Pessimistic Threaded Delaunay Triangulation

by Randomized Incremental Insertion

Ivana Kolingerova', Josef Kohout

Department of Computer Science and Engineering, University of West Bohemia

Pilsen, Czech Republic

Abstract

Delaunay triangulation is one of the most popular triangulations
and many algorithms for its construction has been developed,
some of them also for parallel environment. However, most of the
existing parallel solutions are intended for higher degree of
parallelism; they are relatively effective but complicated. This
paper describes simple parallel algorithm suitable for lower
degree of parallelism, namely for workstations with 2-8
processors. Algorithm works with one shared triangulation,
therefore, no expensive divide or merge phases are necessary. It is
conceptually simple as it is based on well-known incremental
insertion method.

Keywords: Computer Graphics, Computational Geometry,
Triangulation, Parallelization

1. INTRODUCTION

To triangulate a set of points in the plane is often solved task as
triangulations are used in many areas, such as computer graphics
and computational geometry, mathematics, robotics, natural
sciences. Usual requirements on triangulation are good shape of
triangles (as equiangular as possible) and efficient computation.
Both is fulfilled by Delaunay triangulation which produces the
most equiangular triangles of all possible methods and can be
computed in O(n log n) in the worst case; algorithms running in
O(n) expected time also exist [14]. Good survey and evaluation of
existing methods can be found in [24, 22].

No wonder that efficient construction of Delaunay triangulation
is one of the problems that are tried to be solved also in parallel
and distributed environment and new solutions are developed.

In the past, parallel processing was possible only on special
architectures, expensive and not widely accessible. The situation
has changed nowadays as workstations with two processors
become more and more often and not too expensive. Also
architectures with 4, 8 processors are relatively available. These
types of computers in hands of wider computer community mean
that at least limited degree of parallelism is nowadays accessible
to much wider group of computer people than used to be. This
increases hunger for good and simple parallel solutions, suitable
for low number of processors while in the past, solutions for large
number of processors were preferred.

This paper suggests a very simple parallel solution for Delaunay
triangulation intended for low number of processors (two to
eight). The suggested approach is based on the randomized
incremental insertion algorithm. Results of implementation and

experiments done on Windows NT are shown and pros and cons
of the proposed approach presented. Research directions for the
future are suggested.

The paper is divided as follows. Section 2 defines Delaunay
triangulation and surveys main parallel achievement on this topic.
Section 3 describes serial version of incremental insertion and the
proposed parallel version. Section 4 presents results of
experiments and discussion. Section 5 concludes the paper.

2. STATE OF THE ART IN PARALLEL
DELAUNAY TRIANGULATION

[Def.2.1: Triangulation]

A triangulation 7(P) of a set of points P in the Euclidean plane is
a set of edges E such that

1. no two edges in E intersect in a point not in P
2. the edges in E divide the convex hull of P into triangles.

[Def.2.2: Delaunay triangulation]|

The triangulation 7(P) of a set of points P in the plane is a
Delaunay triangulation of P if and only if the circumcircle of any
triangle of 7(P) does not contain a point of P in its interior.

Parallelizing Delaunay triangulation is not easy as each point may
influence the whole triangulation. If each processing element (PE)
knows only part of the input set, constructed parts of triangulation
are not completely Delaunay and has to be corrected as a post-
processing. Generally, divide and conquer (D&C) type of methods
are considered most proper to parallelization. There are two ways
how D&C in DT(P) is done: either simple partition and difficult
merge or vice versa. Therefore, either merging phase or
subdivision phase is complicated and inherently serial. If
parallelized, too, it substantially increases inter-processor
communication.

Let’s survey now what has been done on the topic of Delaunay
triangulation.

Theoretical parallel algorithms appeared in [1, 8, 26, 21, 15].
Efficient parallel implementations are described in [20, 7, 25, 23],
very often they depend on uniform distribution as they utilize
bucketing techniques.

[1] was the first one to present a parallel version of the merge
phase at the expense of algorithmic complications and decreased
efficiency.

