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Abstract 
The given report is devoted to an original approach for reducing 
computational cost (memory and time) of the matrix radiosity 
algorithm. Such investigations are still quite actual because the 
algorithm requires significant amounts of memory and time. From 
other side it began to be applied in practice due to increasing 
power and memory of modern desktop computers. Recent efforts 
of computer graphics specialists were done in the following main 
directions.  

• Adaptive scene subdivision (hierarchical radiosity 
methods) was elaborated in order to prevent the growth 
of the number of finite elements in acceptable limits. 

• Grouping of scene objects – cluster methods, when the 
light energy exchange is estimated between groups of 
scene elements (e.g., polygons) but between individual 
elements. 

All those approaches try to process the whole scene geometry in 
that or another way, and thus they do not simplify the original 
problem dramatically. 
Somewhat aside the method of imposters lies. It bases on 
geometric subdivision of an initial scene, but farther parts of a 
scene do not take part in calculations of light energy equilibrium, 
therefore it is lacking of photorealism.  
The given here method of geometric decomposition – it is a quite 
new modification of the matrix radiosity algorithm. The scene is 
divided into parts (note, that it is done formally, i.e., without 
preliminary geometric analysis). Each part is processed 
independently on each other. Next step – exchange of energy 
between parts. It is easy to see that an independence of parts 
allows: 

• To solve more simple problems in each part. 

• To process each part in parallel (coarse grain 
parallelism). 

• To process each part by different modifications of 
radiosity algorithms. 

• Possibility of recursive subdivision to gain a desirable 
rate of computational cost. 

• Possibility to assemble a scene from precomputed parts. 
Note that in the given report we consider the just geometric 
decomposition of a scene in opposite to "decomposition" used in 
classical problems of computational mathematics. We show 
feasibility of the given approach for the case, when the scene is 
divided into parts by plane(s), really geometric bisection. The 
formulation and numerical experiments are presented too. 

Keywords: synthesis of photorealistic images, radiosity equation, 
geometric decomposition of a scene, collocation method, parallel 
computing. 

1. INTRODUCTION 
Firstly we will spend some time to introduction in a problem of 
solution to the radiosity equation. Next chapter is devoted to 
reformulation of the equation with respect to goals of the given 
report. 

1.1 Radiosity Equation 
In the given text we consider the following Fredholm integral 
equation: 
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S - a scene, piecewise smooth surface, 

( )eL x - emission of light energy in 3D point x S∈ , 

)(xk - diffuse reflectance function, 

),( yxV - visibility between two points, i.e., it is 1 if open 

straight-line segment (x,y) has no intersections with , and 0 
otherwise, 

S

xn , - normals to a scene surface in corresponding points,  yn

)(xL - unknown radiosity. 

The problem is to determine  for all points of . )(xL S
The more detailed problem statement can be found in [1,2]. 
The main goal of the given report is to show the feasibility of the 
method of geometric bisection of a scene by an arbitrary plane. 
We expose our idea using collocation method. 
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1.2 Collocation method 
Here we present the method in brief in limits necessary to support 
a presentation. Let us consider the reflectance equation (1) anew. 
A scene is divided into a set of nonintersecting finite elements 
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An approximating solution is found as: 
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Really the problem is reduced to a solution of a system of linear 
algebraic equations 
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with respect to unknowns N21  ,  ...  ,   , ααα . In matrix 
notation it looks like: 

 . eF Lα α= ⋅ +
rr r

As a rule a matrix of a system becomes very huge if we want to 
obtain images of high quality. Thus main efforts of investigations 
were directed to fighting with the size of . F
1.3 Hierarchical Radiosity 
A hierarchical method [3] is a modification of a classical radiosity 
method; it was created in order to overcome a dramatic growth of 
a number of finite elements, and as a consequence, a huge order 
of a linear system. Hierarchical method fights against such 
disaster of radiosity methods via restraining the amount of finite 
elements in acceptable limits. Some hierarchical algorithms 
proceed in a top-down manner, by limiting the subdivision of a 
scene surface to what is necessary. Algorithms of hierarchical 
radiosity were derived from the N-body problem [4]. They first 
deal with a coarse subdivision and then step by step refine it in 
order to catch such scene particularities as shadow boundaries, 
penumbral areas, etc.   
Note that a hierarchical algorithm does not reduce the complexity 
of the initial set of finite elements. A hierarchy of links between 
finite elements of different subdivision levels replaces the matrix. 
Indeed hierarchical algorithms do not improve the situation while 
an initial number of finite elements is already large. 

