
Efficiency issues on Ray Tracing Machine

Kirill A. Dmitriev
Keldysh Institute of Applied Mathematics RAS

Moscow, Russia

Abstract
Recently computer world was amazed by the explosive growth of
the hardware efficiency. Average computer now has integrated
hardware ability of displaying thousands triangles per second. Hi-
end graphical accelerators (e.g. Sony Playstation 2) render up to
20 million triangles per second. However, importance of old good
ray tracing, as the most accurate method for realistic image
synthesis became not lower than, say, ten years ago. Here we
consider two commonly used ray-tracing methods: regular grid
and octogrid traversing. Ray-tracing speed, memory requirements
and preprocessing speed are compared.
Keywords: Ray tracing, Voxel grids, Efficiency, Benchmarks.

1. INTRODUCTION
A number of interactive rendering techniques have evolved
recently. Most of them are based on hardware-accelerated
polygonal renderers. However, such renderers have a lot of
limitations due to both the algorithms used and the tight coupling
to the hardware. While software ray tracing methods were always
more attractive in the terms of quality and supported features,
speed was never their advantage. As the computers become more
and more powerful, with larger number of processors, one can
suggest that the speed issue will become not so important soon
and precise software algorithms of image synthesis become
predominant. For example [1] describes a system of 60
processors, which is able to perform interactive ray tracing (15
frames per second) of 35 million spheres. Such exceptional speed
places the system higher than any hi-end polygonal renderer
existing up to date.
Of course, spheres rendering has more scientific than practical
interest, but the above example shows that some day ray tracing
can become a most used methods in every area of computer
graphics, including real-time visualization. In this paper we
describe our exploration of different ray tracing techniques
directed on the development of most speedy algorithm.
In general, the relative efficiency of different ray tracing
algorithms may vary depending on features of the processed scene
and global illumination algorithms. In this article we focus on
selection of the best method for practical applications.
The environment we use for comparison of ray tracing techniques
is the physically accurate global illumination algorithms
(backward rendering, forward Monte-Carlo ray tracing) applied
for complex realistic architectural scenes.

2. GENERAL EFFECIENCY ISSUES.
The purpose of Ray Tracing Machine (RTM) is quick finding
intersection of a ray with the scene geometry. There are two
different types of queries RTM should handle:

• find closest intersection point;
• find all intersection points;

Closest intersection is required for primary, reflected and
transmitted rays. All intersections are required for calculation of
light weakening as it goes from light to the point of interest. For
efficiency reason it is important to keep those queries separate.
E.g. when finding closest point, RTM can ignore all geometry hits
which occurs at a distance larger than the most close of all
previous hits. Thus, first query can be sufficiently optimized if,
after every hit, the part of scene behind the hit point is culled.
Another important issue is effective use of processor caching. Let
us suppose your algorithm needs the following information about
triangle: indices of triangles vertices, triangle plane index, some
flags, and bounding box. The most natural would be to allocate
four arrays for each of above values. Nevertheless, it turns out
that processor works better with data, which is stored in the
nearby memory blocks. Most effective will be to create a single
array of the following structs:

struct TrgInfo
 {
 int vert_ind[3];
 int pln_ind;
 UINT flags;
 float box[2][3];
 };

There are also other methods of low-level optimizations. General
guideline on such type of optimizations can be found in [2]. In
this article we would like to focus more on the higher-level
optimizations, in particular on the voxel grid creation/traversing
algorithms.

3. VOXELIZATION TECHNIQUES
The most time consuming operation during ray tracing is
calculation of ray intersection with triangles. Voxelization is the
best-known and widely used method to reduce number of those
operations. The idea is to place nearby triangles in axis aligned
bounding boxes (usually cubic). Voxels are located in a regular
fashion to make use of Brosenhaim-like algorithms for their
traversing.
Above only the general idea is given, but up to date there exists a
huge amount of methods to make space traversing more efficient
and reduce the number of required operation to minimum. We do
not consider here more sophisticated approaches such as
described in [6], [7] as they have nontrivial settings for which
optimum are scene dependent and their automatic finding is a
difficult problem.
We investigated three voxelization techniques:

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

3.1 Uniform space subdivision
The uniform subdivision is the classic approach well known in
literature on Ray Tracing originated by Akira Fujimoto more than
10 years ago. The idea is to subdivide scene bounding box on to
equal cubes, each scene dimension is divided on the number of
cubes proportional to its length. After that a pure Brosenhaim
algorithm is used for scene traversing.

