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Abstract 
We present a recursive method to construct a volume from 
particles generated by a physically based simulation of a flow 
field. The particles are scattered in the body of the simulated 
object giving no explicit information about its surface.  
We show how to build a surface representation of the non-convex 
"hull" of a scattered points set. The surface is supposed to enclose 
all the points and have a minimal volume. The surface that we 
obtain must maintain the main characteristics of accurate 
geometrical singularities of the phenomenon during its evolution. 
We have considered the case of toothpaste running out of a tube. 
Our method uses a density map to construct an enclosing volume 
of the generated particles, taking care of local singularities. 
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1. INTRODUCTION 
Animation is a main topic of image synthesis. Since several years, 
scientists are looking for methods that ease production of realistic 
animations. These animations must show realistic collisions 
between objects and good animation of characters or natural 
phenomena. 
Some years ago, animation was a series of pictures made by hand. 
To realize a movie, the work was hard and long, hence the 
necessity to automate the task. Three main methods have been 
developed: cinematic functions applied on geometrical objects, 
physically based models and artificial life algorithms. With the 
first one, we cannot easily obtain complex deformations such as in 
natural phenomena. With the others, we can perform very 
complex motions (displacements, deformations, transformations), 
but it is quite difficult to match complex shapes on these complex 
motions. 
Usually, the physically based simulations of natural phenomena 
are displayed with points, lines and simple geometric objects. 
Therefore, to obtain a well and aesthetic visualisation, we must 
construct a volume, or extract a surface. In this volume, we must 
be able to show the pertinent morphological features of the 
modelled phenomenon.  
When the movies produced by the simulation are visualised by 
points, human observers are able to recognize precisely the 
represented phenomenon: we have the feeling that the points are 
in the adequate volume (points are inside or at the borders of the 
fluid flow, if we modelled a fluid), even if we are not able to 
discern all the details. 
 

2. MODELLING AND SIMULATION 

2.1 Particle Systems 
Many methods to simulate natural phenomena and deformable 
objects are based upon physically based particles systems. 
Physically based particles models are generic and simple. 
Moreover, all deformations and topological changes can be 
modelled. Terzopoulos and al. ([9]) linked particles with non-
linear springs to simulate thermo-conductor behaviour, while G. 
Miller and A. Pearce ([7]) used Lennard-Jones forces between 
particles. In 1991, D. Tonnesen ([10]) designed a particle system 
in which the interaction law depends on the thermal energy. At 
the same time, the CORDIS-ANIMA system developed by A. 
Luciani and al. ([5]) implements generic non-linear interaction 
components to simulate unstructured materials for modelling 
natural phenomena such as granular materials ([5]) or fluids and 
smoke ([6]). 
 

2.2 CORDIS-ANIMA: A Physical Modeller-
Simulator ([2],[3]) 
 
We want to model a flow field using a physically based model. In 
this section, we explain how we can obtain a large variety of 
natural phenomena using the CORDIS-ANIMA library. 
To construct a model with this method, we assemble a great 
number of very simple automata. These automata are divided in 
two types: mass elements and interaction elements. The input of 
the former is a force value and the output is two opposite forces. 
The first type is characterized by only one algorithm (Newton's 
law). In the second type, the elasticity and viscosity of the 
interaction function can be controlled by linear or piecewise linear 
memory less functions, or in the more general case by finite state 
automata. 
All of CORDIS-ANIMA models are built by assembling these 
automata in networks in which the nodes are mass automata and 
arcs are interaction automata.  
In a more simple way, we can see a model like a network of 
masses linked by viscoelastic elements. 

2.3 A CORDIS-ANIMA Model of Generic 
Pastes 
By assembling all the particles with an elementary interaction: a 
viscoelasticity link with a single threshold, we obtained granular 
material dynamics ([5]) and fluids dynamics ([6]). 
We noticed that the dynamical behaviour of objects such as 
pastes, creams, foams seems to be an intermediate state between 
granular and fluids effects, we assume that it would be possible to 
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obtain granular, fluids and pastes effects with the same CORDIS-
ANIMA model.  
 