1.4 Cluster Radiosity 
The cluster method [5] is an evolution of the previous one. It was 
developed in order to reduce a computational cost by the grouping 
finite elements into clusters and approximating the light energy 

transfer between them. The very detailed and representative 
material on cluster radiosity method one can find in [6,7].  
We should notice that cluster methods try nevertheless to process 
the whole scene. Several modifications assume so-called 
preprocessing step to prepare clusters. Anyway a final solution 
requires considerations of all scene clusters. Cluster methods 
allow creating hierarchies of links as top-down (similar to 
hierarchical methods) as down-top via grouping of small finite 
elements into clusters. Thus the growth of the size of matrix is 
restrained. It is too problematic to select scene clusters 
automatically, although some advances in this way are observed, 
e.g., see [7]. Obviously one could thoroughly prepare clusters in 
advance; nevertheless the problem of light energy transfer 
between clusters still persists because the decreasing of 
information leads to the loss of small details of image.  

1.5 Progressive Radiosity 
In the recent times the techniques related to calculations of global 
illumination began to be used in an industry of electronic 
entertainments and as a standard tool of conventional 3D editors 
like 3D Studio. For example, the well-known computer game 
Quake allows precomputing of global illumination for game 
levels. It is camera-independence feature that permits to do such 
calculations only once. 
One more good example is the usage of radiosity in 
Lightscape 3.2 [8] of Discreet Company (we mean plug-in for 3D 
Studio).  
Here we can find a different approach ("interactively driven") for 
the solution to the radiosity equation, which is called progressive 
radiosity. Roughly it may be characterized as follows. 

1. At initial step a scene surface is divided into quite big 
finite elements. Further they may be subdivided 
automatically into smaller ones in regions, where the 
significant difference of a light intensity between 
adjacent elements is found, e.g., across shadow 
boundaries. 

2. The light energy is transferred from each emitting 
element to all scene elements. Really it means that we 
compute a matrix row, which corresponds to emitting 
element. It is the stage of direct illumination.  

3. The progressive radiosity algorithm examines all 
surface elements in order to find the one, which has 
maximum radiosity. It is considered as an emitter. This 
step (indirect illumination) is then iteratively repeated. 

4. The process ends when a specified part of light energy 
is distributed among scene elements, i.e., the system 
reaches the equilibrium state. 

As a rule the process of distributing of light energy is done with 
simultaneous displaying of the current result on the screen (the 
result after current iteration). It allows user to interrupt it if an 
image satisfies him. 
A remarkable investigation is demonstrated in a work [7]. The 
author combines the advantages of as cluster as progressive 
radiosity algorithms. However his algorithm takes into account 
the whole scene also. Obviously we say about a step of energy 
distribution only. 
The idea of this algorithm is too attractive because of it 
demonstrates the techniques how to approach to the required 
image step by step without computing all elements of the 
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matrix . Actually in each step of the algorithm a scene is 
considered as consisting from 2 parts: 1) element, emitting the 
light into scene; 2) all other finite elements.   

F

1.6 Imposters 
The radiosity method allows displaying on a screen all changes in 
scene illumination, thus it is quite suitable in such applications as 
urban navigations of cars [9]. Geometry of a city is nonvarying 
but its illumination depends on daytime, weather, etc.  We may 
explain it in the following way. Let geometry be divided into 
blocks (similar to 3D cubes), each block is considered as a 
separate scene to which the radiosity method is applied. In order 
to simulate farther views imposters were used. Each imposter is a 
precalculated image mapped onto a corresponding wall of an 
imaginary cube. Obviously the imposters algorithm requires 
preliminary calculations. We do not consider here the advances of 
this approach but idea of imposters show us one of the ways to 
omit one part of a scene while calculating light energy 
equilibrium in other scene part. 

2. GEOMETRIC DECOMPOSITION 

 
Fig.1. The idea of scene bisection 

All the methods mentioned above are derived from the classic 
matrix radiosity method. Their driving formulas are constructed 
starting from consideration of the full matrix of form-factors. 
Really the efforts were done to reduce amount of form-factors 
that should be actually computed. As a fact the matrix is not used 
explicitly.  
We decided to return to the classic matrix radiosity algorithm. We 
consider the fixed subdivision of a given scene into a set of finite 
elements. In other words the algorithm we suggest does not 
change matrix elements while solution thus preserving accuracy 
provided for by particular subdivision. This feature differences it 
from other radiosity algorithms because it preserves all scene 
details. 
Let us consider a fictitious plane in a scene, which obviously 
divides a scene into two parts – geometric bisection of a scene. 
Further we consider both scene parts separately, and 
independently on each other.  
Now we compute equilibrium of light energy in each part 
(independently!). A fictitious plane is a means to exchange light 
energy between scene parts. The process of energy redistribution 
is repeated cyclically. 
It is not important which methods of energy distribution are used 
for different scene parts. It means that for first scene part we 
could apply hierarchical algorithm, and for second part the 

