
Volume Construction from Moving Unorganised Points

Claire Guilbaud
INPG

Grenoble, France

Annie Luciani
INPG

Grenoble, France

Ambroise Leclerc
INPG

Grenoble, France

Abstract
We present a recursive method to construct a volume from
particles generated by a physically based simulation of a flow
field. The particles are scattered in the body of the simulated
object giving no explicit information about its surface.
We show how to build a surface representation of the non-convex
"hull" of a scattered points set. The surface is supposed to enclose
all the points and have a minimal volume. The surface that we
obtain must maintain the main characteristics of accurate
geometrical singularities of the phenomenon during its evolution.
We have considered the case of toothpaste running out of a tube.
Our method uses a density map to construct an enclosing volume
of the generated particles, taking care of local singularities.

Keywords: volume construction, particles models, visualisation.

1. INTRODUCTION
Animation is a main topic of image synthesis. Since several years,
scientists are looking for methods that ease production of realistic
animations. These animations must show realistic collisions
between objects and good animation of characters or natural
phenomena.
Some years ago, animation was a series of pictures made by hand.
To realize a movie, the work was hard and long, hence the
necessity to automate the task. Three main methods have been
developed: cinematic functions applied on geometrical objects,
physically based models and artificial life algorithms. With the
first one, we cannot easily obtain complex deformations such as in
natural phenomena. With the others, we can perform very
complex motions (displacements, deformations, transformations),
but it is quite difficult to match complex shapes on these complex
motions.
Usually, the physically based simulations of natural phenomena
are displayed with points, lines and simple geometric objects.
Therefore, to obtain a well and aesthetic visualisation, we must
construct a volume, or extract a surface. In this volume, we must
be able to show the pertinent morphological features of the
modelled phenomenon.
When the movies produced by the simulation are visualised by
points, human observers are able to recognize precisely the
represented phenomenon: we have the feeling that the points are
in the adequate volume (points are inside or at the borders of the
fluid flow, if we modelled a fluid), even if we are not able to
discern all the details.

2. MODELLING AND SIMULATION

2.1 Particle Systems
Many methods to simulate natural phenomena and deformable
objects are based upon physically based particles systems.
Physically based particles models are generic and simple.
Moreover, all deformations and topological changes can be
modelled. Terzopoulos and al. ([9]) linked particles with non-
linear springs to simulate thermo-conductor behaviour, while G.
Miller and A. Pearce ([7]) used Lennard-Jones forces between
particles. In 1991, D. Tonnesen ([10]) designed a particle system
in which the interaction law depends on the thermal energy. At
the same time, the CORDIS-ANIMA system developed by A.
Luciani and al. ([5]) implements generic non-linear interaction
components to simulate unstructured materials for modelling
natural phenomena such as granular materials ([5]) or fluids and
smoke ([6]).

2.2 CORDIS-ANIMA: A Physical Modeller-
Simulator ([2],[3])

We want to model a flow field using a physically based model. In
this section, we explain how we can obtain a large variety of
natural phenomena using the CORDIS-ANIMA library.
To construct a model with this method, we assemble a great
number of very simple automata. These automata are divided in
two types: mass elements and interaction elements. The input of
the former is a force value and the output is two opposite forces.
The first type is characterized by only one algorithm (Newton's
law). In the second type, the elasticity and viscosity of the
interaction function can be controlled by linear or piecewise linear
memory less functions, or in the more general case by finite state
automata.
All of CORDIS-ANIMA models are built by assembling these
automata in networks in which the nodes are mass automata and
arcs are interaction automata.
In a more simple way, we can see a model like a network of
masses linked by viscoelastic elements.

2.3 A CORDIS-ANIMA Model of Generic
Pastes
By assembling all the particles with an elementary interaction: a
viscoelasticity link with a single threshold, we obtained granular
material dynamics ([5]) and fluids dynamics ([6]).
We noticed that the dynamical behaviour of objects such as
pastes, creams, foams seems to be an intermediate state between
granular and fluids effects, we assume that it would be possible to

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

obtain granular, fluids and pastes effects with the same CORDIS-
ANIMA model.

The CORDIS-ANIMA model of the toothpaste consists of:

• N masses linked together by two non-linear elementary
interactions

• An elasticity K with its Ks threshold

• A viscosity Z with its Zs threshold

We obtained generic models of paste (toothpaste, creams, foams)
with non-mixing piling and circumvolutions, if Ks << Zs,
whatever K and Z are (see fig. 1).