The CORDIS-ANIMA model of the toothpaste consists of:  

• N masses linked together by two non-linear elementary 
interactions 

• An elasticity K with its Ks threshold  

• A viscosity Z with its Zs threshold 
 
We obtained generic models of paste (toothpaste, creams, foams) 
with non-mixing piling and circumvolutions, if Ks << Zs, 
whatever K and Z are (see fig. 1). 

 

Figure 1.1 paste with N=900 masses (~400000 interactions) 
 

 
 

 

 
Figure 1.2 the same paste 4 seconds later 

 
 

3. VISUALISATION OF PARTICLES 

3.1 Related Works 
The surface or volume representation of particles systems 
represents a big challenge. Since the discrete masses are scattered 
in space without any explicit information about the simulated 
object surface (figures 1.1 – 2.2), the visualisation algorithm must 
be able to extract all the surface related information in order to 
obtain a geometrically realistic image or animation.  
The most used method is implicit surfaces ([1], [11]) with which 
we can obtain smooth surfaces. The implicit surfaces are often 
used to visualize highly deformable objects ([8], [9], [7], [10]). 
But because of the smoothness, this method is not able to render 
singularities such as breakpoints, dissymmetric fractures, 
bifurcations, forth order extremum, points of return, and their 
dynamical evolution (for example, evolution from forth order 
extremum to turn-back points). Then they cannot be used to 
display pastes behaviours without morphological pre-processing. 
The figures 2.1-2.2 show some singularities of the typical 
behaviour of paste flows. 
The Engraved Screen ([6]) is a method that produces highly 
aesthetic visualization of 2D fluids. It is also an implicit method 
but thanks to the fact that the density shape is deformable 
according to the dynamics of the particles, it is able to render 
some refined features but remains limited to 2D visualisation. 
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Figure 2.1 

 

 
Figure 2.2 

 
 

3.2 Geometrical Singularities 
During the simulation, the toothpaste shows some evolving 
geometrical singularities that can’t be efficiently rendered by 
classical methods. 
For example, when the paste flow forms multiple layers, the 
contact between them shows some evolving singularities (cf. 
Evolution of the geometrical singularities): 

• Simple contact between two layers (Figure 3 j) (can’t 
be constructed and rendered with implicit surfaces since 
such a method may blend the layers) 

• Packing  with fusion of the layers (Figure 3 i) (which 
can’t be rendered with generalised cylinders – implicit 
surfaces may produce an aesthetic (but not necessarily 
realistic) result) 

 

 
 

hpoint of inflection 

ipacking 

jpoint of return 
Figure 3 

 
 
 
 
 
 
 
Evolution of the geometrical singularities 

3.3 Volume Construction 
To explain our method, we explain the terms used in our 
algorithm while we notice them for the first time. 
To construct the volume, we chose a semi-automatic method in 
which the user remains master of the manner to construct the 
volume. The user specifies three parameters: the discrete size of 
the volume (number of voxels making up the volume), the 
neighbourhood size to consider to compute the density map 
(number of voxels that contains simulation’s points in a given 
area), and the average number of voxels which separate two 
simulation’s points in the discrete volume. The last parameter 
allows the algorithm to “construct” (fill in a voxel) in a pertinent 
region. 
The volume construction algorithm is composed of three steps. 
We firstly discretised the space in a volume made up out of 
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voxels. This discrete volume encloses all simulation’s points, 
which are all “put” in a voxel. A voxel that contains that kind of 
point is marked full. We worked in the discrete space.  
Secondly, we compute the density map (which has the same size 
as the discrete volume) by using a convolution mask, where the 
closest neighbour is more important than the furthest. This step is 
in O(N), where N is the number of voxels in the volume.  
Now, we have all the elements to construct the volume. We 
looked for connecting all the full voxels (voxels that contain 
simulation’s points). Connecting two voxels is the same action as 
to fill in the voxels that separate them. We chose the voxels to fill 
in according to the density map. We had to do this step for each 
pair of simulation’s points. To do that, we use a recursive method 
explained in the algorithm 1. The complexity is in O(N), where N 
represents the number of voxels in the discrete volume. 
We said in previous paragraph that we chose the voxels to fill in 
according to the density map. In fact, in the density map, we were 
looking for the voxel with the highest density value. If we found 
several voxels with a highest density, we chose the closest 
compared to the position of the current_voxel and of the voxel 
with highest density. It is possible to have several voxels with the 

same density and the same distance. The distance between these 
two voxels is less or equal to the third parameter specified by the 
user. 
With the highest density voxel, we determine the voxels to fill in. 
We fill in the voxels that lie on the discrete paths between the 
highest density voxel and the current_voxel (only the first voxel 
of the path are chose – see the figure below). 

