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Abstract

The given report is devoted to an original approach for reducing
computational cost (memory and time) of the matrix radiosity
algorithm. Such investigations are still quite actual because the
algorithm requires significant amounts of memory and time. From
other side it began to be applied in practice due to increasing
power and memory of modern desktop computers. Recent efforts
of computer graphics specialists were done in the following main
directions.

e Adaptive scene subdivision (hierarchical radiosity
methods) was elaborated in order to prevent the growth
of the number of finite elements in acceptable limits.

e  Grouping of scene objects — cluster methods, when the
light energy exchange is estimated between groups of
scene elements (e.g., polygons) but between individual
elements.

All those approaches try to process the whole scene geometry in
that or another way, and thus they do not simplify the original
problem dramatically.

Somewhat aside the method of imposters lies. It bases on
geometric subdivision of an initial scene, but farther parts of a
scene do not take part in calculations of light energy equilibrium,
therefore it is lacking of photorealism.

The given here method of geometric decomposition — it is a quite
new modification of the matrix radiosity algorithm. The scene is
divided into parts (note, that it is done formally, i.e., without
preliminary geometric analysis). Each part is processed
independently on each other. Next step — exchange of energy
between parts. It is easy to see that an independence of parts
allows:

e  To solve more simple problems in each part.

e To process each part in parallel (coarse grain
parallelism).

e To process each part by different modifications of
radiosity algorithms.

e  Possibility of recursive subdivision to gain a desirable
rate of computational cost.

e  Possibility to assemble a scene from precomputed parts.

Note that in the given report we consider the just geometric
decomposition of a scene in opposite to "decomposition" used in
classical problems of computational mathematics. We show
feasibility of the given approach for the case, when the scene is
divided into parts by plane(s), really geometric bisection. The
formulation and numerical experiments are presented too.

Keywords: synthesis of photorealistic images, radiosity equation,
geometric decomposition of a scene, collocation method, parallel
computing.

1. INTRODUCTION

Firstly we will spend some time to introduction in a problem of
solution to the radiosity equation. Next chapter is devoted to
reformulation of the equation with respect to goals of the given
report.

1.1 Radiosity Equation

In the given text we consider the following Fredholm integral
equation:

L(x)= IK(X, Y)-L(»)0,S+L.(x)

where the kernel

k(x)

cosZ(x—y,n,)-cosL(x—y,n,)
K(X,y):ﬂ-'V(.X,y)' - ‘

e

S - ascene, piecewise smooth surface,

Le (x) - emission of light energy in 3D point X € S,

k (.X) - diffuse reflectance function,

V(x,y)- visibility between two points, ie., it is 1 if open
straight-line segment (x,y) has no intersections with S, and 0

otherwise,

n n

Ny - normals to a scene surface in corresponding points,

L(x) - unknown radiosity.

The problem is to determine L(X) for all points of S .

The more detailed problem statement can be found in [1,2].

The main goal of the given report is to show the feasibility of the
method of geometric bisection of a scene by an arbitrary plane.
We expose our idea using collocation method.
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1.2 Collocation method

Here we present the method in brief in limits necessary to support
a presentation. Let us consider the reflectance equation (1) anew.
A scene is divided into a set of nonintersecting finite elements

N
s=Js,
i=1

Then we choose the basis:
l,xeS§,
0,xeS,

J

(Dj(x) =

An approximating solution is found as:
~ N
L(x)= Zaj 'q)j(x)
j=1

N
in a fixed collection of scene points { X; } -
=
Really the problem is reduced to a solution of a system of linear
algebraic equations

N
@ =20, [ K o0,8,+ L)
= s

with respect to unknowns & , &y , ... , Oy . In matrix

notation it looks like:
a=F-a+L,.

As a rule a matrix of a system becomes very huge if we want to
obtain images of high quality. Thus main efforts of investigations

were directed to fighting with the size of F .
1.3 Hierarchical Radiosity

A hierarchical method [3] is a modification of a classical radiosity
method; it was created in order to overcome a dramatic growth of
a number of finite elements, and as a consequence, a huge order
of a linear system. Hierarchical method fights against such
disaster of radiosity methods via restraining the amount of finite
elements in acceptable limits. Some hierarchical algorithms
proceed in a top-down manner, by limiting the subdivision of a
scene surface to what is necessary. Algorithms of hierarchical
radiosity were derived from the N-body problem [4]. They first
deal with a coarse subdivision and then step by step refine it in
order to catch such scene particularities as shadow boundaries,
penumbral areas, etc.