progressive one. Moreover the choice of a method could depend 
on geometric and reflectance features of scene objects in the 
corresponding parts. Besides, we could use different radiosity 
algorithm in a different iteration steps. Honestly speaking it is the 
main direction of our investigations. In the given report we will 
illustrate our approach basing on the simple matrix radiosity 
algorithm. 
By the application of the approach to scene parts we could 
decrease the computational cost applying scene bisections 
recursively. Thus the main advantage of the given algorithm is a 
possibility to represent a calculation of radiosity equation for a 
complex scene as a sequence of more simple tasks. Obviously the 
approach should be a base of a parallel algorithm to solve the 
radiosity problem. 

2.1 Derivation of driving formulas  
Let us consider the mathematical formulations of the algorithm of 
the geometric bisection. A scene surface is divided into two 
parts: 

S
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Write the equation (1) in the following form: 
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The approximating solution is given by the following iteration 
scheme: 
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exchange of light energy between scene parts, separated by 
fictitious plane. 
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2.2 Implementation  
After division of a scene into two parts each finite element 
belongs to one of parts. Using appropriate enumeration we can 

write: and . Classic matrix radiosity 

algorithm requires computing the following table of form factors: 
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or the same in a short form: .  
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The suggested algorithm work as follows. 

1. Computing of the table  for the scene part   11F 1D

2. Computing of the table  for the scene part .   22F 2D

3. Computing of the table , which is used while 

energy transfer from  to .  
12F

2D 1D

4. Computing of the table , which is used while 

energy transfer from  to . 
21F

1D 2D
5. Calculation of equilibrium of light energy in scene part 

. 1D
6. Calculation of equilibrium of light energy in scene part 

. 2D

7. Fulfill energy transfer from the scene part  to , 

using matrix . 
1D 2D

21F

8. Fulfill energy transfer from the scene part  to 

using matrix . 
2D

1D 12F
9. Single iteration of the algorithm consists of steps 5 – 8. 

In the given implementation the iterative process assumes 
simultaneous display of current state of calculations (current state 
of an image), which allows user to stop iterations interactively 
after he gets necessary quality of an image. 
It is obvious that steps 1 – 4 can be done while preprocessing 
stage as the most of algorithms do. Calculations of both form 
factors tables of different scene parts in steps 1 and 2 can be done 
in different processors in parallel.  

Steps 5 and 6 (the light distribution inside each scene part) can be 
done in parallel too. 
Many of parallel computer architectures allow parallel processing 
of steps 1, 2, 3, and 4. And parallel processing of steps 7 and 8 is 
possible also. 
The computational requirements (an order of a system of linear 
equations, memory, and time) of the bisection algorithm in each 
its step are less than ones of the classic matrix radiosity algorithm. 
Moreover the given algorithm gains even if it is fulfilled in a 
single processor, because it requires at least less memory in each 
step. 

2.3 Experiments 
In the presented test scenes we use finite elements – 3D 
rectangles. We do not apply any interpolation in order to smooth 
pictures; we try to show the algorithm behavior using coarse finite 
elements. 
Many illustrations of the given report are omitted in the text 
because of the absence of color possibilities in the proceedings. 

2.3.1 "Constructive Wood" 
The idea of this test scene was taken from [1]. The scene consists 
of several two-sided diffuse planes, the only one of which is 
emitting light; see fig. 1. If this scene would be rendered by 
conventional ray tracing algorithm (not Monte Carlo), then its 
image would contain only four vertical bright strips – direct 
observation of a light source. The geometry of finite elements is 
shown in fig. 3. 

 
Fig. 2. Top view of scene geometry 
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Fig. 3. Wireframe view of scene finite elements 

We used vertical plane, which divided the scene into two 
symmetrical parts as shown in fig. 1. The result shown in fig. 4 
confirms that our algorithm correctly processes diffuse 
interreflections. 

 
Fig. 4. Image of "constructive wood" 

2.3.2 Shadows  

 
Fig. 5. Geometry of a test scene (rough subdivision) 

The second test scene should demonstrate the work of the 
bisection algorithm iteration by iteration. As it is shown in fig. 5 
the scene is divided by plane into two parts, which have different 
subdivision into finite elements. Only left scene part contains a 
light source (see fig. 6, 7) and a column, which are reasons of a 
shadow. Below we present visual results of a series of iterations. 
Fig. 6 demonstrates that right part of a scene is pure dark. It is 
obvious result because initially this scene part has no light 
sources. Figures 6, 7, and 8 show how energy transfer between 
parts influences on the current image from iteration to iteration. 
The shown three iterations demonstrate convergence of the image 
to the image rendered by classic matrix radiosity algorithm (see 
fig. 9). 

