
Rendering by surfels

Ireneusz Tobor Christophe Schlick Laurent Grisoni

[grisonijschlickjtobor]@labri.u-bordeaux.fr
LaBRI, Université de Bordeaux 1, France

Abstract

This paper studies a technique for real-time rendering of very large
environments in which the geometric primitive is not the usual
triangle but the ”surfel” (surface element). A surfel is simply a
3D discrete sample of a surface, associated with a 2D ”sprite”
corresponding to its rendering on the screen. The principle of
this technique is somewhat similar to ”point sampling rendering”
proposed by Grossman and Dally in 1998. In this paper we present
an approach that takes full advantage of common hardware abilities
for surfel manipulation. In other words, every step involved in
our algorithm is decomposed into a set of elementary operations
that can be done by hardware. A nice consequence is that one
can easily mix surfel objects and triangle objets in a scene (or
even switch from one representation to the other for a given
object, according to the viewing parameters) and still benefit
from hardware rendering of the whole scene. From that point
of view, surfel objects can be considered as a new kind of impostors.

Keywords: Image Based Rendering, Point Sample Rendering,
Impostors, Complex Environments, Level of Details.

1 Motivation

The rendering techniques implemented in almost every current 3D
graphics hardware are based on algorithm developped in the mid-
dle of the seventies: approximation of the 3D objects by a set of
triangles, projection of the triangles on the screen combined with
incremental scan-line for shading and Z-buffer for hidden parts re-
moval. When the first 3D graphics hardware architectures were de-
velopped, about 15 years ago, implementing such techniques was
obviously the optimal choice, on a quality versus cost criterion,
according to existing computer resources. But the situation has
greatly changed since the beginning of 3D graphics hardware: the
memory size of a middle class graphics workstation has approxi-
matively been scaled by a factor 250 (say, from 1 Mbyte to 256
Mbyte) while its screen resolution has only been scaled by about a
factor 2.5 (say, from 1024�768 to 1600�1200). The huge memory
increase has made it possible to manage scenes with dramatically
more triangles but as the resolution increase has been about 100
times less, the average size of the projected triangles has also dra-
matically decreased. Consequently, the main advantage of scan-line
rendering (i.e. incremental computation of the triangle inner points)
has mostly vanished, for scenes with high complexity.

Starting from that observation, a new trend calledImage-Based
Rendering(IBR, for short) has emerged within Computer Graph-
ics, in the middle on the 90s. The principle of IBR is to replace
the use of polygons by images, for the rendering of 3D scenes.
The community working on IBR has rapidly grown and the num-
ber of contributions has exploded in the last three years. It is out
of the scope of this paper to provide an exhaustive and detailled
survey, as a large number of algorithms can be gathered under the
IBR term: view interpolation [CW93, Che95], plenoptic model-
ing [LF94, MB95], flat impostors [MS95], delta trees [DMBF96],

lightfields [LH96], lumigraphs [GSC96], mesh impostors [SDB97],
nailboards [Sch97], layered depth images [SG98], point sampling
rendering [GD98], multi-layered impostors [DSSD99], etc.

In our opinion, IBR techniques can roughly be divided in two
main families. In the first one, let call itplenoptic techniques, au-
thors try to find a general solution to the problem of rendering a
scene from any viewpoint while you have only a finite set of pic-
tures of it. The main problem to solve in plenoptic techniques is to
fill the holes (i.e. the 3D points for which no information is avail-
able). The resulting algorithms are very different from usual 3D
graphics, and so can only be implemented by software, at least with
current graphics hardware. In the second familly, let call itimpos-
tor techniques, the goal is to define specific IBR techniques that
could benefit from the capabilities of existing 3D graphics hard-
ware. The general idea of the techniques proposed so far is to use
textured polygons to replace the complex parts on the scene. The
main problem to solve in impostors techniques is to avoid visible
parallax artifacts.

In this paper, we study a technique that belongs to this second
familly. The general idea is to replace a complex object by a set
of surfels(surfel elements), that are discrete 3D samples of the ob-
ject associated with a 2D ”sprite” that corresponds to its rendering
on the screen1. As a surfel object is a true 3D impostor, parallax
artifacts are automaticaly solved.