Note that a hierarchical algorithm does not reduce the complexity
of the initial set of finite elements. A hierarchy of links between
finite elements of different subdivision levels replaces the matrix.
Indeed hierarchical algorithms do not improve the situation while
an initial number of finite elements is already large.

1.4 Cluster Radiosity

The cluster method [5] is an evolution of the previous one. It was
developed in order to reduce a computational cost by the grouping
finite elements into clusters and approximating the light energy

transfer between them. The very detailed and representative
material on cluster radiosity method one can find in [6,7].

We should notice that cluster methods try nevertheless to process
the whole scene. Several modifications assume so-called
preprocessing step to prepare clusters. Anyway a final solution
requires considerations of all scene clusters. Cluster methods
allow creating hierarchies of links as top-down (similar to
hierarchical methods) as down-top via grouping of small finite
elements into clusters. Thus the growth of the size of matrix is
restrained. It is too problematic to select scene clusters
automatically, although some advances in this way are observed,
e.g., see [7]. Obviously one could thoroughly prepare clusters in
advance; nevertheless the problem of light energy transfer
between clusters still persists because the decreasing of
information leads to the loss of small details of image.

1.5 Progressive Radiosity

In the recent times the techniques related to calculations of global
illumination began to be used in an industry of electronic
entertainments and as a standard tool of conventional 3D editors
like 3D Studio. For example, the well-known computer game
Quake allows precomputing of global illumination for game
levels. It is camera-independence feature that permits to do such
calculations only once.

One more good example is the usage of radiosity in
Lightscape 3.2 [8] of Discreet Company (we mean plug-in for 3D
Studio).

Here we can find a different approach ("interactively driven") for
the solution to the radiosity equation, which is called progressive
radiosity. Roughly it may be characterized as follows.

1. At initial step a scene surface is divided into quite big
finite elements. Further they may be subdivided
automatically into smaller ones in regions, where the
significant difference of a light intensity between
adjacent elements is found, e.g., across shadow
boundaries.

2. The light energy is transferred from each emitting
element to all scene elements. Really it means that we
compute a matrix row, which corresponds to emitting
element. It is the stage of direct illumination.

3. The progressive radiosity algorithm examines all
surface elements in order to find the one, which has
maximum radiosity. It is considered as an emitter. This
step (indirect illumination) is then iteratively repeated.

4. The process ends when a specified part of light energy
is distributed among scene elements, i.e., the system
reaches the equilibrium state.

As a rule the process of distributing of light energy is done with
simultaneous displaying of the current result on the screen (the
result after current iteration). It allows user to interrupt it if an
image satisfies him.

A remarkable investigation is demonstrated in a work [7]. The
author combines the advantages of as cluster as progressive
radiosity algorithms. However his algorithm takes into account
the whole scene also. Obviously we say about a step of energy
distribution only.

The idea of this algorithm is too attractive because of it
demonstrates the techniques how to approach to the required
image step by step without computing all elements of the
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matrix /' . Actually in each step of the algorithm a scene is
considered as consisting from 2 parts: 1) element, emitting the
light into scene; 2) all other finite elements.

1.6 Imposters

The radiosity method allows displaying on a screen all changes in
scene illumination, thus it is quite suitable in such applications as
urban navigations of cars [9]. Geometry of a city is nonvarying
but its illumination depends on daytime, weather, etc. We may
explain it in the following way. Let geometry be divided into
blocks (similar to 3D cubes), each block is considered as a
separate scene to which the radiosity method is applied. In order
to simulate farther views imposters were used. Each imposter is a
precalculated image mapped onto a corresponding wall of an
imaginary cube. Obviously the imposters algorithm requires
preliminary calculations. We do not consider here the advances of
this approach but idea of imposters show us one of the ways to
omit one part of a scene while calculating light energy
equilibrium in other scene part.

2. GEOMETRIC DECOMPOSITION

Fig.1. The idea of scene bisection

All the methods mentioned above are derived from the classic
matrix radiosity method. Their driving formulas are constructed
starting from consideration of the full matrix of form-factors.
Really the efforts were done to reduce amount of form-factors
that should be actually computed. As a fact the matrix is not used
explicitly.

We decided to return to the classic matrix radiosity algorithm. We
consider the fixed subdivision of a given scene into a set of finite
elements. In other words the algorithm we suggest does not
change matrix elements while solution thus preserving accuracy
provided for by particular subdivision. This feature differences it
from other radiosity algorithms because it preserves all scene
details.