 
Highest density voxel 
Current_voxel 
Path 1 
Path 2 
Voxels to fill in 

Figure 4: Determination of voxels to fill in 
 
 

Algorithm 1: the volume reconstruction phase  
For each point from data called current_point do 
 current_voxel = voxel which contains current_point 
 Detect(current_voxel) 

End for 
 
Detect(current_voxel)  

For each region surrounding current_voxel do  

With each of the highest density voxels  
Determine the voxels to fill in (compared to the position of the highest density voxel) 
For each new_voxel determinate by the previous step do 

If the new_voxel is empty  
Then fill in ; Detect(new_voxel)  

End for 
End for 

 
3.4 Rendering Method 
The constructed volume is made up out of voxels. The aim is not 
to obtain a smooth and aesthetic volume, but render the relevant 
volume in a simple way. We use the Marching Cubes method. 
The Marching Cubes algorithm was designed by William E. 
Lorensen and Harvey E. Cline ([4]) to extract surface 
information from a 3D field of values. We explain the algorithm 
in 2d space. For the Marching Cubes algorithm to work we need 
to provide some basic information, the question, we will need to 
ask of out data in order to reconstruct the surface is “Is the point 
at (x,y,z) inside or outside of the object?”. 
The basic principle behind the Marching Cubes algorithm is to 
subdivide space into a series of small cubes. The algorithm then 
instructs us to “march” through each of the cubes testing the 

corner points and replacing the cubes with an appropriate set of 
polygons. 
The first step is to calculate the corners that are inside the 
volume. We can now insert some vertices, since we know which 
points are inside and which are outside we can guess that a 
vertex should be positioned approximately halfway between an 
inside corner and any outside corners that are connected by the 
edge of a cell. 
The method usually used in the Marching Cubes algorithm is 
not suitable for our method. For us, the space is already 
subdivided and we know only if a voxel is inside or outside the 
volume, but no if a voxel vertex is inside or outside the volume. 
We have to find the conditions to determine if a voxel vertex is 
inside or outside the volume. We make a distinction between a 
full voxel and an empty voxel. The positions of full voxels 
compared to the current_voxel are important: a neighbour by the 
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faces is more important than a neighbour by the edges, which is 
itself more important than a neighbour by the vertices. From 
these observations, we defined conditions for knowing the 
“border” voxels. 
 

 
Figure 5.1 Constructed paste rendered with a simple voxel-

sphere association 
 

 
Figure 5.2 Constructed paste rendered with the marching cubes 

algorithm 
 

4. CONCLUSION 
In this paper, we have presented a recursive method for the 
volume construction from particles generated by a physically 
based simulation of a flow field.  Here our main focus has been 
to extract the pertinent morphological features of the toothpaste 
simulation. 
The method is efficient to visualise scattered particles without 
information on the volume: we can display geometrical 
singularities such as points of return, points of inflection, 
packing, … 

Being given that each element of the voxel space can be 
computed independently from the others, the parallel version of 
the algorithm is rather obvious to implement. 

• On a multiple-processor workstation, the parallel 
implementation of the algorithm shows an almost 
linear speedup.  

• On a network of workstations with distributed shared 
memory, the speedup can be made super-linear, 
depending on the size of the voxel space. 
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The apparent super-linear acceleration is only due to the size of 
the voxel space. With one workstation, the voxel space can’t fit 
entirely in memory. As the number of workstation increases, the 
ratio of local/non-local memory becomes better. An important 
speedup occurs when the used part of the voxel space can fit 
entirely in the local memory of the workstation. 
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