In [9], the given point set is partitioned into strips of the same
size, each strip is allocated to one coarse-grained PE. Partial

! This work was supported by the Ministry of Education of The Czech Republic - project VS 97 155 and project GA AV A2030801

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

triangulations are then pairwise joined. This solution achieved
acceleration 4.09-5.07 on 8 PE.

[2] provided another attempt using incremental construction;
however, speedup on many-processor computer was only about 2.

DT(P) can be also computed over Voronoi diagram or over 3D
convex hull (recall that Voronoi diagram is a dual structure to
Delaunay triangulation and 3D convex hull is over inversion or
over projection onto paraboloid transformable into 2D Delaunay
triangulation). Parallel solution for these problems can be found
in [13, 18, 19, 10, 6, 21, 12, 15].

Very interesting is [7]. It solves DT(P) in 3D; however, the
method can be used also in the plane. It provides an interesting
and simple modification of D&C algorithm: instead of usual
merge phase at the end of computation, it builds the boundary part
of triangulation first. It has advantage of avoiding changes at the
end of partial triangulations and avoiding mutual waiting of PEs
for merge phase. However, practical results are not too good due
to load imbalance (individual tasks are of very different size).
Achieved acceleration was from 1.7 up to 3.35 for 2 to 16 PE. As
for 2 PE the algorithm provides reasonable speedup (1.7) and is
conceptually simple, it would be one of good possibilities for low
number of processors. Parallel efficiency decreases from 85% for
2 PE to 20% for 16 PE (for 8000 points). Let’s recall that these
results pay for 3D triangulation.

[7] offers one more parallel solution — the bounding box of the
given pointset is partitioned into rectangular regions, each of them
is triangulated by incremental insertion algorithm. Each PE has
access to the whole input point set; therefore, there are no errors
on the boundary between regions. Triangles on the boundary
between two regions are constructed by two PE and sequentially
eliminated at the end. For » = 10 000, speedup achieved is from
1.74 to 19.2, efficiency from 87% to 30% for 2 to 64 PE.

D&C partition is in an interesting way solved in [4]
(implementation and further improvement in [17]) with the use of
3D convex hull. Input points are divided into two groups by the
vertical line in median in x-coordinate. Separating line is then
substituted by Delaunay edges obtained over projection into
paraboloid and convex hull approach. This a bit complicated work
is outbalanced by the fact that no triangulation changes in merge
phase are necessary. Although called ‘practical’, the algorithm
seems a bit too complicated. Algorithm needs about twice as
many floating point operations as Dwyer’s serial D&C algorithm
[11]. [17] combines this algorithm with efficient existing serial
triangulation implementation [22]. Running time is equal to
(n log n)(k1+k2*log P1)/P where P is the number of processors.
From the resulting graphs, speedup about 1.6 to 1.7 for 2 PE, 3 to
4 for 8 PE can be derived. The implementation was tested on three
different architectures and results were alike. Parallel efficiency
(percentage of perfect speedup over good serial code) is for big
data sets more than 50% while previous implementations of
DT(P) had mostly less than 20%.

3. NEWLY PROPOSED SOLUTION

As described before, the proposed solution was developed for
low-number-of-processors workstations. Therefore, efficiency and
simplicity are preferred to scalability. Architecture with shared
memory is supposed.

The incremental insertion algorithm is used as a basis for the
parallel solution. Besides good qualities and behaviour of this

algorithm in sequential version, we have for this decision reasons
as follows:

Most of existing techniques are more or less based on D&C
technique. Although it looks completely rational, DT(P) problem
does not scale well as after partition by vertical and horizontal
lines, size of the next task is about one half of previous which
causes poor balancing. If partition is done into equally sized strips
or areas, it is sensitive to uniformity of points. Changes of
triangles on the boundary of subareas or elimination of twice
computed triangles are unavoidable. Our idea is to let work all the
PEs on the whole area, on one triangulation and to ensure that
they do not make inconsistent transactions with the shared data
structure (such as modifying the same triangle at the same time).
Such a strategy could not work for higher number of processors
where probability of collision could be high; however, for small
number of PE and high number of input points collisions are not
too probable and can be avoided.