Figure 1.1 paste with N=900 masses (~400000 interactions)

Figure 1.2 the same paste 4 seconds later

3. VISUALISATION OF PARTICLES

3.1 Related Works
The surface or volume representation of particles systems
represents a big challenge. Since the discrete masses are scattered
in space without any explicit information about the simulated
object surface (figures 1.1 – 2.2), the visualisation algorithm must
be able to extract all the surface related information in order to
obtain a geometrically realistic image or animation.
The most used method is implicit surfaces ([1], [11]) with which
we can obtain smooth surfaces. The implicit surfaces are often
used to visualize highly deformable objects ([8], [9], [7], [10]).
But because of the smoothness, this method is not able to render
singularities such as breakpoints, dissymmetric fractures,
bifurcations, forth order extremum, points of return, and their
dynamical evolution (for example, evolution from forth order
extremum to turn-back points). Then they cannot be used to
display pastes behaviours without morphological pre-processing.
The figures 2.1-2.2 show some singularities of the typical
behaviour of paste flows.
The Engraved Screen ([6]) is a method that produces highly
aesthetic visualization of 2D fluids. It is also an implicit method
but thanks to the fact that the density shape is deformable
according to the dynamics of the particles, it is able to render
some refined features but remains limited to 2D visualisation.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Figure 2.1

Figure 2.2

3.2 Geometrical Singularities
During the simulation, the toothpaste shows some evolving
geometrical singularities that can’t be efficiently rendered by
classical methods.
For example, when the paste flow forms multiple layers, the
contact between them shows some evolving singularities (cf.
Evolution of the geometrical singularities):

• Simple contact between two layers (Figure 3 j) (can’t
be constructed and rendered with implicit surfaces since
such a method may blend the layers)

• Packing with fusion of the layers (Figure 3 i) (which
can’t be rendered with generalised cylinders – implicit
surfaces may produce an aesthetic (but not necessarily
realistic) result)

hpoint of inflection

ipacking

jpoint of return
Figure 3

Evolution of the geometrical singularities

3.3 Volume Construction
To explain our method, we explain the terms used in our
algorithm while we notice them for the first time.
To construct the volume, we chose a semi-automatic method in
which the user remains master of the manner to construct the
volume. The user specifies three parameters: the discrete size of
the volume (number of voxels making up the volume), the
neighbourhood size to consider to compute the density map
(number of voxels that contains simulation’s points in a given
area), and the average number of voxels which separate two
simulation’s points in the discrete volume. The last parameter
allows the algorithm to “construct” (fill in a voxel) in a pertinent
region.
The volume construction algorithm is composed of three steps.
We firstly discretised the space in a volume made up out of

hhhh

jjjj

iiii

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

voxels. This discrete volume encloses all simulation’s points,
which are all “put” in a voxel. A voxel that contains that kind of
point is marked full. We worked in the discrete space.
Secondly, we compute the density map (which has the same size
as the discrete volume) by using a convolution mask, where the
closest neighbour is more important than the furthest. This step is
in O(N), where N is the number of voxels in the volume.
Now, we have all the elements to construct the volume. We
looked for connecting all the full voxels (voxels that contain
simulation’s points). Connecting two voxels is the same action as
to fill in the voxels that separate them. We chose the voxels to fill
in according to the density map. We had to do this step for each
pair of simulation’s points. To do that, we use a recursive method
explained in the algorithm 1. The complexity is in O(N), where N
represents the number of voxels in the discrete volume.
We said in previous paragraph that we chose the voxels to fill in
according to the density map. In fact, in the density map, we were
looking for the voxel with the highest density value. If we found
several voxels with a highest density, we chose the closest
compared to the position of the current_voxel and of the voxel
with highest density. It is possible to have several voxels with the

same density and the same distance. The distance between these
two voxels is less or equal to the third parameter specified by the
user.
With the highest density voxel, we determine the voxels to fill in.
We fill in the voxels that lie on the discrete paths between the
highest density voxel and the current_voxel (only the first voxel
of the path are chose – see the figure below).

Highest density voxel
Current_voxel
Path 1
Path 2
Voxels to fill in

Figure 4: Determination of voxels to fill in

Algorithm 1: the volume reconstruction phase
For each point from data called current_point do
 current_voxel = voxel which contains current_point
 Detect(current_voxel)

End for

Detect(current_voxel)

For each region surrounding current_voxel do

With each of the highest density voxels
Determine the voxels to fill in (compared to the position of the highest density voxel)
For each new_voxel determinate by the previous step do

If the new_voxel is empty
Then fill in ; Detect(new_voxel)