Figure 1: Uniform voxelization

The key advantage of this method is that absolutely regular space
subdivision allows fast traversal of the voxels grid. Time required
for search of intersected voxel is usually negligible compared to
other operations.
One disadvantage of the method is non-efficiency and/or
tremendous memory requirements for highly non-uniform shapes.
Really, suppose that you have a scene with 100,000 triangles and
having dimensions [10x10x10] meters. Suppose that 99,000
triangles are located in a small volume in the center of the scene
and that you use backward ray tracing to receive an image of
exactly this small volume. In this case described uniform
voxelization will not give any benefit because all triangles will
fall into one or two voxels, located in the center of the grid. For
more-less efficient voxelization you will need to create a very
dense subdivision, which is quite memory consuming.
Another disadvantage of the method is lack of adaptation and
need in the external setting of space subdivision density. On
practice most efficient space subdivision is a function of not only
scene bounding box dimensions but also of number of triangles
and their distribution in space. It is difficult for algorithm to
determine how much voxels are actually required for fastest ray
tracing.

3.2 Regular recursive grids
The shape of recursive regular grid is depicted on Figure 2. On
the top level we have ordinary uniform subdivision. Then every
voxel of uniform grid can be recursively subdivided into a fixed
(same for all voxels) number of cubic subvoxels. Subdivision
depth is not limited.
Approach is the special version of general EN-TREE approach,
which features are:

• efficient support of arbitrary non-uniform shapes;
• lack of externally tuned parameters;

This scheme inherits the main advantage of the uniform
subdivision, namely fast Brosenhaim-like voxels traversal. In the
same time the scheme has high adaptivity for the scene non-
uniformities.
The key feature of the approach is that the uniform voxels
subdivision, present at the top level, enables fast Brosenhaim-like
algorithm for the grids traversal similar to the uniform
subdivision. If a traced ray goes from one supervoxel to the

adjacent similarly subdivided supervoxel than almost all
Brosenhaim coefficients remain valid.
It allows implementing ray transfer between adjacent supervoxels
almost as fast as for uniform grids. The ray transfer between
differently subdivided voxels is slightly more costly, but even in
this case majority of previous Brosenhaim coefficients can be
efficiently reused.
Automatic voxelization builder should solve the following tasks:
decide number of voxels on top level and criteria for recursive
adaptive subdivision voxels into subvoxels.
The number of voxels in the top-level uniform grid is selected
automatically taking into account the scene uniformity. For
highly non-uniform scenes with large empty areas it is better to
have few top-level voxels. Dense top-level subdivision would
decelerate rays traversal through empty spaces. In opposite for
'close to uniform' scenes it is better to create large number of top
level uniform voxels and minimum subvoxels. In this way the
superfluous switchings between supervoxels/subvoxels during
ray tracing are avoided.

Figure 2: Regular recursive greed

Subdivision of a voxel into subvoxels is performed if the number
of polygons intersected with it is larger than threshold. There are
two internal parameters: N_SUB_VOXELS - number of
subvoxels to which every voxel dimension is split (the same for
each dimension and for all voxels) and VOX_NTRG_THR -
number of triangles threshold. Optimal values for both
parameters depend mainly on the respective performance of the
grid traversal code and triangle intersection code. The optimum
almost does not depend on particular scene. This feature allows
finding the reasonable values ones by means of benchmarks and
then to hardware them into source code.
It should be noted that not only ray tracing speed is valuable in
above method. Varying N_SUB_VOXELS and
VOX_NTRG_THR parameters it is possible to choose a rational
balance between ray tracing speed, preprocessing time and
memory load.

3.3 Octree grid

The method of regular grids described above is sufficiently
heuristic and uses different assumptions to create a most efficient
voxelization. Experience tells that that human intuition is often
very wrong about what changes will make the code faster. Many
factors play here, in particular features of processor operation and
caching can influence speed significantly.

That is why we also implemented a classical algorithm of octree
traversal. This algorithm uses an octree structure to store
hierarchical voxels grid, which shape is depicted on Figure 3. The
top cubic voxel has size equal to maximal of scene dimensions.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Then it is recursively subdivided each time on eight subvoxels,
creating octree. Comparison with pure octree method should give
an answer whether above given argumentation in favor of regular
recursive grids is valid.