Before we will explain the proposed parallel solution, let’s
describe serial version of randomized incremental insertion
algorithm. For this presentation, we will mostly use description in
[3].

At the beginning of the triangulation, all points of P are enclosed
into a big triangle. Then the points are inserted one at a time and
the triangulation is updated with each insertion. At the end, the
three added vertices of the starting big triangle and all edges and
triangles incidating with them are removed. If the points were
chosen “far enough away”, result of this operation is the
triangulation of the convex hull of P. Proper choice of these
points will be explained later.

Let’s describe what happens when a point is inserted. The triangle
containing the point has to be found and subdivided into three
new triangles, see Fig. 1a). The case when the new point lies in
some existing edge must be distinguished and two neighbouring
triangles have to be divided, see Fig. 1b). As the resulting
triangulation after point insertion may not be Delaunay, edges of
the new triangles have to be checked over empty circumcircle test.
If the edge is not legal Delaunay’s, it is flipped, see Fig. 2.

a) Point inside the triangle b) Point on the edge

Figure 1: Point insertion

a) The thick edge fails the test b) After edge flip

Figure 2: Delaunay test of the edge

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

The changes may spread to all triangles whose circumcircles
contain the newly inserted point. Instead of testing this condition,
the triangle tests are propagated recursively as a wave from the
newly inserted point until no change in the given direction is
necessary, see example in Fig. 3a).

T To T3

ppk T nn
=S

O O

T4 T5
. T T T3
O O
O
T4 Ts Q Q
T6 T7
a) Flips b) Corresponding DAG

Figure 3: Propagation of edge flips

The whole algorithm is formulated in Fig. 4, Legalize edge
procedure in Fig. 5.

We postponed explanation how to pick the vertices for the starting
triangle. The points should be far away not to influence the
circumcircles of the triangles in DT(P). Actually, for this purpose
they should be “infinitely far away”. However, if they are too far
away, they may cause numerical inconsistences as their
coordinates are very different from those of P which may lead to
ill-conditioned determinants. We took over the idea from [3] to
place the points in mutual position as in Fig. 6 (dark box is the
minmax box of P). Recommended position of the points in [3] is
(K,0), (0,K) and (-K,-K) where K = 3*size of the minmax box.
According to the results of our implementation, such points may
not be far enough and sometimes, after removal of outside
triangles, some convex hull edge is missing. We use K=10M
instead.

procedure Delaunay_triangulation
Input: Aset P = {p;,i=0,1,...,n-1} of n points in the plane
Output: A Delaunay triangulation of P DT(P)

1. begin
2. Find three outside points p_i, p2, p_3;
3. DI(P) = [pp2p;l:
// Initialize DT(P) on the big triangle
4. Compute a random permutation of py, py, ..., Pn1 f P;
5. forr:=0ton-1do
6. begin // insert p, into DT(P)
7. Locate the triangle pipjpx € DT(P) containing p;.
8. if p, lies inside the interior of p;p;pi then
9. begin
10. Add edges from p; to the vertices of p;p;p
and subdivide p;pjpyinto three triangles;
11. Legalize_edge (p,.pip;,DT(P));
12. Legalize_edge (p,.pip.DT(P));
13. Legalize edge (p; ,pwp:,PT(P))
14. end
15. else
16. begin // p, lies on the edge of the pip;px, say pip«
17. Add edges from p, to p;and to p;,
the third vertex of the other triangle sharing p;py_
and subdivide two triangles sharing p;py
into four triangles;
18. Legalize_edge (p,.pip;,DT(P));
19. Legalize_edge (p,.pip.DT(P));
20. Legalize edge (p; ,pxp,PT(P));
21. Legalize edge (p;,pip,DT(P))
22. end
23. end;
24. Remove p.;, po, p-3 and all the incidating triangles
and edges from D7(P)
25. end

Figure 4: Delaunay triangulation by randomized incremental
insertion

procedure Legalize_edge (p. .pip;,7);
Input: The inserted point p,,

the flipped edge pip;,

the triangulation 7’
Output: The modified triangulation 7'

