
Optimized Context Templates
for Context-based Compression of Multi-component Map Images.

Eugene Ageenko, Pavel Kopylov, Pasi Fränti
Computer Science Department, University of Joensuu,

Joensuu, FINLAND

Abstract
We present a method for estimating optimal context templates that
are used for conditioning the pixel probabilities in context-based
image compression. The algorithm optimizes the location of the
context pixels within a limited neighborhood area, and produces
the ordered template as a result. The ordering can be used to
determine the shape of the context template for a given template
size. The optimal size of the template depends on the size of the
image. We apply the method for the compression of
multi-component map images consisting of several semantic
layers represented as binary images. We estimate the shape of the
context-template for each layer separately, and compress the
layers as generic regions using standard JBIG2 compression
technique.
Keywords: context-based compression, statistical modeling,
optimized context template, variable-size modeling

1. INTRODUCTION
The aim of statistical compression is to reduce redundancy in data
by assigning shorter codes for symbols with higher probability
and longer codes for symbols with lower probability. In an image,
pixels form geometrical structures with appropriate spatial
dependencies. Dependencies can be localized to a limited
neighborhood defined by a local template. Statistical context-
based image compression utilizes spatial dependencies in the
image. The compression consists of two distinct phases: statistical
modeling and arithmetic coding [1].
In the modeling phase, we dynamically estimate the probability
distribution of the pixel to be compressed. The probabilities are
conditioned on the context that is determined by the combination
of neighboring pixel values within the context template. The pixel
configuration determines the context, and in this way, the model
to be used in compression, see Figure 1. The pixel configuration
in the context template is transferred to a binary number
(11100100102 as in Figure), which gives the index (91410) of the
model that is then used for compressing the pixel. In dynamic
modeling, the statistical model is constructed adaptively during
the encoding/decoding. It starts from scratch and is updated after
each pixel has been coded. In this way, both the encoder and
decoder have the same information and no side-information is
needed for sending the model.
Arithmetic coding assigns optimal code for the pixels in regards to
the given statistical model [2]. The code size can be estimated by
the information content of the model measured as the entropy [3].
An example of a context-based statistical compression is JBIG, an
international standard for compression of binary images [4]. It
uses the ten-pixel context template shown in Figure 1 by default.

?

8 3 2

5 1

9 6 10

4 7 832 51 96 104 7

011 01 11 00 0

Context template: Context:

Figure 1: Example of a 10-pixel context.
The pixel to be compressed is marked by �?�.

Theoretically, a more accurate probability model can be
constructed using a larger context template. In practice, however,
the use of larger templates does not always result in compression
improvement [5]. The number of contexts grows exponentially
with the template size; adding one more pixel to the template
doubles the size of the model. This can lead to exessive memory
consumption. In addition to this, context dilution problem may
occur if the statistics are distributed over too many contexts, thus
affecting the accuracy of the probability estimates. This is because
the model must adapt to the statistics of the image before the
model becomes efficient. The coding deficiency in the early stage
of compression is known as learning cost problem. These two
disadvantages can overweigh the improvement of the model if too
large context templates are used.
Optimal template size depends on the image size. The location of
the template pixels, on the other hand, has no direct effect on the
learning cost but they can greatly improve the accuracy of the
model if properly designed. It is therefore feasible to optimize the
location of the template pixels for the images to be compressed.
Usually, the pixels are distributed in the neighborhood using the
principle of minimal distance to the current pixel. Standard
1-norm or 2-norm distance functions define two different
templates that can be used, see Figure 2 [6]. These templates are
well suited for mixed type images. However, they are not
necessary the best choices for images of a specific type, and better
templates can be obtained.

Standard 1-norm template Standard 2-norm template

 18 14 17
 20 12 10 6 9 11 19
 16 8 4 2 3 7 15
 13 5 1 ?

 20
 19 12 18
 17 11 6 10 16
 15 9 5 2 4 8 14

13 7 3 1 ?

Figure 2: Default orderings of the context templates [6]. The
pixel location to which the template is applied (seed pixel) is
marked with �?�.

Basic Fields

Contours Water

Multi-component image

Figure 3. Illustration of the multi-component map image. The shown fragment has dimensions of 1000 × 1000 pixels.