Let us consider a fictitious plane in a scene, which obviously
divides a scene into two parts — geometric bisection of a scene.
Further we consider both scene parts separately, and
independently on each other.

Now we compute equilibrium of light energy in each part
(independently!). A fictitious plane is a means to exchange light
energy between scene parts. The process of energy redistribution
is repeated cyclically.

It is not important which methods of energy distribution are used
for different scene parts. It means that for first scene part we
could apply hierarchical algorithm, and for second part the

progressive one. Moreover the choice of a method could depend
on geometric and reflectance features of scene objects in the
corresponding parts. Besides, we could use different radiosity
algorithm in a different iteration steps. Honestly speaking it is the
main direction of our investigations. In the given report we will
illustrate our approach basing on the simple matrix radiosity
algorithm.

By the application of the approach to scene parts we could
decrease the computational cost applying scene bisections
recursively. Thus the main advantage of the given algorithm is a
possibility to represent a calculation of radiosity equation for a
complex scene as a sequence of more simple tasks. Obviously the
approach should be a base of a parallel algorithm to solve the
radiosity problem.

2.1 Derivation of driving formulas

Let us consider the mathematical formulations of the algorithm of

the geometric bisection. A scene surface S is divided into two
parts:

S=D,UD,.

Write the equation (1) in the following form:

L) = [K(x,»)-L(»8,D; + [ K(x,)-L(»)9,D, + L,(x)

Then we rewrite it as a system

L(x) = [K(x,3)L(»)0,D; + [K(x,9) L(»)8,D, + L,(x), x € D,

Dy

L(x)= [K(x,)-L(3)0,D, + [K(x,3)-L(»)3,D, + L (x), x€ D,

Denote

Ly, (x) = L(x)|,
Ly, (x) = L(x)|p,

Ky oL=[K(x,y)-L(»)3,D,
DI

Ky, oL=[K(x,)-L(»)3,D,

D,

Thus the system has a view:

D,

L, =K, oL, +[K, oL, +L,(x)]
L, =K, oL, +[K, oL, +L,(x)]

D,

The approximating solution is given by the following iteration
scheme:

(n+1) (n+1) (n)
LDI = KD1 °L01 ! +[KD2 OLDZ Ut L (x)]

LDZ(””’ =K, o LD2<”+” +[K, o LDI(") + L, (x)]

and £, =0, L, =0.

(n) (n)
Terms K D, OLD] and K D, ° LD2 define the

exchange of light energy between scene parts, separated by
fictitious plane.
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2.2 Implementation

After division of a scene into two parts each finite element
belongs to one of parts. Using appropriate enumeration we can
n+m

n

write: Dl = USl. and D2 = U Sl. . Classic matrix radiosity
i=l1 i=n+l

algorithm requires computing the following table of form factors:

| fi,n+l o fi,n+m

Jia i

f;l,l "'f;1,n | ﬁt,n+l"'ﬁz,n+m

Fel-mmmmmmmmm :
f;1+1,1 "'fn+1,n f;1+l,n+l"'f;l+l,n+m
_f;Hm,l "'f;Hm,n f;t+n1,n+l"'f;1+m,n+m_
. B R,
or the same in a short form:
Fy By

The suggested algorithm work as follows.

1. Computing of the table El for the scene part D1
2. Computing of the table F22 for the scene part D2 .

3. Computing of the table FIZ’ which is used while

energy transfer from D2 to D] .

4. Computing of the table F21 , which is used while
energy transfer from D] to Dz-

5. Calculation of equilibrium of light energy in scene part
D,.

6. Calculation of equilibrium of light energy in scene part

D,.

7.  Fulfill energy transfer from the scene part D1 to D, ,

using matrix 1721 .

8. Fulfill energy transfer from the scene part D2 to
D1 using matrix Fiz .
9. Single iteration of the algorithm consists of steps 5 — 8.

In the given implementation the iterative process assumes
simultaneous display of current state of calculations (current state
of an image), which allows user to stop iterations interactively
after he gets necessary quality of an image.

It is obvious that steps 1 — 4 can be done while preprocessing
stage as the most of algorithms do. Calculations of both form
factors tables of different scene parts in steps 1 and 2 can be done
in different processors in parallel.

Steps 5 and 6 (the light distribution inside each scene part) can be
done in parallel too.

Many of parallel computer architectures allow parallel processing
of steps 1, 2, 3, and 4. And parallel processing of steps 7 and 8 is
possible also.