The remainder of the paper is organized as follows. Section 2
presents the surfel representation. Section 3 details the surfelization
(i.e. conversion of an 3D object into a set of surfels). Section 4
proposes the surfel collector, a specific data stucture to store surfels.
Normal quantization is also studied in detail. Section 5 presents the
results and Section 6 concludes.

2 Principle of surfels

The first use of 3D discrete samples as a rendering primitive in
Computer Graphics can be attributed to Reeves in 1983, with his
famous concept ofparticle systems[Ree83]. A particle is simply a
point in the 3D Euclidian space, combined with some additional in-
formation, such as color, density, shading or scattering coefficients.
The main advantage of particle systems is that the rendering step
become trivial: project each particle on the screen, check for vis-
ibility with Z-buffer, and finally shade the corresponding pixel by
using the color stored in the particle. Particle systems have mainly
been used as a convenient modeling primitive to generate and ani-
mate specific objects that are hard to manage by conventional geo-
metric models: fire and explosion [Ree83], waterfalls [Sim90], flu-
ids [MP89]. Original particles systems, based on what we propose
to call isotropic particles, were developped for modeling and ren-
dering volumetric models. Szelisky and Tonnesen [ST92] adapted

1Note that, after having written this paper, we discovered that a couple
of papers are going to be presented this year at Siggraph[PZvBG00, RL00],
and propose some ideas similar to the technique presented here. The main
difference between these papers and ours is that we consider surfels ob-
jects only as 3D impostors. Consequently we seek for high-speed hardware
rendering with an automated LOD scheme, rather than for high-quality soft-
ware optimization as in the other two papers.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



particle systems to surfacic models, by introducing, the concept of
oriented particles, based on work done by Reynolds [Rey87]. In
this technique, each particle represents a sample of an underlying
surface, and is associated to a 3D frame that represents the local
behaviour (normal vector, tangent plane) of this surface.

The possibility to use particles to render solid objects was first
investigated by Levoy in 1985 [LW85]. The idea he proposed was
to sample a solid object into a set of 3D points with a sufficient
density to give the visual impression of a solid object when indivual
points are projected on the screen. A similar idea was proposed by
Max [MO95] to render trees. The most complete work today on
that topic was done by Grossman and Dally [GD98].

As with plenoptic modeling, the most challenging problem with
discrete 3D points in to fill the holes that may appear between the
points. Grossman and Dally proposed a very clever solution, us-
ing a so-called ”push-and-pull” mechanism. Unfortunately, this al-
gorithm cannot benefit from current 3D graphics hardware, which
means that the whole rendering has to be done by software, which
dramatically reduces performance (about 5 frames per second for
a scene with one single object). As we want to use hardware, and
only hardware, we propose to use a cruder, but much more effi-
cient, solution in which each point is rendered using a fixed pixmap
(also called ”sprite” in the hardware graphics terminology) on the
screen. Note that there exists another common and somewhat sim-
ilar technique, called ”splatting”, mainly used in the rendering of
3D density grids [LH91]. Splatting consists in rendering each 3D
points by a polygon with a textured transparency; as it is a true 3D
rendering process, splatting is obviously much more computation
demanding as rendering of sprites.

We callsurfel, the combination of a 3D point with a rendering 2D
sprite. Before detailling in the next sections, the process we use to
manage this new 3D graphics primitive, we can briefly make some
remarks about the advantages of such a surfel-based representation:

� Every geometric model (polygonal meshes, spline patches,
implicit surfaces, CSG trees, etc) can be easily converted into
surfels. We call this processsurfelization; it is basically a
3D rasterization process. Section 3 presents two surfelization
algorithms, one based on a software 3D rasterization, and an-
other based on a set of hardware Z-buffer shots.

� Several level-of-details can be easily provided for each ob-
ject by changing the resolution of the grid before surfelization
process. According to the position of the camera, the most
interesting representation level may be loaded.

� Another interesting feature is that, for a given scene, surfel-
based objects can be mixed with classical geometric mod-
els, such as triangle meshes or spline patches, and still ben-
efit from hardware rendering. When defining a scene by the
usual scene-graphmechanism [SC92], surfel grids can be
easily included by defining a new kind of geometric node.
Thus, one can define a level-of-detail mechanism in which
one can switch from the surfel-based representation to the
triangle-based or spline-based one, when a very detailled view
is needed. From that point of view, surfel objects can be con-
sidered as a new type of impostors.