We consider multi-component map images. The images consist of
several binary layers with different semantic content. Each layer
consists of geometrical structures that do not necessarily match to
the structures of another layer. In our experiments, we use
topographic images from the NLS image database [7]. These
images consist of four binary layers corresponding to the
topographic data, fields, elevation lines and water area. The layers
are combined and displayed to the user as color image, as shown
in Figure 3.
In this paper, we propose a method for optimizing the context
template for a given image. The method optimizes the location of
the template pixels within a limited neighborhood area, and
produces the ordered template as the result. The ordering can then
be used to derive the context template for any given template size.
We apply the method in a static manner for the compression of
multi-component map images. The template is optimized for each
layer separately using a training image. The optimized context
templates are then applied for the compression of a set of NLS
images using the JBIG2 standard compression technique [7].

2. CONTEXT-BASED STATISTICAL
MODELING
The idea of statistical modeling is to describe the pixels of the
image according to the probability distribution of the source
alphabet (binary alphabet, in our case). The information content
of a single pixel can be measured by its self-entropy:
 pH pixel 2log−= , (1)

where p is the probability of the pixel [3]. The self-entropy of
the image can be calculated as the average entropy of all pixels:

 ∑
=

−=
n

i
iimage p

n
H

1
2log1 , (2)

where ip is the probability of i-th pixel and n is the total number
of pixels in the image. Self-entropy gives the optimal number of
bits required for encoding a single pixel with a given model.
The pixels in an image form geometrical structures with
appropriate spatial dependencies. The dependencies can be
localized to a limited neighborhood, and described by a context-
based statistical model [1]. In this model, the pixel probability is
conditioned on the context C, which is defined as distinct black-
white configuration of neighboring pixels within the local
template. For binary images, the pixel probability is calculated by
counting the number of black, ()CnB , and white, ()CnW , pixels
appeared in that context in the entire image:

() () ()
() ()

() ()







−=

+
=

=
blackxCpCp

whitex
CnCn

CnCp
Cxp

WB

BW

W
W

 is if,1

 is if, , (3)

Here, ()CpB and ()CpW are the corresponding probabilities of
the black and white pixels. The entropy ()CH of a context C is
defined as the average entropy of all pixels within the context:

 () () () () ()CpCpCpCpCH BBWW 22 loglog ⋅−⋅−= (4)

The entropy of an N-pixel context model is the weighted sum of
the entropies of individual contexts:

 () ()()∑
=

⋅−=
N

j
jjN CHCpH

1

 (5)

In dynamic modeling, the encoder and decoder then adaptively
construct the model during the compression/decompression on the
basis of the preceding data. A uniform probability distribution
(5.000 == BW pp) is assumed in the beginning. Time-dependent

counters t
Wn and t

Bn start from zero and are updated after the
pixel has been coded (decoded). The probability of a pixel is
calculated on the basis of the observed frequencies using a
Bayesian sequential estimator:

() () ()
() ()

() ()







−=

++
+

=
=

blacktCpCp

whitet
CnCn

CnCp
Cp

t
W

t
B

t
B

t
W

t
Wt

Wt

 ispixel if,1

 is pixel if,
2

th

th

δ
δ

 (6)

where t
Wn , t

Bn are the time-dependent counters, t
Wp , t

Bp are the

probabilities for white and black colors respectively, and δ = 0.45,
due to JBIG. The model is inefficient at early stage of
compression, since it takes time to adapt to the correct model, but
the dynamic modeling is highly applicable for compression large
volumes of data, such as map images.

3. TEMPLATE CONSTRUCTION
The optimal context template can be solved for a given template
size k by compressing the image using all possible templates and
selecting the one with best compression performance. However,
this is not computationally feasible as there are approximately

k32 different template configurations to be tested. Therefore we
take a more practical approach and construct the template
stepwise by optimizing the location of one pixel at a time. The
sketch of the algorithm is shown in Figure 4.
The algorithm starts with an empty template and expands it by
one pixel at a time. At each iteration, we add a new pixel to each
unoccupied location in the neighborhood area. We use the 40-
pixel neighborhood shown in Figure 5. For each candidate pixel
location, we make a pass over the input image and construct the
statistical model. We evaluate the models by estimating their code
length using the equations (2) and (6). We then select the location
providing minimum entropy, and add it permanently to the
context template. The selected location is marked as occupied,
and the process is then repeated until the template size reaches the
predefined maximum kMAX. The process of the algorithm is
illustrated in Figure 6.
The result of the algorithm is not only the final template of kMAX
pixels but also the ordering of the pixels. From the ordering we
can derive all possible templates of the size 1 to kMAX. The size of
the context template is a parameter of the compression method
and it mainly depends on the size of the image. For example, the
map images are very large and therefore relatively large templates
can be applied without the risqué been weighed down by the
learning cost and context dilution problems.
The proposed method can be applied in two alternative manners:
static and semi-adaptive. In the static approach, as taken here, we