1. begin
2. if pp; is illegal then
3. begin
/I pippx is the triangle sharing the edge pip; with p.pip;
// flip the edge
Replace pip; by the edge p.px
Legalize_edge (p;,pipi. 1)
Legalize_edge (p..p«p;,7)
end
end

P NN

Figure 5: Legalize edge procedure for algorithm in Fig. 4

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Figure 6: To the choice of the starting triangle

The key question in this algorithm is quick detection of the
triangle containing the inserted point. We used an approach from
[3] where triangles are kept in directed acyclic graph (DAG) — in
this case, it is a tree with the history of insertion. Each node
corresponds to a triangle; when the triangle is subdivided or
flipped, the node gets sons corresponding to newly created
triangles, see Fig.3a), b). Thus DAG contains the current
triangulation in leaves, “big” triangle being the root. Location of
the inserted point is in this data structure possible in O(log n)
expected and O(n) worst time (worst time happens when the tree
is unbalanced — due to randomization, such a situation is highly
improbable.)

The algorithm is not worst-case optimal as it has O(r’) time
complexity in the worst case; however, its expected complexity is
O(n log n). Memory complexity is O(n) [16].

We implemented this algorithm in Delphi 3 on Windows NT.
Results for uniform, normal, cluster and grid data, average for 5
data sets, are shown in Table 1 and Fig. 7. Due to randomization,
non-uniform data are not a problem. (It can be seen in the graph
that for cluster or grid type of data, runtimes are even lower.)
After some work with this algorithm, we must appreciate its
relative robustness in comparison with some other solutions -
numerical inaccuracy may cause that some triangles whose
vertices are nearly in singular position are not Delaunay, but the
triangulation as a whole is all the time consistent, no gaps, no
mutual covers of triangles. When we worked with incremental
construction type of algorithm (to the given edge, the nearest
point fulfilling Delaunay condition is searched), such artifacts
were quite often for big number of points. Also runtimes are
relatively good, although in references [24, 17 etc.] Dwyer’s
D&C type of algorithm [11] is evaluated to be the fastest.

n t_unif t_norm t_grid t_clus
[s] [s] [s] [s]

100 0.006 0.012 0.003 0.010

500 0.031 0.041 0.031 0.040

1000 0.090 0.087 0.069 0.088

5000 0.516 0.516 0.403 0.522

10 000 1.112 1.131 0.891 1.113

50 000 6.544 6.594 5.403 6.506
100 000 14.000 14.122 11.644 13.653
500 000 86.556 86.000 71.140 77.812
1000000 | 193.747 193.153 151.003 158.790

Table 1: Serial algorithm runtimes in sec for various input points
distribution: uniform, normal, points on the regular grid, points in
clusters. Computed on Dell Precision 410 (2x Pentium III,
500 MHz, 1 GB RAM)

200

Runtime
150 of the serial algorithm)A(
s
2 100
——t_unif
—#—1t_norm
50 - - - 4 - -t_grid
— X — t_clus
0 T 1
0 500000 1000000
n

Figure 7: Runtimes of the serial randomized incremental insertion
algorithm for various types of input data (t_unif and t norm are
not distinguishable)

Figure 8 shows how the runtime is spent percentually in main
parts of the algorithm. It can be seen that most of the time is
needed for point location. The shortest time is 50% of the total for
n =100, the biggest value is 64.5% for n = 500000, average being
58.9%). Therefore, parallel algorithm oriented on speeding up of
the location part may expect up to 60% acceleration.

100% -

75% -

50% -

25% -

0% -
1 2 3 4 5 6 7 8 9
M location O subdivision
Olegalization Oother

Figure 8: Percentage of the runtime occupied by the main parts of
the serial algorithm for uniform data, » = 100, 500, 1000, 5000,
10 000, 50 000, 100 000, 500 000, 1 000 000

Let’s proceed with the possibilities to parallelize this method. As
stated before, we expect an architecture with small number of PEs
and shared memory. We will keep the whole triangulation in one

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

shared DAG. Computation will be partitioned among threads’.
One PE will usually run one thread. (More then one thread on one
PE is possible but not too useful.) The input point set P will be
divided among threads and each thread will insert its subset of
points into the triangulation. The consistency of the triangulation
has to be protected to prevent the situation that the same triangle
is accessed at the same time by more than one thread. There are
three possible ways:

1. Pessimistic method

At the beginning, each thread obtains a set of input points to
insert them independently. Threads are allowed to locate the
inserted point to the last but one level of the DAG - up to the node
whose immediate sons are leaves. Last step of the location —
location in DAG leaves, triangle subdivision and edge legalization
are done in critical section, i.e., only one thread has access at the
same time.