The computational requirements (an order of a system of linear
equations, memory, and time) of the bisection algorithm in each
its step are less than ones of the classic matrix radiosity algorithm.
Moreover the given algorithm gains even if it is fulfilled in a
single processor, because it requires at least less memory in each
step.

2.3 Experiments

In the presented test scenes we use finite elements — 3D
rectangles. We do not apply any interpolation in order to smooth
pictures; we try to show the algorithm behavior using coarse finite
elements.

Many illustrations of the given report are omitted in the text
because of the absence of color possibilities in the proceedings.

2.3.1 "Constructive Wood"

The idea of this test scene was taken from [1]. The scene consists
of several two-sided diffuse planes, the only one of which is
emitting light; see fig. 1. If this scene would be rendered by
conventional ray tracing algorithm (not Monte Carlo), then its
image would contain only four vertical bright strips — direct
observation of a light source. The geometry of finite elements is
shown in fig. 3.

Diffuse Light

/LT L

~=———separating plane

Camera

Fig. 2. Top view of scene geometry
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Fig. 3. Wireframe view of scene finite elements

We used vertical plane, which divided the scene into two
symmetrical parts as shown in fig. 1. The result shown in fig. 4
confirms that our algorithm correctly processes diffuse
interreflections.

Fig. 4. Image of "constructive wood"

2.3.2 Shadows
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Fig. 5. Geometry of a test scene (rough subdivision)

The second test scene should demonstrate the work of the
bisection algorithm iteration by iteration. As it is shown in fig. 5
the scene is divided by plane into two parts, which have different
subdivision into finite elements. Only left scene part contains a
light source (see fig. 6, 7) and a column, which are reasons of a
shadow. Below we present visual results of a series of iterations.

Fig. 6 demonstrates that right part of a scene is pure dark. It is
obvious result because initially this scene part has no light
sources. Figures 6, 7, and 8 show how energy transfer between
parts influences on the current image from iteration to iteration.
The shown three iterations demonstrate convergence of the image
to the image rendered by classic matrix radiosity algorithm (see
fig. 9).

Fig. 6. After step 6 on first iteration
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Fig. 7. After step 6 on second iteration

Fig. 8. After step 6 on third iteration

In a conclusion let us look at times spent in different steps of the
algorithm. First table is devoted to steps that are fulfilled at
preprocessing stage. And the second one — times of steps of
iterations.

Fig. 9. Classic matrix radiosity

Scene \ Step 1 2 3 4 Tl T2 T3

Constr.wood 3 4 9 9 26 23 9

Shadow 10 11 40 40 101 | 91 40

Where: 7; is time while sequential processing of steps; T2 - time
while steps 1 and 2 are done in parallel; T3 - full parallelism. It

is expected that T1 is time of classic matrix algorithm

nevertheless the algorithm of geometric bisection requires less
memory.

Scene \ Steps 5 6 7 8 ]I T2

Constr.wood 16 16 0.5 0.5 33 17

Shadow 40 56 2 1 99 59

The given table shows that the bisection algorithm gains time
almost twice with respect to the classic sequential matrix
algorithm.

3. CONCLUSION

Let us note the advantages of the algorithm of geometric bisection
of a scene while solution of the radiosity equation.

e Formal subdivision of a scene into parts without
preliminary analysis of its geometry that could be quite
time-consuming process.

e To solve more simple problems in each scene part.
e  To process each part in parallel.

e To process each part by different modifications of
radiosity algorithms.

e  Possibility of recursive subdivision of a scene to gain a
desirable rate of computational cost.

e  Possibility to assemble a scene from precomputed parts.
Really it means that we need to compute only sub-

matrices Ez and Fz]-
The presented numerical experiments have shown the feasibility
and usefulness of the bisection radiosity algorithm. While
sequential processing it reduces memory requirements. It looks

similar to cluster algorithms except the fact that clusters (scene
parts) are created automatically.

