitate load balancing. The 
results confirm that, for large multiprocessor systems, 
torus configurations are better suited than tree 
configurations for such a communication need.  

 
Despite the good performance that has already been 
achieved (a speed-up of 53.5 for volume rendering and 
50.1 for volume visualization on 64 processing elements), 
improvements will still need to be made if the 
visualization of volumes on our system is to be made 
interactive. Future work will examine complexity 
reduction schemes which will render an approximation of 
the volume data between successive view points. Once the 
desired new view point has been reached, progressive 
refinement techniques will be used to obtain desired image 
quality from these approximations. Recent developments 
in hardware and software also make it possible to 
implement volume visualization techniques on 
heterogeneous distributed parallel systems by using Java 
technology. For an interactive visualization, these 
techniques will be implemented on a heterogeneous 
system by using Java technology in a future work. 
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 Figure 8: Fractal image in the quaternion   
 
    

 
 

Figure 9: Medical scan of a slice of a human head  
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