2. Optimistic method

Threads have the same job as in pessimistic method; however,
DAG is not protected as a whole but only the triangles that should
be subdivided or edge-flipped are locked. If a thread locates the
point to the triangle which is locked by someone else it has to wait
in critical section until the operation is finished and the triangle is
unlocked again.

This method may cause deadlock by mutual waiting of threads.
The problem can be solved by deadlock detection and by
priorities — the thread with lower priority gives up the operation.

3. Batch method

Threads only locate the point in DAG, they do not subdivide
triangles and do not legalize edges. Last level of search,
subdivision and legalization are done by one specialized thread.
Tasks are stored in shared memory.

What are pros and cons of these approaches ? Pessimistic method
is very simple and can be done fully with the tools present in
classes in the libraries available in today’s compilers (in our case,
Delphi and Visual C++). Its disadvantage is that it is too careful —
it disables modification of all the triangles, although most of them
is free. On the other hand, location is the main time consumer of
the incremental insertion, recall Fig. 8, so even pipelining of
search part may bring some speedup.

Batch method is the most safe as all DAG modifications are done
by one process. Problem can be that this method expects much
longer time for search than for DAG modification. If it is not so,
the queue of tasks will be choked and locating threads will have to
wait for the specialized one. Another problem is proper size of the
queue; with increasing size, probability of waiting is lower at the
beginning but at the same time, the task in queue may become
partly inactual — i.e., it may want to work with the triangle which
is not the leaf any more. Such a task means longer work for the
specialized thread and longer waiting time for other threads.

2 When an application is run, it is loaded into memory ready for
execution. At this point it becomes a process containing one or
more threads that contain the data, code and other system
resources for the program. A thread executes one part of an
application and is allocated CPU time by the operating system.
All threads of a process share the same address space and can
access the process’s global variables [5].

Optimistic method looks most promising and most difficult to
program as it needs to insert special semaphors into DAG nodes
and deadlock handling into process administration.

Of these three possibilities, we chose the pessimistic method as
most simple to start with. According to experience with this
solution, we can continue in the future to more difficult, but
probably more efficient optimistic method.

Algorithm of the pessimistic method is in more details given in
Fig. 10.

Master thread:
Input: Aset P = {p;,i=0,1,...,n-1} of n points in the plane
Output: A Delaunay triangulation of P DT(P)

1. begin
. Find three outside points p_;, p-, p.3;

3. DT(P) =[p.p2psl:
// Initialize DT(P) on the big triangle

4. Compute a random permutation of pg, py, ..., Pu1 Of P;

5. Subdivide P into m subsets where m is the total number
of worker threads;

6. Start all worker threads and wait until finished;

7. Remove p_i, p.o, p.; and all the incidating triangles
and edges from DT(P)

8. end

Worker thread:

Input: A set Pt= {p;, i=0,1,...,n,-1} of n, points in the plane,
P,cP

Output: Modifies the shared D7(P)

1. begin
2 for r ;=0 to n,-1 do
3. begin // insert p, into DT(P)
4 Start to locate in DAG the triangle
on the level of leaves® parents containing p, ;
if any thread working with leaves exists then wait;
Enter critical section; // start of work with leaves
7. Finish location on the leaf level
and find the triangle pipjpx € DT(P)
containing p;;

SN

8. Subdivision and legalization; // see Figs. 4, 5
9. Leave critical section; // end of work with leaves
10. end

11. end

Figure 10: Pessimistic method of parallel incremental Delaunay
insertion (there is one master thread and one or more worker
threads in the system)

