
Appearance-Preserving Terrain Simplification

Vladislav I. Suglobov
Lomonosov Moscow State University

Moscow, Russia

Abstract
This paper presents an efficient algorithm for piecewise-linear
approximation of surfaces defined by two-dimensional discrete
scalar fields (height map and color map). The presented algorithm
takes into account information from color map to improve
perceived approximation quality. The algorithm sacrifices the
quality of geometry approximation for the sake of a better
texturing of the simplified model thus increasing the overall
perceived approximation quality.
Keywords: terrain generation, terrain simplification, appearance-
preserving simplification, texturing

1. INTRODUCTION
The problem of piecewise-linear approximation of two-
dimensional scalar fields or, in other words, the problem of
triangulating a surface described with scalar height field arises in
different applications of computer graphics, such as machine
vision, cartography or computer entertainment. In computer
entertainment, height fields can represent areas on which the
screenplay of the game takes place. Such height fields can be a
result of designers’ work, either manual or automated. In any of
the areas, in practical applications the height fields used tend to be
of huge dimensions and thus require a sufficient storage. To make
possible efficient processing, visualization or transmitting, the
height field needs to be simplified. Piecewise-planar
approximation is one of the existing approaches to the problem of
height field and parametric surface simplification and allows
straightforward rendering and efficient operation.
This paper presents an algorithm for creating piecewise-planar
approximation of surfaces using not only the height field that
defines the spatial shape of the surface but the color map of the
surface as well. The presented algorithm exploits the fact that
slight difference in the 3D shape of the surface model and the
height field can be sacrificed to make possible the better texturing
of the surface model and thus can increase perceived
approximation quality. Taking into account the color map of the
modeling surface is crucial in computer entertainment when
creating a realistic-looking model of the surface.

2. RELATED WORK
Garland and Heckbert [1] give an extensive survey of different
approaches to the problem of polygonal surface simplification and
terrain generation algorithms that appeared since early 80s. The
review covers a lot of work done in the field. However, none of
the works mentioned in the review [1] address the problem of
appearance-preserving simplification in whole. The algorithms
surveyed approximate the surface position only, ignoring such
attributes as surface color.

The efficient terrain generation algorithm proposed by Garland
and Heckbert [2] was used in this work as a base algorithm for
approximation of surface position. The algorithm belongs to the
class of so called refinement algorithms and starts with the
coarsest triangulation of the surface. Then, step by step, the
algorithm inserts vertices into the triangulation, each time
inserting a vertex where the absolute vertical deviation of
approximation from the original surface is maximal over the
whole triangulation. The triangulation algorithm exploited is
called the data-dependent triangulation, as opposed to the
Delaunay triangulation algorithm, and differs with the last one in
what the optimal triangulation is considered to be. The data-
dependent triangulation proved to produce better approximations
using fewer vertices [2]. The algorithm of Garland and Heckbert
[2] was chosen as a base for this work because of its efficiency
and accuracy compared to other existing refinement algorithms.
However, in the recent years the decimation algorithms for
appearance-preserving simplification appeared. The decimation
algorithms for mesh simplification start with the most detailed
model and gradually simplify it using a chain of simple operations
like edge collapse. Hoppe’s Progressive Mesh creation algorithm
[4], that avoids collapsing edges that are incident to the triangles
with different material can be applied to simplifying more
complex surfaces than the terrain surfaces are. Cohen et al. [5]
have presented an appearance-preserving simplification algorithm
that makes use of texture and normal maps to increase the
perceived quality of the approximated model. However, as
decimation algorithms, these algorithms require the most detailed
model of the surface to start and use simple per-edge or complex
per-vertex error metrics. This makes them less efficient than the
refinement algorithms that use simple per-vertex error metric and
work starting from the simpler model to the more detailed one [2].
This work is done to fulfill the practical need for the refinement
appearance-preserving terrain simplification algorithm.