Figure 3: Octree grid

Note that octree grid is a special case of regular recursive grid.
Provided that we do not use top-level uniform subdivision and set
N_SUB_VOXELS = 2, we receive exactly octree grid. However,
restricting ourselves to N_SUB_VOXELS = 2, we can optimize
the code basing on this constant. For example, let’s consider
algorithm for ray descending from supervoxel to subvoxel in the
general case and algorithm optimized for the case
N_SUB_VOXELS = 2.
double remain[3]; // distance to border of voxel by each dimension
double tot_remain[3]; // distance between adjacent voxel borders
int sub_voxel; // index of sub voxel [0, N_SUB_VOXELS ^ 3 – 1]
UINT ray_mask; // 3 bits are used - bit is 1 if coordinate of ray dir > 0
int vox_incr[3] =
 {1, N_SUB_VOXELS, N_SUB_VOXELS * N_SUB_VOXELS};

// general case
for (int ic = 0; ic < 3; ++ic)
 {
 tot_remain[ic] /= N_SUB_VOXELS;
 int t = (int)(remain[ic] / tot_remain[ic]);
 t = Min(t, N_SUB_VOXELS – 1);
 remain[ic] -= t * tot_remain[ic]
 if (ray_dir[ic] > 0)
 sub_voxel += (N_SUB_VOXELS – 1 - t) * vox_incr[ic];
 else
 sub_voxel += t * vox_incr[ic];
 }

// case with N_SUB_VOXELS = 2
sub_vox = dir_mask;
for (ic = 0; ic < 3; ++ic)
 {
 tot_remain[ic] *= 0.5;
 if (remain[ic] > tot_remain[ic])
 {
 remain[ic] -= tot_remain[ic];
 sub_vox ^= (1 << ic);
 }
 }

For the sake of simplicity, case when ray direction is parallel to
one (or several) coordinate planes is not considered. Restricting
N_SUB_VOXELS to 2 also allows to simplify code for ray
switching from super voxel to adjacent similarly subdivided super
voxel without any recalculation of Brosenhaim coefficients
(remain[3] and tot_remain[3] in the code above).

Octree subdivision we want to create should satisfy the following
conditions:

• every voxel should have most optimal amount of triangles;

• we do not want to create excessive subdivision. Obviously,
that it is not good if each of eight created voxels contain the
same number of triangles as the parent voxel contained;

Ray tracing algorithm with both regular recursive grid and octree
grid make use of information about triangles complanarity. Thus,
for triangles amount to be optimal, we use this information during
voxelization construction also. Grid is built as follows:
create large voxel, enclosing whole scene;
for (every voxel)
 {
 threshold = VX_THRESHOLD;
 plane_index = index of the very first voxel triangle;
 for (it = 0; it < number of triangles in voxel;)
 {
 if (plane of this triangle != plane_index)
 {
 threshold -= PLANE_WEIGHT;
 plane_index = plane of this triangle;
 }
 if (++it > threshold)
 {
 subdivide this voxel on eight subvoxels;
 break;
 }
 }
 }

Note that triangles must be sorted by planes before applying of
above algorithm. Two constants, as well as in the case of regular
grids determine subdivision process. VX_THRESHOLD is equal
to maximal number of triangles, belonging to different planes
which voxel can contain. (PLANE_WEIGHT + 1) *
VX_THRESHOLD defines number of triangles, which can
happen in voxel, provided that they all belong to single plane.

4. RESULTS
We used two scenes for tuning of key method parameters. First
one is relatively large interior scene, consisting of 97036 triangles
lighten by 39 light sources. Second is simple rectangular room
with table and chairs in the center: number of triangles is 3368, 5
lights are located by the walls. For testing ray tracing algorithm,
images of resolution 800x600 were calculated PPP(Pixel Per
Pixel), without any antialiasing. Computer used for tests is Intel
Pentium III-450.
The following statistics was obtained for recursive regular grid
method R[VOX_NTRG_THR, N_SUB_VOXELS]:

Scene1 R[10,4] R[16,4] R[22,4] R[31,4]

Rendering [min:sec] 01:54 01:54 01:53 01:56

Memory [kb] 7965.5 6280.3 5110.9 4091.6

Preprocessing [sec] 10.044 8.211 6.850 5.718

Scene2

Rendering [min:sec] 00:41 00:38 00:39 00:40

Memory [kb] 403.004 175.2 92.90 73.24

Preprocessing [sec] 0.37 0.19 0.13 0.1

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

The following statistics was obtained for octree method
O[VX_THRESHOLD, PLANE_WEIGHT]:

Scene1 O[2,15] O[4,15] O[6,15] O[8,15]