4. EXPERIMENTS AND RESULTS

Suggested parallel solution was implemented in MS Visual C++
v. 6.0, using serial DT(P) incremental algorithm implemented in
Delphi v. 3.0. Tests were run on data sets with » =100 up to
1 000 000. From various input points distributions, uniform and
grid were measured as the most representative (recall Fig. 7).
Randomized input sets were divided into subsets of the same size

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

for each thread. As the results were very much alike, we will show
only uniform data results. Tests were run on Dell Precision 410
(2x Pentium I1I, 500 MHz, 1 GB RAM), Dell Power Edge 8450
(8x Pentium III, cache 2MB, 550 MHz, 2GB RAM) and Hewlett
Packard HP XU 6 (2x Pentium Pro, 200 MHz, 128 MB).

Table 2 presents runtimes in sec measured on Dell 8 processor
computer. Times were obtained as average of up to 5 data sets.
Fig. 11 shows dependence of the total runtime on the number of
worker threads, parametrized by the number of points. Fig. 12
shows dependence of the time for points insertion on the number
of threads, parametrized by the number of points. Figure 13
presents both time measures for n = 500 000.

Table 3 are results of measurement on Dell 2 processor, averaged
over 5 data sets. Fig. 14 shows speedup for this type of computer.

Runtimes for different number of threads —®—n=100000
—&—n =50 000
15 —%—n=10000
—%—n=1000
10
— - —a

>

L —h-

5 A \ N N
=

—x— —¢

0 2 4 6 8
Number of threads

H

Figure 11: Dependence of the runtime on the number of threads,
parametrized by the number of points.

Insertion times for different number of threads = n=100000
—A—n=50000
12 4 —%—n=10000
10 4 —¥—n=1000
— 81
)
o 64
= 4 ‘\‘\
2 & —h- -4
0 o m— — Se— =3
0 2 4 6

Number of threads

Figure 12: Dependence of the time for insertion on the number of
threads, parametrized by the number of points.

100
80 | n = 500 000 —e—total runtime
—=—time for insertion

= 60 -
2
= 40 -

20

0 w ‘ ‘ ‘

Number of threads

Figure 13: Dependence of the runtime and of the time for
insertion on the number of threads, for » =500 000.

No of Time in

threads | Total |Time for| critical |Waiting
n runtime |insertion| section | time
100 1 0.007 0.005 0.002 | 0.000
100 2 0.007 0.005 0.001 0.001
1000 1 0.076 0.063 0.024 | 0.001
1000 2 0.058 0.044 0.017 | 0.006
10 000 1 1.048 0.898 0.283 | 0.014
10 000 2 0.683 0.533 0.164 | 0.052
50 000 1 6.200 5.364 1.389 | 0.702
50 000 2 3.960 3.117 0.819 | 0.214
100 000 1 13.750 | 11.860 | 2.823 | 0.142
100 000 2 8.749 6.849 1.647 | 0.409
500 000 1 87.000 | 68.000 | 14.643 | 0.714
500 000 2 58.276 | 38.499 | 8.359 | 2.027
1000 000 1 200.400 | 143.000 | 29.807 | 1.441
1000 000 2 135.400 | 78.600 | 16.893 | 4.130

Table 3: Runtimes [s] for uniform data, on 2 processor computer.

—il— speedup- runtime
2 —A— speedup-insertion
1.75
=%
=)
B 15
@
&,
1.25

-

0 2000 4000 6000

n[in hundreds]

8000 10000

Figure 14: Speedup achieved on 2 processor computer
computed as the rate of runtime for one thread divided by the
runtime for two threads (data from Table 3)

From the results can be seen that for small number of points (1000
and less), there is no or unsubstantial improvement. For higher 7,
speedup achieved is from 26% (n=10 000, 8 threads) to 84%
(n=1500 000, 6 threads). Generally, speedup for higher number of
points is better. However, Figs. 11-13 show that most
improvement is obtained for 2 threads. If » is 100 000 or more,
also 4 threads bring some further improvement but not so
substantial as in 2-threads case. For higher number of threads,
probability of collisions in critical section are higher and no
further substantial speedup is achieved, more time is spent by
waiting.