� Finally, as rendering of each individual surfel is done in con-
stant time, whatever its position, its orientation or its optical
properties, a guaranteed frame rate can be provided simply by
fixing the number of surfels to render per frame, according to
the hardware characteristics.

3 Surfelization

Figure 1 presents the simple test scene that will be used through-
out the paper. It is a sphere flake constructed using the SPD tools
[SPD], composed of 164001 triangular faces, that can be seen on
the wireframe view of Figure 2.

Figure 1: Shaded version of our test
scene.

Figure 2: Wireframe version of our test
scene.

A surfel-based representation of an object is actually a 3D grid
where each cell stores a surfel. The following data required for
rendering is associated to each surfel:

� The position of the surfel (this is implicitely given by the co-
ordinates of the cell)

� The orientation of the surfel (this is provided by a normal vec-
tor which is actually quantized as explained below).

� The optical properties of the surfel (this can be provided either
by a simple color or by an index to a table storing the different
materials of the scene)

Consequently, surfelization (which means converting a geomet-
ric model into its equivalent surfel-based representation) is basi-
cally a rasterization process which extracts the desired informations
and stores them in the corresponding grid cell. We have imple-
mented two different algorithms for surfelization.

The first one is totally implemented by software. It consists in
sampling the object at the grid resolution. In the case of implicit

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



surfaces or CSG trees, for instance, we simply evaluate the in/out
function at each cell. In the case of polygonal meshes, each polygon
is rasterized using classical scanline techniques adapted to 3D grids.

The second algorithm is much more interesting as it tries to ben-
efit from existing 3D graphics hardware to speed-up the surfeliza-
tion. Its principle is to repeatedly use hardware Z-buffer rendering
to get all the information we need. For a given camera position, we
use a first hardware Z-buffer with orthogonal projection to provide
an image of the scene. This is called thecolor bufferand is usu-
ally based on Gouraud shading (Figure 1). An alternative solution,
that we callmaterial bufferconsists in giving each pixel a constant
color (without shading) according to the material of the object it
belongs to. This material index will later be used for the rendering
of surfels.

With Z-buffer the hardware also provides thedepth buffer(Fig-
ure 3) which stores the camera to object distance for each pixel.
By combining this information with the pixel coordinates, we can
easily retrieve the 3D coordinates of each corresponding point. In a
second step, we associate to each vertex of the mesh, a pseudo-color
obtained by mapping the unit normal vector to the RGB domain (i.e.
[0; 1]3). By applying a second hardware Gouraud shading with this
configuration, we obtain what we call anorientation buffer(Fig-
ure 4) in which each pixel has got a pseudo-color corresponding to
its normal vector. Consequently, for each pixel, we easily obtain
the coordinates of the corresponding point in the scene, its color
or material index and its orientation, which are all the informations
required by the surfelization step. The coordinates are then quan-
tized to the 3D grid resolution in order to find the grid cell where
the surfel will be stored. Of course, this process only generates sur-
fels that are visible from the current camera position. To generate a
full surfelization of the scene, a multi-shot scheme based on a regu-
lar subdivision of the sphere, already described in [MO95, GD98],
can be used. Note that the parts of an object that may be hidden in
some concavities can also be captured by this harware process. The
trick is simply to fetch the Z-buffer regularly, without waiting for
the whole object to be rendered.

Depending on the rasterization, it might happen that two surfels
fall into the same voxel of the underlying grid. In such a case, the
surfel collector (see section 4) handles the collisions, and creates
an averaging surfel. When the surfels are too different (i.e. normal
pointing in different directions or different material indices), two
surfels are stored in the cell.

In every case, for each object, several surfel-based representa-
tions, using different grid resolutions, are created. In our current
implementation we store all the versions and use them to provide
an efficient LOD mechanism during rendering. Note that smooth
transition between an object at a given level of detail to the view at
an immediately coarser level is guaranteed by the fact that neigh-
boring surfels, when viewed from far enough, mix together on the
screen, resulting in the same effect as the display of a unique “av-
erage” surfel.