optimize the template using a priori knowledge of the image type.
This is possible, as we know the type of the images to be
compressed. The advantage of this approach is that the
optimization can be done off-line. In the semi-adaptive approach,
the template is optimized for the image to be compressed and the
optimized template are stored in the compressed file. This would
be a better solution when the image type is not known beforehand.
The compression phase, however, would be very slow and
therefore this approach is not suitable for applications, in which
real-time compression is required.

ConstructTemplate (kMAX,, SearchTemplate[])
variables:

ContextTemplate[]: array;
k, i, j: int;

k ← 0;
repeat

k ← k + 1;
for each i that SearchTtemplate[i] ≠ OCCUPIED

CollectStatistics(i);
l(i)=CalculateCodeLength(i);

()ilj
i

min← ;

ContextTemplate[k] ← j;
SearchTemplate[j] ← OCCUPIED;

until (k = kMAX);
return (ContextTemplate);

Figure 4. Algorithm for estimating the optimal context template.

?

Figure 5. The neighborhood area used for optimizing the location
of the template pixels.

?

? ? ? ?

??? ?

??

? ? ? ?

2

?

3

1

2

?1

?1

Figure 6. Illustration of the context template construction.

Basic Fields Contours Water

Figure 7. Sample 100 x 100 pixels fragments of the layer images.

4. EXPERIMENTS
We evaluate the proposed method by compressing a set of map
images from the NLS topographic database (Basic map series
1 : 20,000). Each image is of the size 5000×5000 pixels, and
represents a 10×10 km2 area. The images consist of four binary
layers with different semantic meaning:

• basic � topographic image, supplemented with
communications networks, buildings, protected sites,
benchmarks and administrative boundaries;

• fields � solid polygonal regions;
• contours � thin lines representing the elevations levels;
• water � solid regions, and various width lines

representing lakes, rivers, swamps, water streams.

In our experiments, we use five randomly chosen images from the
database. The images corresponding to the map sheets No/No
431306, 124101, 201401, 263112, and 431204. The image
431306 contains most common geometrical structures, see Figure
3 and Figure 7, and it is therefore used as the training image for
optimizing the templates. The rest of the images are used for the
actual compression. We use JBIG2 compression technique in its
generic mode [8]. Objectives of the evaluation are to determine
the compression performance using the constructed context
templates in comparison to the standard 1-norm and 2-norm
templates. The layers are compressed separately so that user
would be able to decompress only the requested layers.
The templates constructed using the proposed algorithm are
shown in Figure 8 for the different semantic layers. The ordering
of the pixels is illustrated by the numbering. The first ten pixels
are colored by black color, and the next six pixels by gray color.
The corresponding compression results are summarized in
Figure 9, where the results are given for each layer separately.
The results are obtained by varying the template size from 1 to 20.
The resulting templates have different shapes corresponding to the
geometrical structures of the images. The basic map includes wide
variety of different elements: text, solid lines of different width,
and single pixel dots, see Figure 7 for details. The optimized
template is therefore virtually the same as the standard template of
JBIG2, and the corresponding compression results are also close
to each other.
The fields, on the other hand, have a different template where only
the most nearest neighboring pixels are utilized in the ten-pixel
template. The most nearest pixels are enough to predict the

existence of a field because the images contain merely large solid
areas. Additional pixels are chosen far away from the current
pixel. The optimized template improves the compression of the
fields by about 12 %, on average. The simplicity of the structures
also means that relatively small template sizes are sufficient for
this kind of images.
Contours layer consists of elevation lines, which are one or two
pixels wide solid or dashed contours. There are no single pixels or
larger structures in these images. Water layer contains also
contour lines but they are always two or more pixels wide. In
addition to that, there are larger black areas representing lakes.
The optimized context templates for these two types of images are
similar, and they provide moderate improvement in the
compression.