Conclusion can be done that the supposed pessimistic method can
be successfully used, first of all, for 2-processor workstations.
Higher number of processors brings further, but non-substantial
speedup. The method is especially suitable for high number of
points (hundreds of thousands, millions) which is positive feature.
For higher degree of parallelism, optimistic method is supposed to
be implemented and tried in the future.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

n No of threads | Total runtime | Time for insertion | Time in critical section|Waiting time
100 1 0.009 0.005 0.002 0.000
100 2 0.010 0.006 0.002 0.001
100 4 0.012 0.006 0.001 0.001
100 6 0.015 0.007 0.001 0.001
100 8 0.017 0.008 0.001 0.001
1000 1 0.095 0.059 0.024 0.001
1000 2 0.077 0.042 0.016 0.007
1000 4 0.081 0.046 0.010 0.025
1000 6 0.092 0.057 0.008 0.038
1000 8 0.097 0.061 0.006 0.044

10 000 1 1.079 0.760 0.231 0.012
10 000 2 0.808 0.456 0.143 0.044
10 000 4 0.726 0.405 0.089 0.178
10 000 6 0.803 0.474 0.069 0.312
10 000 8 0.853 0.522 0.057 0.389
50 000 1 6.413 4.709 1.262 0.062
50 000 2 4.309 2.678 0.724 0.180
50 000 4 4.093 2.417 0.533 0.973
50 000 6 4.045 2.370 0.351 1.405
50 000 8 4.110 2.438 0.271 1.692
100 000 1 14.124 10.669 2619 0.124
100 000 2 9.305 5.994 1.618 0.409
100 000 4 8.091 4.729 1.045 1.671
100 000 6 8.350 4.923 0.726 2.789
100 000 8 8.379 4.959 0.548 3.318
500 000 1 85.899 63.678 14.126 0.630
500 000 2 56.986 35.348 7.905 1.630
500 000 4 47.285 25.043 5.411 6.367
500 000 6 46.746 24.703 3.645 12.156
500 000 8 46.938 24.960 2.750 15.498

Table 2: Runtimes [s] for uniform data, on 8 processor computer

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

5. CONCLUSION

The paper presents very simple method of parallel Delaunay
triangulation construction. The method was developed for
workstations with 2 or more processors and achieved best
speedup for two processors, results for higher degree of
parallelism are not too persuading. Further improvement of the
method decreasing mutual waiting (the so-called optimistic
method) was suggested and is expected to be implemented and
measured in the future.

6. REFERENCES

[1] Aggarwal A., Chazelle B., Guibas L., O’Dunlaig C, Yap C.:
Parallel Computational Geometry, Algorithmica, Vol.3, No.3,
pp-293-327, 1988

[2] Beichl 1., Sullivan F.: Parallelizing Computational
Geometry: First Steps, SIAM News, No.6, Vol. 24, pp.1-17,
1991

[3] M. de Berg, M. van Kreveld, M. Overmars,
O. Schwarzkopf: Computational Geometry. Algorithms and
Applications, Springer-Verlag Berlin Heidelberg, 1997

[4] Blelloch G.E., Miller G.L., Talmor D.: Developing a
Practical projection-Based Parallel Delaunay Algorithm, Proc.

of the 12" Annual Symposium on Comput. Geometry, ACM,
1996

[5] Borland Delphi v.3.0 — on-line help, 1997

[6] Chandrasekhar N., Franklin W.R.: 4 Fast Practical Parallel
Convex Hull Algorithm, TR Electrical, Computer and Systems
Engineering Department, Rensselaer Polytechnic Institute, Troy,
NY, 1989

[7] Cignoni P., Montani, C., Perego, R., Scopigno, R.: Parallel
3D Delaunay Triangulation, Proc. of Eurographics’93, pp.
C129-C142

[8] Cole R., Goodrich M.T., O’Dunlaig C.: Merging Free Trees
in Parallel for Efficient Voronoi Diagram Construction,
International Colloquium on Automata Languages and
Programming, pp. 32-45, 1990