4 Storage of surfels

The 3D grid data structure that appears as a straightforward solution
for storing the result of the surfelization process is not used actually.
As the surfels only exist at the surface of the objects, this grid is
usually extremely sparse, so it would involve considerable memory
waste. A classical data structure to efficiently store sparse grids is
thehash table, which is particularly well-adapted to static data, as
it is the case here. We propose a hash table structure, calledsurfel
collector, that is optimized according to our specific needs.

Figure 3: Depth buffer of our test scene.

Figure 4: Orientation buffer of our test
scene.

4.1 Surfel collector

The principle of the surfel collector is to quantize every informa-
tion stored in the surfels and dispatch the corresponding bits among
the hash table key and the hash table data. Once this principle is
given, it can be tuned for any particular situation by changing the
precision of the quantization and/or the length of the hash table.
We describe here two possible implementations, a low (respectively
high) quality collector where the storage of each surfel requires 4
(respectively 6) bytes of memory.

4.1.1 Low quality collector

The quantization used in this case is 24 bits for position quantiza-
tion (which offers256� 256� 256 possible positions), 11 bits for
orientation quantization (which offers 2048 possible orientations),
and 9 bits for color or material index (which offers 512 possible ma-
terials). It means a total of 44 bits per surfel which are dispatched
as follows:

- 12 bits are extracted to generate the hash key of a 4096 en-
tries hash table. These bits are composed of the 4 less signifi-
cant bits of each spatial coordinates, which guarantees a good
shuffle for the surfels in the hash table.

- the 32 remaining bits are stored as a 4-byte word in the cor-
responding table entry. During the surfelization, table entries

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



are dynamically stored in a sorted linked lists. At the end, all
lists are converted to static arrays.

4.1.2 High quality collector

The quantization used in this case is 30 bits for position quantiza-
tion (which offers1024� 1024� 1024 possible positions), 15 bits
for orientation quantization (which offers 32768 possible orienta-
tions), and 18 bits for color or material index (which offers 262144
possible materials). It means a total of 63 bits per surfel which are
dispatched as follows:

- 15 bits are extracted to generate the hash key, of a 32768 en-
tries hash table. Those bits are composed of the 4 less sig-
nificant bits of the quantized spatial coordinates (in order to
guarantee a good suffling), associated to the 3 sign bits of the
quantized normals. See section 4.2 for details about normal
quantization process.

- the 48 remaining bits are stored as a 6-byte word in the corre-
sponding table entry.

This high-resolution version of the collector has the advantage, in
comparison to the coarser one, that one can take advantage of the
normal sign bits presence in the haskey, which can be used for a
backface culling pre-calculus.

4.2 Orientation quantization

Floating point precision is far from being necessary in every CG ap-
plications. Quantizing floating point data to a given number of bits
has been used since the early ages of computers. Quantizing point
coordinates does not present any difficulty but efficient quantization
of orientations (i.e. normal vectors) is a bit harder. Grossman and
Dally [GD98] briefly mentionned orientation quantization, but did
not describe their solution in detail. Deering [Dee95] addressed the
general problem of orientation quantization and presented a method
that takes full advantage of the symmetries involved. His method
presents the drawback to have a linear complexity in term of possi-
ble quantized values: all possible dot products between the normal
and the quantized values are evaluated, and the maximum defines
the correct sample. Moreover, this technique involves expensive
trigonometric functions.

Our choice is slightly different: we consider the octahedron join-
ing the six points on the coordinate axis at a unit distance from
the origin. Starting from this octahedron, we first reduce the sam-
pling problem to the first octant by taking advantage of the sphere
symmetry (i.e. we first extract the 3 sign bits of the normal). The
sampling is done by recursively subdividing the triangle into 4 new
smaller ones, and fairing the newly created mesh so that the new
vertices were on the sphere (see Figure 5), which can straightfor-
wardly be done by dividing the vector by its norm. When the whole
approximating mesh is settled, the orientation samples are simply
defined as the normal vectors of each triangle. Once the sampling
is created, there are two problems to solve:

� First, how to store the precalculated normal values? Here,
the hierarchical structure of the approximating mesh is used.
Each triangle is assigned an integer value, which corresponds
to its place in the quadtree hierarchical structure created dur-
ing the mesh creation. In other words, for each subdivision
level, each new triangle is assigned an integer number which
is made by concatenating its father’s index and two addition-
nal bits that define its location in the current level. Figure
6 presents the beginning of this construction. When all the
mesh is processed, the normal vectors are stored in a one di-
mensional array ordered by these indices. In comparison to

Figure 5: Normal sampling scheme, based on a octahedron. This
scheme can be reproduced recursively at will in order to produce as
fine a sampling as needed.