3. PROBLEM
Given a need to efficiently render the resulting surface model on
the present PC hardware and a need to represent a detailed surface
to end user, the approach of using a color map of the surface as a
single texture must be forgotten. For example, if one needs to
represent a square area of the surface with dimensions of 10x10
kilometers, one will need a 200 MB 16-bit texture to only achieve
a one texel per square meter accuracy. While the problem of the
big texture size during the rendering process can be reduced using
some texture-compressing and texture-caching techniques, the
problem of manually creating such a texture is still a big one. It
would require a great amount of time, computer resources, and the
designer’s sanity. The automated generation of such a texture
from a set of smaller tiling textures would kill the benefits of
using a one big texture and can be replaced with more memory-
efficient techniques like the one described in this paper.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

The approach used in the presented algorithm suggests creating a
relatively small (256x256 texels) different texture tile for each
type of the surface, like grass, sand, rocks, etc. Such tiles can be
created by an artist or extracted from a color map if it is given as
a photograph. Then every polygon of the surface model is mapped
with the one of the created textures using some mapping
technique, for example, the planar mapping.
However, due to the irregular nature of TIN (Triangulated
Irregular Networks), the proper mapping would be a problem in
low-detailed regions of the surface model. The relatively plain
segment of the surface that can be accurately represented with
only one polygon may have several types of the surface
represented on it thus leading to a need of rendering this polygon
using more than one texture or the custom texture. Rendering the
polygon using more than one texture without creating custom
textures can not produce detailed borderline between different
textures, while creating custom texture with the detailed
borderline for each of the polygons sufficiently increases memory
budget.
Subdividing the polygon on a desired number of smaller polygons
sufficient to represent the borderline with the needed accuracy
can solve the problem. This solution only slightly increases
memory budget by adding additional vertices and polygons to the
surface model. The presented algorithm automatically generates a
surface model using greedy insertion algorithm [2] and assures
that borderlines between zones of different surface types will be
present in the resulting model.

4. ZONE MAP
The zone map for each point of the surface tells what surface type
or zone this point has. The example of the zone map is shown on
Figure 1. The thin black lines represent the borderlines between
different zones. Each non-black color used in the zone map
represents a different surface type. The zone map needs not to be
of very big size and can be easily created manually with the help
of existing image processing software. This is what happened in
practice. However, in the case if the aerial photograph or the
drawing of the surface is provided, the image processing
techniques like edge detection and quantizing can be used to turn
it into the zone map.

Figure 1: The zone map.

To incorporate the borderlines from the zone map into the surface
model, the representation of these lines must be changed from
raster to vector. Assuming that borderlines in the zone map are
one pixel width, the simple algorithm can be used for this

purpose. For each pair of the neighboring borderline pixels, two
vertices are created at the centers of them and the directed edge is
created on these vertices. The examples of the work of this
process are shown in Figure 2.

Figure 2: Creating a vector representation of the borderlines.

Each edge stores two numbers corresponding to the type of the
surface on each side of the edge. The resulting set of vertices and
edges is redundant and can be sufficiently optimized using the
following rules:
1. The vertex is deleted from the set if its copy is present in the

set.
2. If two edges incident with one vertex are collinear, the vertex

and the edges are deleted and replaced with one edge.
3. The same as rule 2, but collinearity is replaced with the

condition that the distance from the deleted vertex to the line
connecting its neighbors is less than some epsilon.

Using the rules 1-2 eliminates the redundancy and using the rule 3
gives the ability to reduce the set of vertices and edges by
changing the epsilon. The example of applying rules 1-2 is shown
on Figure 3.

Figure 3: Simplifying the vector representation of borderlines.

The optional step can be performed after simplifying the vector
representation of the borderlines. The borderlines can be doubled
as shown on Figure 4 to produce a thin transition zone that can be
rendered using two textures to create the effect of smooth
transition of the texture on the one side of the borderline into the
texture on the other side. In this step, new surface type is
introduced between the pair of borderlines. The surface type
numbers stored with edges are updated accordingly.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Figure 4: Doubling of the borderlines to create a thin texture

transition zone.