[9] Davy J.R., Dew P.M.: A Note on Improving the Performance
of Delaunay Triangulation, In: Proceedings of CGI'89, pp. 209-
226, 1989

[10] Day A.M.: Parallel Implementation of 3D Convex Hull
Algorithm. CAD, Vol. 23, No. 3, pp.177-188, 1991

[11] Dwyer R.A.: A Simple Divide-and-conquer Algorithm for
Constructing Delaunay Triangulation in O(n log log n) expected
time. In Proc. of the 2" Annual Symposium on Comp. Geom.,
pp. 276-284, ACM, 1986

[12] Edelsbrunner H., Shi W.: An O(n log’h) time algorithm for
the three-dimensional convex hull problem. SIAM J.Computing,,
Vol. 20, pp. 259-277, 1991

[13] Evans D.J., Stojmenovic I.: On Parallel Computation of
Voronoi Diagrams, Parallel computing, Vol.12, pp. 121-125,
1989

[14] T.-P. Fang, L. A. Piegl: Delaunay Triangulation Using a
Uniform Grid, I[EEE CompGraph & Appl, May 1993, pp. 36-47

[15] Ghouse M., Goodrich M. T.: In-place Techniques for
Parallel Convex Hull Algorithms, Proc. of the 3™ ACM
Symposium on Parallel Algorithms and Architectures, 1991

[16] L. J. Guibas, D. E. Knuth, M. Sharir: Randomized
Incremental Construction of Delaunay and Voronoi Diagrams,
Algorithmica, Vol. 7, 1992, pp.381-413

[17] Hardwick J.C.: Implementation and Evaluation of an
Efficient Parallel Delaunay Triangulation Algorithm, 9" Annual
Symposium on Parallel Algorithms and Architectures, pp. 22-
25, 1997

[18] Jeong C.S.: Parallel Voronoi Diagram in L, (L,) on a
Mesh-connected Computer, Parallel Computing, Vol. 17, pp.
241-252, 1991

[19] Jeong C.S. An Improved Parallel Algorithm for
Constructing Voronoi Diagram on a Mesh-connected Computer,
Parallel Computing, Vol. 17, pp. 505-514, 1991

[20] Merriam M.L.: Parallel Implementation of an Algorithm
for Delaunay Triangulation, In /-st European Fluid Dynamics
Conference, pp. 907-912, 1992

[21] Reif J., Sen S.: Polling: A New Randomized Sampling
Technique for Computational Geometry, Proc. of the 21"
Annual Symposium on Theory of Computing, 1989

[22] J. R. Schewchuk: Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator, In: Ming C. Lin, Dinesh
Manocha, Eds.: Applied Computational Geometry Towards
Geometric Engineering, Vol. 1148 of Lecture Notes in
Computer Scinece, pp. 203-222, Springer-Verlag, May 1996

[23] Su P.: Efficient Parallel Algorithms for Closest Point
problems, PhD thesis, Darthmouth College, 1994, PCS-TR94-
238

[24] Su P., Drysdale R.L.S.: A Comparison of Sequential
Delaunay Triangulation Algorithms, In: Proc. of the 11-th
Annual Symposium on Computational Geometry, pp. 61-70,
ACM, June 1995

[25] Teng Y.A., Sullivan F., Beichl I., Puppo E.: A Data Parallel
Algorithm for Three-dimensional Delaunay Triangulation and
Its Implementation, SuperComputing '93, 112-121, 1993

[26] Vemuri B.C., Varadajaran R., Mayya N.: An Efficient
Expected Time Parallel Algorithm for Voronoi Construction,
Proc. of the 4" Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 392-400, 1992

ACKNOWLEDGEMENT

We would like to thank to Dell Computer, Czech Rep., for
allowing us to experiment on their 8-processor computer: Dell
Power Edge 8450 — 8x Pentium III, cache 2MB, 550 MHz, 2GB
RAM.

About the authors

Ivana Kolingerova is an associate professor on the Department
of computer science and engineering of the University of West
Bohemia, Pilsen. Josef Kohout is an undergraduate students of
informatics and computer science.

E-mail: kolinger(@kiv.zcu.cz, besoft@students.zcu.cz

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