0

0+0

0+1

0+2

0+3

...
0+0

0+1

0+2

0+3

2+0

4+3

4+0

4+1

4+2

6+0

6+1

6+2

6+32+1
2+2

2+3

Figure 6: triangle index calculus process.

Deering’s method, we do not need trigonometric functions,
which produces faster evaluation.

� Second, how to assign a quantized orientation to a floating
point normal vector? This problem can be formulated in an-
other way: given a non-quantized normal, how to find the tri-
angle the normal belongs to. The hierarchical structure of the
approximating mesh is again taken into account in order to
achieve this search. The trick is first to look for the coarsest
solid angle of the hierarchy the normal belongs to. This, from
an algorithmic point of view, corresponds to the question to
know if a point lies within a pyramid, and is a classical ques-
tion in computational geometry. Once this coarsest triangle is
determined, the search can recursively go on to the triangle’s
sons, until we reach the finest definition of the approxima-
tion mesh. The normal vector is then assigned the quantized
orientation corresponding to the triangle. The complexity of
this sampling algorithm isO(logn), n being the number of
triangles constituting the sampling of the octant, which is to
be compared to theO(n) complexity of Deering’s sampling
algorithm.

It can also be noticed that, if the user really wants to save mem-
ory, our method can still be used without storing the normal vector
look-up table. As the algorithm recovering the quantized orienta-
tion from its associated index is rather efficient, recomputing them
on-the-fly is not that expensive.

4.3 Advantages of surfel collector

One nice feature of the surfel collector data structure is that it is
really straigthforward to implement, and easily adaptable to any

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



given particular application. It should be noted that our current im-
plementation quantizes the (x,y,z) coordinates of the surfel position
which leads to an implicit underlying cartesian grid. But one may
also imagine to quantize cylindrical or spherical coordinates; the
hash table does not mind about the meaning of the bits it crunches.
Another advantage of this collector is point shuffling. When points
are sequentially extracted from the collector, they are shuffled all
over the sampling space. As a result, a sequential extraction will
generate a display that does not follow any obvious logical organ-
isation. This structure hence naturally fits real-time applications,
where the amount of time per image rendering is limited: a simple
algorithm displaying as many points as possible, until the time is
over, will allow the user to see the general shape of the scene, no
matter how complex it is.

5 Results

Figures 7 to 12 show the results we obtain by converting and ren-
dering our test scene as surfels. Figures 7 and 8 shows the view ob-
tained from the same camera position and the same picture size (i.e.
512x512) as Figure 1, when representing each surfel as a one single
pixel. Figure 7 (resp. 8) uses a1283 (resp.2563) quantization for
coordinates. Figure 9 (resp. 10) shows the same view as Figure 7
(resp. 8) by using a 4x4 (resp. 2x2) square sprite per surfel. When
using OpenGL [Ope], this is simply obtained by a call to the func-
tion glPointSize. Thanks to the hardware, the rendering time
is exactly the sameas with the 1x1 pixel view. Note that the shading
of the squares is obtained by applying the hardware shading model
with the quantized normal vector. In our current implementation,
selecting the size of sprite is done on a per-object basis, simply by
comparing the size of the projected bounding box of an object with
the surfel density. Of course, better adaptive schemes may be em-
ployed.

Figure 11 (resp. 12) shows again the same view with a 4x4 (resp.
2x2) sprite, but this time, the hardware antialiasing capability has
been activated. The rendering time we obtain is almost equivalent
to the previous ones. Depending on the material, this antialiasing
is done either by drawing a flat disk instead of a square (this is the
case on the pictures shown here), either by using a true antialised
disk including partial tranparency. Note that partial transparency
is a bit more expensive as it requires multipass rendering to avoid
“false ordering” artifacts [RL00].

