

A novel fast human vision adapted 3D visualization engine with an easy

main memory access.

A.F. Kornyushkin1 and S. K. Sekatskii1, 2

1Institute of Spectroscopy Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.

E-mail: korn@isan.troitsk.ru (www.isan.troitsk.ru/dls/korn)

2Institut de Physique de la MatiËre CondensÈe UniversitÈ de Lausanne, BSP, CH1015 Lausanne-Dorigny, Switzerland.
E-mail: sergey.sekatskii@ipmc.unil.ch

Abstract
A novel fast human vision adapted 3D visualization engine is
described. In accordance with the human vision peculiarities
(asymmetry between left-right and up-down oppositions,
dependence of the spatial resolution on the velocity, etc.), we
use the cylindrical coordinate system whose axis coincides with
the symmetry axis of an observer, and implement the different
rendering regimes for moving and immobile observers. Usual Z-
buffer ray casting algorithm is modified to best correspond to
this coordination system and other aspects of the problem (we
name it R-buffer algorithm). WATCOM 11 C/C++ with ASM
files language was used to write the 3D engine described, and
special attention was paid to ensure the fast and easy main
memory access. The engine enables to handle simultaneously a
great number of moving objects with different illumination and
shadow conditions, as well as to image the changes of the
objects (like car wheel tracks on the ground).

1. INTRODUCTION
Despite a large number of 3D engines, which are available now
[1], there are still the necessity to have more. This is due to the
fact that, indeed, it is difficult to imagine the ìwholly perfect
universal 3D engineî, but instead of this, each serious
visualization problem requires its own specialized and the most
suitable 3D engine (for example, see the discussion why it is
still necessary to make new 3D engines in [2]). Here we
describe a novel fast 3D visualization engine specially adapted
to the human vision peculiarities, or, to be more precise, to the
peculiarities of the human ìwhen- in- action-visionî (WIAV; the
Russian word wííiaví means “in reality”, “as it should be”, “not
an illusion”).
Usual 3D visualization engine mimics, in a sense, some kind of
a TV camera capable to film the moving objects. Then the film
taken by such a camera is shown for the spectator using the
computer monitor as a cinema theater screen (see, e. g. [3] as
well as numerous papers in SIGGRAPH or similar Conference
Proceedings or computer graphics journals). From the viewpoint
of a TV camera, there is no any difference, or “hierarchy”,
between the directions in space (no oppositions between left and
right or up and down), the movements (camera “treats” equally
all rotations, leans and linear translations) and no special
measures are taken to optimize the spatial (and color) resolution
as a function of the object velocity. The situation with the
human vision, especially with the when-in-action vision, is

completely different: for the human being an obvious
asymmetry between the left-right and up-down oppositions
exists, spatial and color resolution depends on the eye velocity
(this is especially important for the fast rotate/lean of the head),
etc.
The described 3D visualization engine takes all these
peculiarities into account, which defines its main application
fields: first of all this is the interactive simulation of the
different types of activity of the “relatively bare ñ handed”
human being (not a Formula 1 pilot!), including, among others,
such “action-like” computer games as DOOM or similar ones.

2. RENDERING AND ANIMATION
ALGORITHMS USED

In accordance with the purposes of the proposed engine, this
engine should be the most suitable to deal with the usual
movements (manipulations) of the human being carefully
observing an environment. Thus, the situation from the very
beginning can be characterized by the position and orientation
of such an observer, whose main “manipulations” are rotations
and leans of the head. Obviously, an arbitrary head movement
can be decomposed into some rotation in a horizontal plane and
some lean in a vertical plane; we can neglect translational
motion for such slowly moving observer. Indeed, in our
program we use some kind of a “threshold velocity”, and for an
observer it is forbidden to move with the velocity less than this
threshold one. This is, of course, some intrinsic limitation
imposed on the program; although, in our opinion, this is a quite
natural limitation, well corresponding to the human physiology
(see above), and this is, for sure, not a very serious one. (It is
possible to say that “minimal velocity limitation” is the only one
limitation of this 3D visualization engine, and due to this modest
limitation, we acquire a lot of much more serious
improvements).
This defines the natural selection of the most suitable coordinate
system as the cylindrical one with the axis coinciding with the
human corpse symmetry axis. For such a coordination system,
the transformation of the rendered image as a result of the
rotation/lean of an observerís head is a simple translation in the
angular or vertical directions. Thus, the changes of the
observable image can be generated by simple and ultrafast
copying of the main part of the already existing image: only the
“edge strips” of it should be recalculated (see Figs. 1 and 2). Of
course, situation is more complicated when there are moving

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

objects in the environment (each moving object decreases the
“surface” of the image which can be one to one copied), but
nevertheless there still will be a great advantage of using the
cylindrical coordinate system.

 Figure 1: Illustrating the cylindrical coordinate system and
“switching regimes” option which are used in the 3D
visualization engine. Only a part of the image needs to be
modified when processing the changes related with the moving
objects.

 Figure 2: Illustrating the fast rotate / lean option of the
engine. Only a small part of the image should be modified for
the rotations and leans of the observerís head.

The rendering and animation algorithms used can be briefly
described as follows. First, we divide the environment into the
background (immobile objects like mountains, buildings, etc.)
and moving objects (birds, space ships, etc.) which are treated
separately. Both of them are represented by the usual
triangulation scheme [3] using a 16 bit HiColor palette; each
triangle can be textured 256 different ways. Two ñ stage R-
buffer ray casting algorithm is used for the image rendering.
(This is a modification of the known Z-buffer ray casting
algorithm [3], but we deliberately use the word R-buffer instead
of Z-buffer to underline the difference between our cylindrical
coordinate system and usually used Cartesian one). R-buffer
contains an information about the distances from the objects (or
background) to the symmetry axis and is calculated using a two
ñ stage procedure: first for the background and then for the
moving objects.
A special assembler-written part of the program is using for the
fast drawing of both the objects and the background. We are
going to discuss it’s working in more details elsewhere.

In accordance with the aforementioned human vision
peculiarities, spatial resolution can be decreased for the imaging
(rendering) of fast moving objects, or for the imaging of the
whole picture when an observer moves rather fast. In our
program, we used the “switching regime” option to do this: the
spatial resolution is diminished by a factor of two when
rendering fast moving objects. This enables to keep in memory a
great number of moving objects, which is essentially larger than
such a number for the standard 3D engines without analogous
option. At the same time, all these objects can be visualized in
the full details by the standing (immobile) observer due to the
earlier described fast rotate/lean and “assembler beetle” options
of our engine.
WATCOM 11 C/C++ with ASM files language was used to
write the 3D engine described. When designing the engine,
special attention was paid on the possibility of the fast and easy
access to the main memory. To ensure this, the essential part of
the program utilizes assembler files. Instantaneous corrections
of small changes of the objects and background are preserved in
the 3D engine, which enables in particular, to break the wall or
to image the car wheel tracks on the ground. No special 3D
accelerators are required for the operation of the described
engine.

3. REFERENCES

[1] For example, the known 3D engine list located at the site
http://cg.cs.tu-berlin.de/~ki/engines.html contains more than 600
different engines (as of March 2000), and this list is, of course,
not complete.
[2] See, e. g. the January-February issue of the IEEE Computer
Graphics journal, 2000, which is fully devoted to the further
perspectives of 3D computer visualization.
[3] M. OíRurke, Principles of 3D Computer Animation, W.W.
Norton & Company, N.-Y., 1998.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

	1. INTRODUCTION