End for
End for

3.4 Rendering Method
The constructed volume is made up out of voxels. The aim is not
to obtain a smooth and aesthetic volume, but render the relevant
volume in a simple way. We use the Marching Cubes method.
The Marching Cubes algorithm was designed by William E.
Lorensen and Harvey E. Cline ([4]) to extract surface
information from a 3D field of values. We explain the algorithm
in 2d space. For the Marching Cubes algorithm to work we need
to provide some basic information, the question, we will need to
ask of out data in order to reconstruct the surface is “Is the point
at (x,y,z) inside or outside of the object?”.
The basic principle behind the Marching Cubes algorithm is to
subdivide space into a series of small cubes. The algorithm then
instructs us to “march” through each of the cubes testing the

corner points and replacing the cubes with an appropriate set of
polygons.
The first step is to calculate the corners that are inside the
volume. We can now insert some vertices, since we know which
points are inside and which are outside we can guess that a
vertex should be positioned approximately halfway between an
inside corner and any outside corners that are connected by the
edge of a cell.
The method usually used in the Marching Cubes algorithm is
not suitable for our method. For us, the space is already
subdivided and we know only if a voxel is inside or outside the
volume, but no if a voxel vertex is inside or outside the volume.
We have to find the conditions to determine if a voxel vertex is
inside or outside the volume. We make a distinction between a
full voxel and an empty voxel. The positions of full voxels
compared to the current_voxel are important: a neighbour by the

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

faces is more important than a neighbour by the edges, which is
itself more important than a neighbour by the vertices. From
these observations, we defined conditions for knowing the
“border” voxels.

Figure 5.1 Constructed paste rendered with a simple voxel-

sphere association

Figure 5.2 Constructed paste rendered with the marching cubes

algorithm

4. CONCLUSION
In this paper, we have presented a recursive method for the
volume construction from particles generated by a physically
based simulation of a flow field. Here our main focus has been
to extract the pertinent morphological features of the toothpaste
simulation.
The method is efficient to visualise scattered particles without
information on the volume: we can display geometrical
singularities such as points of return, points of inflection,
packing, …

Being given that each element of the voxel space can be
computed independently from the others, the parallel version of
the algorithm is rather obvious to implement.

• On a multiple-processor workstation, the parallel
implementation of the algorithm shows an almost
linear speedup.

• On a network of workstations with distributed shared
memory, the speedup can be made super-linear,
depending on the size of the voxel space.

0

10

20

30

1 2 4 8 16 32
nb. workstations

co
m

pu
ta

tio
n

tim
e

5.4e8 voxels 8e3 voxels linear

The apparent super-linear acceleration is only due to the size of
the voxel space. With one workstation, the voxel space can’t fit
entirely in memory. As the number of workstation increases, the
ratio of local/non-local memory becomes better. An important
speedup occurs when the used part of the voxel space can fit
entirely in the local memory of the workstation.

5. REFERENCES
[1] J. Blinn. A generalization of algebraic surfaces drawing.

ACM Transactions on Graphics, pages 235-256, July
1982.

[2] A. Luciani, S. Jimenez, C. Cadoz, J.L. Florens and
O.Raoult. Computational Physics: A modeler-simulator
for animated physical objects. Proceedings of
Eurographics Conference’91, Elsevier Ed., 1991.

[3] A. Luciani, S. Jimenez, O. Raoult, C. Cadoz, and J.L.
Florens. An unified view of multiple behaviour, flexibility,
plasticity and fractures: balls, bubbles and agglomerates.
Modeling in Computer Graphics, Springer Verlag Ed.,
pages 54-74, 1991.

[4] W. Lorensen and H. Cline. Marching cubes: A high-
resolution 3d surface construction algorithm. Computer
Graphics, 21(4):163--169, July 1987.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

[5] A. Luciani, A. Habibi, and E. Manzotti. A multi-scale
physical model of granular materials. Proceedings of
Graphics Interface'95, 1995.

[6] A. Luciani, A. Habibi, A. Vapillon, and Y. Duroc. A
physical model of turbulent fluids. Computer Animation
and Simulation, Eurographics'95, pages 16--29, September
1995. Maastricht, The Netherlands.

[7] G. Miller and A. Pearce. Globular dynamics: a connected
particle system for animating viscous fluids. Computers
and Graphics, 13(3):305--309, 1989. Also in
SIGGRAPH'89 Course notes number 30.

[8] J. Stam. A general animation framework for gaseous
phenomena. ERCIM Research Reports ERCIM-01/97-
R047, ERCIM, VTT, January 1997.

[9] D. Terzopoulos, J. Platt, and K. Fleisher. Heating and
melting deformable models (from goop to glop). Graphics
Interface’89, pages 219-226, June 1989, London, Ontario.

[10] D. Tonnesen. Modelling liquids and solids using thermal
particles. Graphics Interface'91, pages 255--262, June
1991. Calgary, AL

[11] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures
for soft objects. The Visual Computer, 2(4): 227--234,
August 1986.

About the authors
Claire Guilbaud
INPG
46 av. Felix Viallet
38031, Grenoble Cedex, France
E-mail: Claire.Guilbaud@imag.fr

Annie Luciani
INPG
46 av. Felix Viallet
38031, Grenoble Cedex, France
33 4 76 57 48 48
E-mail: Annie.Luciani@imag.fr

Ambroise Leclerc
INPG
46 av. Felix Viallet
38031, Grenoble Cedex, France
E-mail: Ambroise.Leclerc@imag.fr

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