Figure 13 to 16 show another view of the scene, obtained by
getting closer to the left part of the sphereflake. Figure 13 shows
the result obtained with shaded polygons, Figures 14 to 16 is the re-
sult with 1x1 pixel, 5x5 square and 4x4 disk respectively. Of course
with such a close view, the surfel representation should theoretically
not be used and one should switch to the polygonal representation.
But we wanted to show that even so, the result is quite acceptable,
especially if you consider this image as a part of an animated se-
quence.

Finally, to test the usability of the surfel representation in large
environments, we have generated an animation showing 4 sphere-
flakes flying around the camera. As each sphere is composed of
about 164000 polygons, The polygonal version of the scene is com-
posed of 656000 triangles. It can be rendered with a framerate
of 0.5 frames per second. The surfel version uses a surfel collec-
tor with 5 level-of-details automatically generated and can be ren-
dered at 10 frames per second on the same workstation (an Onyx2
computer, with InfiniteReality videocard). The shereflake model
doesn’t take advantage of the LOD algorithms, that are known to
work well on spheres: we chose not to use those techniques because
in the general case, such a scheme would involve tricky implemen-
tation in the animation working frame, which is to be compared to
the immediate surfel application.

Figure 7: Visualisation using surfels of
screen size 1 based on a1283 grid.

Figure 8: Visualisation using surfels of
screen size 1 based on a2563 grid.

6 Conclusion and future work

In this paper, we studied a technique for real-time rendering of very
large environments in which the geometric primitive is not the usual
triangle but the ”surfel” (surface element), a 3D discrete sample of
a surface, associated with a 2D ”sprite” corresponding to its render-
ing on the screen. The main feature of this technique is to account
of the capabilities of current graphics hardware as every step is de-
composed into a set of elementary operations that can be done by
hardware. A nice consequence is that one can easily mix surfel ob-
jects and triangle objets in a scene and still benefit from hardware
rendering of the whole scene. From that point of view, surfel ob-
jects can be considered as a new kind of impostors. We presented
compact and efficient data structure for surfels, as well as a quanti-
zation normal technique, that allows efficient retrieval, without the
use of look-up table.

We are currently investigating several extensions of the tech-
nique. In order to provide surfels with full LOD ability, it would
be of high interest to have a structure that stores a “wavelet-like”
implementation of surfels, that is, a recursive structure being com-
posed of a coarse version and additional details, permitting to re-
construct finer surfels when needed. In addition to that, it is impor-
tant to find a general solution to deal with the mixing of surfels for
LOD representation, and anti-aliasing respect.

Currently, the surfelization is done on a per object basis. So,
during the rendering, one switches between full polygon and full

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



Figure 9: Visualisation using surfels of
screen size 4 based on a1283 grid.

Figure 10: Visualisation using surfels
of screen size 2 based on a2563 grid.

surfel representation of an object, according to the viewing pa-
rameters. One can imagine, a hierarchical surfelization principle,
where only parts of an object can be surfelized (e.g. surfels for
the small spheres, polygons for the large ones, in the sphereflake
test scene). Similarly, clusters of objects could easily be surfelized
as a whole, and of course this can be generalized to hierarchies of
clusters. Another direction that we are investigating is to use sur-
fels as a modeling primitive, in the same spirit as particle systems
[Ree83, MP89, ST92, WH94].

References

[Che95] E. Chen. Quicktime - an image-based approach to vir-
tual environment navigation.Proc. of SIGGRAPH 95,
pages 29–37, 1995.

[CW93] E. Chen and L. Williams. View interpolation for im-
age synthesis.Proc. of SIGGRAPH 93, pages 279–
285, 1993.

[Dee95] M. Deering. Geometry compression. InProc. of Sig-
graph’95, pages 13–20, 1995.

[DMBF96] W. Dally, L. MacMillan, G. Bishop, and H. Fuchs.
The delta tree: An object centered approach to ibr.
Tech. Report Artificial Inteligence 1604, 1996.

Figure 11: Visualisation using surfels
of screen size 4 based on a1283 grid,
combined with OpenGl anti-aliasing
ability.

Figure 12: Visualisation using surfels
of screen size 2 based on a2563 grid,
combined with OpenGl anti-aliasing
ability.