5. TRIANGULATION
The set of vertices and edges representing the borderlines from
the zone map are used to create the initial triangulation of the
surface. The edges representing the borderlines are marked as
constrained in this triangulation. The constrained edge can not be
flipped during the re-triangulation process. Thus, the constrained
edge existing in the initial triangulation will still appear (probably
split into several edges) in the resulting surface model. The
modified version of the greedy insertion algorithm [2] is used to
refine the surface model to the needed approximation quality or
vertices quantity. There were three modifications made to the
refinement algorithm used. The first added a support for the
constrained edges, making it possible to insert edges into the
triangulation and prohibit flipping of them through the re-
triangulation process that is performed after the insertion of a new
vertex in the triangulation. The second modification corrected the
snap() function behavior. The snap() function is responsible for
splitting the constrained edge if a vertex is inserted laying close to
it. This function was modified to eliminate the slits like the one
shown on Figure 5 that appeared after the support for the
constrained edges was added.

Figure 5: The slit ACBD caused by the constrained edge AB.

The corrected slit is shown on Figure 6. The modified snap()
function do not pulls the inserted vertex to the split edge, but ties
the split edge to the inserted vertex that remains in the node of the
regular mesh.

Figure 6: The eliminated slit.

The third modification was made to maintain the correct zone
numbers on the both sides of the borderline edge during the split
process. When the vertex inserted into the triangulation splits the
constrained edge, the descendant two edges receive the same zone
numbers as the original edge.

6. TEXTURING
After the refinement process completed the final texturing process
takes place. This process is divided in two independent steps. The
first step is assigning mapping coordinates to the vertices of the
resulting polygonal model. This is done using well-known planar
mapping technique. The second step is assigning textures to the
polygons of the model. This is done using the surface type
numbers of the constrained edges and a simple recursive filling
algorithm that propagates the surface type number from the
constrained edge to the triangles on one side of it through not
constrained edges. The texture transition zone polygons receive
two surface type numbers and are rendered using two textures to
create the effect of the smooth transition of the texture on the one
side of the transition zone to the texture on the other side.

7. RESULTS
The algorithm presented in this paper was implemented in
software designed to generate 3D model of the terrain surface
using its height field, zone map, and a set of textures. Algorithm
was implemented using about 3500 lines of C++ code, 1500 of
which were taken from [3]. The taken code was written by Dani
Lischinski and is distributed under the GNU public license.
Appendix shows examples of the models generated using the
presented algorithm. On the wire frame model, the texture
transition zone can be distinguished that produces smooth texture
transition visible on the solid model.
The research was performed and the software was written as a
part of the “Iron Strategy” project developed by Nikita, Ltd. The
software has been successfully used in preparing data for the
needs of the project (interactive walkthroughs). In the process of
the usage, the algorithm was tested on a great number of different
height fields and zone maps showing a slight decrease in
geometrical approximation quality in exchange to sufficiently
increased perceived approximation quality.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

8. REFERENCES
[1] Paul S. Heckbert and Michael Garland. Survey of polygonal
surface simplification algorithms. Multiresolution Surface
Modeling Course (SIGGRAPH’97), http://www.cs.cmu.edu/~ph
[2] Michael Garland and Paul S. Heckbert. Fast polygonal
approximation of terrain and height fields. Technical report, CS
Dept., Carnegie Mellon U. Sept. 1995 CMU-CS-95-181
[3] Dani Lischinski. Constrained Delaunay triangulation
implementation. http://www.cs.huji.ac.il/~danix/
[4] Hugues Hoppe. Progressive Meshes. Computer Graphics
(SIGGRAPH’96 Proceedings) (1996), 98-108
[5] Jonathan Cohen, Marc Olano, Donesh Manocha.
Appearance-Preserving Simplification. Computer Graphics
(SIGGRAPH’98 Proceedings) (1998), 115-121

About the author
Vladislav I. Suglobov is a graduate student of the Lomonosov
Moscow State University and is currently working at Nikita, Ltd
as a programmer.
Email: vlud@nikita.ru

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

http://www.cs.cmu.edu/%7Eph
http://www.cs.huji.ac.il/%7Edanix/
mailto:vlud@nikita.ru

Appendix

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

	1. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM
	4. ZONE MAP
	5. TRIANGULATION
	6. TEXTURING
	7. RESULTS
	8. REFERENCES