 
Fig. 6. After step 6 on first iteration 
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Fig. 7. After step 6 on second iteration 

 
Fig. 8. After step 6 on third iteration 

In a conclusion let us look at times spent in different steps of the 
algorithm. First table is devoted to steps that are fulfilled at 
preprocessing stage. And the second one – times of steps of 
iterations.  

 
Fig. 9. Classic matrix radiosity 

 

Scene \ Step 1 2 3 4 
1T  2T  3T  

Constr.wood 3 4 9 9 26 23 9 

Shadow 10 11 40 40 101 91 40 

Where:  is time while sequential processing of steps;  - time 

while steps 1 and 2 are done in parallel;  - full parallelism.  It 

is expected that  is time of classic matrix algorithm 
nevertheless the algorithm of geometric bisection requires less 
memory. 

1T 2T

3T

1T

Scene \ Steps 5 6 7 8 
1T  2T  

Constr.wood 16 16 0..5 0.5 33 17 

Shadow 40 56 2 1 99 59 

The given table shows that the bisection algorithm gains time 
almost twice with respect to the classic sequential matrix 
algorithm. 

3. CONCLUSION 
Let us note the advantages of the algorithm of geometric bisection 
of a scene while solution of the radiosity equation. 

• Formal subdivision of a scene into parts without 
preliminary analysis of its geometry that could be quite 
time-consuming process. 

• To solve more simple problems in each scene part. 

• To process each part in parallel. 

• To process each part by different modifications of 
radiosity algorithms. 

• Possibility of recursive subdivision of a scene to gain a 
desirable rate of computational cost.  

• Possibility to assemble a scene from precomputed parts. 
Really it means that we need to compute only sub-
matrices  and . 12F 21F

The presented numerical experiments have shown the feasibility 
and usefulness of the bisection radiosity algorithm. While 
sequential processing it reduces memory requirements. It looks 
similar to cluster algorithms except the fact that clusters (scene 
parts) are created automatically. 
Possibility to assemble a scene from precomputed parts. 
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Уравнение излучательности и 
декомпозиция сцены 
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Институт вычислительной математики и 

математической геофизики (бывший ВЦ) СО РАН 
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Аннотация 
В докладе предлагается оригинальный подход к уменьшению 
вычислительной трудоемкости алгоритма излучательности, 
поскольку с возрастанием геометрической сложности сцены 
сильно растут требования алгоритма к памяти и 
быстродействию машин. До сих пор все усилия делались в 
направлении адаптивного разбиения поверхности сцены 
(иерархическая излучательность), чтобы сдерживать число 
конечных элементов в разумных пределах, и в направлении 
группировки объектов  (кластерные методы), чтобы 
оценивать обмен энергией не между каждой парой элементов 
в отдельности, а между целыми группами элементов сразу. 
Все эти подходы так или иначе пытаются обрабатывать сразу 
всю геометрию сцены. 
Несколько в стороне стоит метод "ширм" (imposters), в 
котором применяется геометрическая разбивка сцены. В 
методе “ширм” заложена интересная идея: обрабатывать не 
всю сцену сразу, а по частям, заменяя некоторые части сцены 
их “образами”, правда, в ущерб фотореализму. Предла-
гаемый метод геометрической декомпозиции – это новый 
подход к проблеме глобальной освещенности, который 
использует идею метода “ширм”, позволяя рассчитывать 
освещенность сцены частями. Сцена разбивается (заметим, 
что совершенно формально) на части, которые затем 
обрабатываются независимо друг от друга с последующим 
обменом энергией между ними, что позволяет снизить 
вычислительные требования и распараллеливать вычис-
ления. Отметим, что в каждой части сцены расчет баланса 
освещенности может производиться при помощи различных 
модификаций алгоритма излучательности. 
Отметим также, что термин "декомпозиция", используемый в 
классическом смысле в задачах вычислительной математики, 
может применяться и при решении уравнения 
излучательности, но в данном докладе мы имеем в виду 
геометрическую декомпозицию сцены. 
В докладе рассмотрен метод разбиения сцены при помощи 
фиктивной плоскости, приведены результаты численных 
экпериментов. 
Ключевые слова: синтез фотореалистических изображений, 
уравнение излучательности, геометрическая декомпозиция 
сцены, матричный алгоритм излучательности. 
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