[DSSD99] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey.
Multi-layered impostors for accelerated rendering.
Proc. of EUROGRAPHICS’99, pages 231–242, 1999.

[GD98] J. P. Grossman and W. J. Dally. Point sample render-
ing. InProceedings of the 9th Eurographics Workshop
on Rendering, pages 181–192, 1998.

[GSC96] S. Gortler, R. Szeliski, and M. Cohen. The lumigraph.
Proc. of SIGGRAPH 96, pages 43–54, 1996.

[LF94] S. Laveau and O. Faugeras. 3d scene representation
as a collection of images and matrices.Tech. Report
2205, 1994.

[LH91] D. Laur and P. Hanrahan. Hierarchical splatting: A
progressive refinement algorithm for volume render-
ing. In Proc. of Siggraph’91, pages 285–288, 1991.

[LH96] M. Levoy and P. Hanrahan. Light field rendering.
Proc. of SIGGRAPH 96, pages 31–42, 1996.

[LW85] M. Levoy and T. Whitted. The use of points as a dis-
play primitive. Tech. Report 85-022, 1985.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



Figure 13: Close view on shaded origi-
nal object.

Figure 14: Close view on the same
area as on Figure 13, but using surfels
of screen size 1 and grid of resolution
2563.

[MB95] L. MacMillan and G. Bishop. Plenoptic modeling: an
image based rendering system.Proc. of SIGGRAPH
95, pages 39–46, 1995.

[MO95] N. Max and K. Ohsaki. Rendering trees from pre-
computed z-buffer views.Proc. of 6th Eurographics
Workshop on Rendering, pages 45–54, 1995.

[MP89] G. Miller and A. Pearce. Globular dynamics: A con-
nected particle system for animating viscous fluids. In
Proc. of Siggraph’89 (course 30 notes), pages 1–23,
1989.

[MS95] P. Maciel and P. Shirley. Visual navigation of large
environnements using textured clusters.Proc. of Sym-
posium on Interactive 3D Graphics, pages 95–102,
1995.

[Ope] Opengl, http://www.opengl.org.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and M. Gross.
Surfels: Surface elements as rendering primitives. In
Proc. of Siggraph’2000, 2000.

Figure 15: Close view on the same
area as on Figure 13, but using surfels
of screen size 5 and grid of resolution
2563.

Figure 16: Close view on the same
area as on Figure 13, but using sur-
fels of screen size 4 and grid of resolu-
tion 2563, combined with OpenGl anti-
aliasing ability.

[Ree83] W. Reeves. Particle systems: A technique for model-
ing a class of fuzzy objects. InProc. of Siggraph’83,
pages 359–376, 1983.

[Rey87] C. Reynolds. Flocks, herds and schools: A distributed
behaviour model. InProc. of Siggraph’87, pages 25–
34, 1987.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: A multires-
olution point rendering system for large meshes. In
Proc. of Siggraph’2000, 2000.

[SC92] P. Strauss and R. Carey. An object-oriented 3d graph-
ics toolkit. In Proc. of Siggraph’92, pages 341–349,
1992.

[Sch97] G. Schaufler. Nailboards: a rendering primitive for
image caching in dynamic scenes.Proc. of 8th Eu-
rographics Workshop on Rendering, pages 129–136,
1997.

[SDB97] F. Sillion, G. Drettakis, and B. Bodelet. Efficient im-
postor manipulation for real-time visualization of ur-

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/



ban scenery. Proc. of EUROGRAPHICS’97, pages
207–218, 1997.

[SG98] J. Shade and S. Gortler. Layered depth images.Proc.
of SIGGRAPH 98, pages 231–242, 1998.

[Sim90] K. Sims. Particle animation and rendering using data
parallel computation. InProc. of Siggraph’90, pages
405–413, 1990.

[SPD] Spd tools, http://www.acm.org/pubs/tog/resources/spd/overview.html.

[ST92] R. Szeliski and D. Tonnesen. Surface modeling with
oriented particle systems. InProc. of Siggraph’92,
pages 185–194, 1992.

[WH94] A. Witkin and P. Heckbert. Using particles to sample
and control implicit surfaces. InProc. of Siggraph’94,
pages 269–278, 1994.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/