Rendering [min:sec] 02:03 02:04 02:07 02:09

Memory [kb] 16324.2 11145.8 8446.92 7003.86

Preprocessing [sec] 9.825 6.529 4.97 4.006

Scene2

Rendering [min:sec] 00:37 00:37 00:40 00:41

Memory [kb] 172.852 109.9 80.6 60.81

Preprocessing [sec] 0. 08 0.05 0.04 0.03

Above results can be interpreted as follows:
Optimal ray tracer performance in the terms of speed,
preprocessing time and memory load is achieved for regular grid
at approximately [19,4] point, for octree grid at approximately [4,
15] point.
On general complex scene regular grid algorithm is faster than
octogrid one (01:53 against 02:04). Most probably this is due to
efficient uniform grid, utilized on upper level. Such uniform grid
should save a lot of time on large, densely subdivided scenes,
where octogrid method has to perform a lot of descending-
ascending operations. To check this hypothesis, we disabled
creation of uniform upper level grid in R[19,4]:

 Rendering
[min:sec]

Memory
[kb]

Preprocessing
[sec]

Scene1 02:08 5759.0 7.911

Scene2 01:45 127.16 0.14

Another interesting experiment was to try R[x,2] instead of
R[x,4]. Optimum VOX_NTRG_THR for N_SUB_VOXELS = 2
happened to be 19, as well as for N_SUB_VOXELS = 4:

 Rendering
[min:sec]

Memory
[kb]

Preprocessing
[sec]

Scene1 02:08 3107.6 5.44

Scene2 01:40 75,12 0.11

Above timings show that for faster ray tracing one should use
either general regular grid algorithm with relatively large
N_SUB_VOXELS (more or equal to 4) or specialized octree
algorithm, which allows quite fast grid descending-ascending.
On the little scenes with large amount of flat surfaces (like
Scene2), our octogrid method wins a little in rendering time
(00:37 against 00:38) and has a solid lead in terms of
preprocessing time and memory load. Most probably, this is due
to a little bit more intelligent treatment of complanar triangles.
In the future we are going to implement a ray-tracing algorithm,
which gathers advantages of both methods for implementation of
most efficient RTM. Most probably it should be a regular grid
algorithm with intelligent treatment of complanarity information
and with voxels traversing, optimized for N_SUB_VOXELS = 2.

5. ACKNOWLEDGMENTS
We acknowledge the support in part of the Russian Foundation
for Basic Research under a grant entitled "Physically accurate
solution of global illumination analysis" (98-01-00547).

I would like also to thank my colleague Vladimir Volevich for
great help and assistance in implementation of ray tracing system
and for useful conversations, resulted in many good ideas.

Also I acknowledge Integra Inc. for assistantship in benchmarks
and comparisons I performed.

6. REFERENCES
[1] Parker S., Martin W., Sloan P.-P., Shirley P., Smits B., and
Hansen C., "Interactive Ray Tracing". In Interactive 3D, April
1999.
[2] Smits B., "Efficiency issues for Ray Tracing". Jounal of
Graphics Tools, Vol. 3, No. 2, pp.1-14, 1998
[3] A.S.Glassner. "Space subdivision for fast ray-tracing", IEEE
C.G. & A., 4(10) pp 15-22 1984.
[4] A.Fujimoto, T.Tanaka and K.Iwata. "Arts: Accelerated Ray-
tracing system", IEEE C.G. & A., pp 16-26 1986.
[5] D.Jevans and B.Wyvill. "Adaptive voxel subdivision for ray-
tracing", in Proc. of Graphics Interface '89 pg 164 (June 1989).
[6] E. Jansen and W. de Leeuw. "Recursive ray traversal", Ray
tracing News 5(1) 1992.
[7] E. Jansen. "Comparison of ray traversal methods", Ray
tracing News 7(2) 1994.
[8] F. Cazals, G. Drettakis, and C. Puech. “Filtering, Clustering
and Hierarchy construction: a new solution for ray tracing
complex scenes”, Computer Graphics Forum, Vol. 14 No. 3,
1995.
[9] S. Klimaszewski W. Sederberg “Faster Ray Tracing Using
Adaptive Grids” IEEE Computer Graphics and Applications , V.
17 N.1, 1997.

About the author
Kirill A. Dmitriev is the PhD student of Keldysh Institute of
Applied Mathematics RAS Moscow, Russia.
E-mail: kadmitr@gin.keldysh.ru

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

mailto:kadmitr@gin.keldysh.ru

	1. INTRODUCTION
	2. GENERAL EFFECIENCY ISSUES.
	3. VOXELIZATION TECHNIQUES
	3.1 Uniform space subdivision
	3.2 Regular recursive grids
	3.3 Octree grid

	4. RESULTS
	Above results can be interpreted as follows:
	5. ACKNOWLEDGMENTS
	6. REFERENCES