Basic Fields

17 14 15
8 7 9 10 13

19 12 4 3 2 5 11 20
18 16 6 1 ?

19 17 8 16 5 9
7 18
20 14 15
12 13 6 4 2 10 3 11

1 ?

Contours Water

17 13
12 7 6 11
19 8 4 20

14 10 5 2 3 9 18
16 15 1 ?

11 14 19 20 17
8 4

7 15 12 10 18
13 5 2 9 3 16
6 1 ?

Figure 8. Optimized context templates for the semantic layers.

5. CONCLUSION
A method for optimizing context templates for a given image was
introduced. The algorithm optimizes the location of the context
pixels within a limited neighborhood area, and produces the
ordered template as a result. It was shown that the optimized
templates can be quite different for different types of images. The
method can be applied for the compression of multi-component
map images, and moderate compression improvement was
obtained for a set of map images.

Basic Fields

800

1,000

1,200

1,400

1,600

1,800

2,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Context size

C
od

e
si

ze
1-norm
2-norm
optimized
JBIG2

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Context size

C
od

e
si

ze

1-norm
2-norm
optimized
JBIG2

Contours Water

500

550

600

650

700

750

800

850

900

950

1,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Context size

C
od

e
si

ze

1-norm
2-norm
optimized
JBIG2

150

200

250

300

350

400

450

500

550

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Context size

C
od

e
si

ze

1-norm
2-norm
optimized
JBIG2

Figure 9. Total size of the compressed files in Kilobytes for map layers using JBIG2 compression in generic mode
with various context templates: 1-norm, 2-norm, optimized, and three standard templates (with sizes 10, 13, and 16) defined in JBIG2.

The next logical step would be to utilize dependencies between
the layers by applying a multi-level context. It is likely that
existence of a field is a strong indication of absence of water, and
vice versa. The utilization of inter-layer dependencies requires
that the images are compressed/decompressed in a predefined
order. The optimization of the multi-layer context templates and
the proper ordering of the layers is a topic of future research.

6. ACKNOWLEDGEMENTS
The project was funded by the grant 954/401/99 of National
Technology Agency (TEKES). Pavel Kopylov also acknowledges
Centre for International Mobility (CIMO) for financial support of
his work.

7. REFERENCES
[1] Rissanen J.J., Langdon G.G. (1981) Universal modeling

and coding. IEEE Trans. Inform. Theory IT-27: 12-23.

[2] Rissanen J.J., Langdon G.G. (1979) Arithmetic coding.
IBM Journal of Research, Development 23: 146-162.

[3] Shannon C.E. (1948) A mathematical theory of
communication. Bell System Tech Journal 27: 398-403.

[4] JBIG: ISO/IEC International Standard 11544 (1993)
ISO/IEC/JTC1/SC29/WG9; also ITU-T Recommendation
T.82. Progressive Bi-level Image Compression.

[5] Moffat A. (1991) Two-level context based compression of
binary images. IEEE Proc. Data Compression Conference
(Snowbird, Utah, USA), 382-391.

[6] Martins B., Forchhammer S. (1998) Bi-level image
compression with tree coding. IEEE Trans. Image
Processing 7 (4): 517-528.

[7] NLS: National Land Survey of Finland, Opastinsilta 12 C,
P.O.Box 84, 00521 Helsinki, Finland.
http://www.nls.fi/index_e.html.

[8] JBIG2 Working Draft.
http://www.jpeg.org/public/jbigpt2.htm

About the authors

Dr. Eugene Ageenko is a researcher in the
Computer Science Dept., University of
Joensuu, Finland; and principal scientist in
Arboreal Inc.
E-mail: ageenko@cs.joensuu.fi

Pavel Kopylov is a doctoral student in the
Computer Science Dept., University of
Joensuu, Finland.
E-mail: justas@cs.joensuu.fi

Dr. Pasi Fränti is a Professor in the Computer
Science Dept., University of Joensuu, Finland.
E-mail: franti@cs.joensuu.fi

Contact address: Department of Computer Science, University of
Joensuu, PB 111, 80101 Joensuu, FINLAND.

	INTRODUCTION
	CONTEXT-BASED STATISTICAL MODELING
	TEMPLATE CONSTRUCTION
	EXPERIMENTS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

		2001-01-10T15:22:10+0200
	Joensuu
	Eugene Ageenko
	I am the author of this document