Possibility to assemble a scene from precomputed parts.
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YPaBHeHVIe nany4vyartesibHOCTM U
AeKoOMNo3nuunsa CueHbl

B.A. Iebenos, U.M. CeBacTbsiHOB

MHCTUTYT BBIYUCIUTENBHON MaTEMaTUKU U
Maremarnueckoi reopusuku (OsBumii BI) CO PAH

Hoocubupck, Poccus
AHHOTaUMA

B noxnazne npeanaraeTcs OpUTHHAIBHBINA TOAX0A K YMEHbBIIECHHUIO
BEIYHCIIUTENBEHON TPYJOEMKOCTH alTOPUTMA U3JTY4amenbHocmi,
TIOCKOJIBKY C BO3PACTAHUEM I'€OMETPHYECKOM CIIOKHOCTH CIIEHBI
CWIBHO pacTyT TpeOOBaHUS  alropuT™Ma K [aMiATH U
ObIicTponeiicTBUIO MamuH. JI0 CHX HOp BCe yCHIHA JEaluch B
HANpapJICHUH aJalTHBHOTO pa30MeHHs MOBEPXHOCTH CIIEHBI
(uepapxuueckan uznyuamenbHocmyp), 4TOOb! CAEPKUBATH YUCIIO
KOHEYHBIX 3JIEMEHTOB B Pa3yMHBIX NpejeNnax, U B HalpaBICHUU
TPYNIHUPOBKH  OOBEKTOB (knacmepnvie memoovt), UTOOBI
OLIEHUBATh OOMEH SHEPTrUel He MeXTy KakIoH Mapoi 3JeMeHTOB
B OTJAEIBHOCTH, @ MEXAY LEIBIMU TPYNIaMHU 3JIEMEHTOB Cpasy.
Bce 3TH moaXo/ibl TaK MM MHAYe MBITAl0TC 00pabaThIBaTh Cpaszy
BCIO TE€OMETPHIO CLIEHBI.

Heckonbko B cTopone croutr memoo "wiupm'' (imposters), B
KOTOPOM HPHMEHSETCs reoMeTpuyeckas pa30OuMBKa CcIHeHB. B
MeToze “mmpM” 3aJI0KEHa WHTEpeCHas uues: o0pabaThiBaTh HE
BCIO CIICHY Cpas3y, a [0 9acTsIM, 3aMEHsIsI HEKOTOPBhIE YaCTH CLCHBI
ux “obpasamu”, mpaBnma, B ymep0 ¢oTopeanmusmy. Ilpemna-
TaeMbI Memoo zeomempuieckoi 0eKoOMno3uyuu — 310 HOBBIN
HNOAXOM K TpobieMe Trno0anbHOi OCBEIEHHOCTH, KOTOPBIH
UCITIONIB3yeT MJICI0 MeToAa “HIIMpM™~, IO3BOJSS PacCUUTHIBATH
OCBEIICHHOCTh ClieHbl dacTsmu. CrieHa pasOuBaeTcst (3aMeTum,
4TO COBEpLICHHO (opManbHO) Ha 4YaCcTH, KOTOpbIE 3aTeM
00pabaThIBalOTCA HE3aBUCHMO JPYT OT JIpyra C HOCIEAYIOIIHM
OGMCHOM SHGPFMCﬁ Me)l(}ly HUMH, YTO TIO3BOJIACT CHU3HUTH
BBIUMCIIUTEIbHEIE TPeOOBaHUS H pacnapanienuéams BHIUUC-
nenusi. OTMETUM, YTO B KaKIOH 4YacTW CLEHBI pacueT OanaHca
OCBEIICHHOCTH MOJKET MPOU3BOMUTHCS MPU MOMOIIH PA3THYHBIX
MOIU(HKALUHA aNrOPUTMa U3TYIaTeNbHOCTH.

OTMETHM TaKXe, 4TO TEPMUH "0eKomno3uyua", CTob3yeMbli B
KJIACCHYECKOM CMBICIIC B 3a/1a4aX BBIYUCIUTEIILHON MaTeMaTHKH,
MOXET  NPUMEHATBCS W [pPH  PEIICHUMHM  YpaBHEHHs
U3IIy4aTeNIbHOCTH, HO B JaHHOM JIOKJIAJEe MBI MMEEM B BHUIY
2e0MempudecKyr0 0eKOMNO3ULUIO CUEHbL.

B noxnane paccMoTpeH MeTon pa3OMeHMs CLEHBI HPH MOMOIIU
(UKTUBHOW IIIOCKOCTH, IPHUBEICHBI Pe3YJIbTaThl YHCICHHBIX
9KIIEPUMEHTOB.

KiroueBble ci10Ba: cuHTE3 (OTOPEATNCTHYECKUX M300paXKEHNUI,
ypaBHEHHE H3JIy4aTeIbHOCTH, I'€OMETpUYecKas JIEKOMIIO3HLIUS
CLICHBI, MATPHYHBIH aJIFOPUTM U3Jy4aTeIbHOCTH.
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