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Abstract 
Texture compression is recently one of the most important topics 
of 3D scene rendering because it allows visualization of more 
complicated high-resolution scenes. As standard image 
compression methods are not applicable to textures, an overview 
of specific techniques that are currently used in real 3D 
accelerators is presented. Because their major weakness is 
eventual image quality degradation, we introduce an approach 
that makes it possible to achieve superior image quality in most 
cases while providing higher compression ratios. Being an 
essential refining upon block decomposition strategy, it allows 
sharing the same color by several blocks, which partially solves 
the problem of colors deficit. We also describe some methods that 
can be used for conversion of textures to the proposed 
representation. Future prospects conclude the paper. 
Keywords: Texture, Texel, Compression, Block Decomposition 

1. INTRODUCTION 
Reproducing the visual complexity of the real world is a 
challenge for many Computer Graphics practitioners. Since every 
detail cannot be represented on the geometric level, texturing 
techniques were designed to introduce complexity to synthetic 
scenes. For instance, textures can be anything from wood grain or 
marble patterns to detailed pictures of people, trees, buildings, etc.  
To simulate real life scenes and render them in real time, it is 
desirable to have fast access to a large number of high-quality 
detailed textures. However, this requirement introduces 
significant demand of system or graphics memory depending on 
which is used for texture storage. Memory limitations in turn 
forces application developers to use fewer and less detailed 
texture maps.  
The Accelerated Graphics Port (AGP) has made it possible to 
access textures stored directly in system memory increasing 
overall available storage capacity. However, AGP bus and system 
memory are shared resources. AGP is also used for uploading 
geometric data to the graphics accelerator, while the system 
memory services operating system and other applications. 
Therefore, it is a mistake to assume that the whole bandwidth is 
available for transferring textural data. In many cases, AGP 
bandwidth can be a bottleneck of the whole graphics system that 
limits users in gaining as much as they can from texturing 
techniques. 
Texture compression allows the use of less memory for textures, 
or, which is more important, render scenes with more detailed 
high-quality textures without the necessity of buying additional 
memory units; besides, it lowers bandwidth requirements because 
compressed data may be passed to the graphics accelerator and 
then decoded on the other side of the bus. For these two reasons 
(more economical use of memory and significant reduction of bus 

traffic) texture compression is one of the hottest topics of GPU 
designs and graphics APIs. 
Because texture compression techniques should comply with 
some specific requirements that ensure their efficient use in 3D 
engines including those implemented in hardware, we 
circumstantially discuss these requirements in the next section. 
We also give there a detailed overview of currently most 
exceptional techniques and discuss their possible outcome of 
significant perceptual quality degradation.  
In Section 3 we present a new approach that solves the problem of 
the local colors deficit, which may arise while representing 
textures. This approach, previously introduced in [9], is based on 
the idea of sharing the same color by several blocks. Some 
methods that can be used for generating proposed color data are 
described in Section 4. The paper concludes with performance 
analysis of the new technique and discussion of possible future 
work with respect to the proposed approach. 

2. EXISTING TECHNIQUES 
Textures are regular raster images that are used for rendering 
surface-based 3D models. Due to growing popularity of 
visualization technologies, real-time rendering solutions have a 
strong tendency to be optimized for using as much of hardware as 
possible. For this reason, textural data decompression, which is 
one of the stages performed during rendering, should be very 
simple and efficient. On the other hand, considering standard 
rasterization approaches (such as polygon scan-line rasterization), 
texels may be fetched in random order, which strongly depends 
on the viewpoint. For the reasons above, the following 
requirements for texture compression techniques are introduced. 
♦ High Compression Ratios 
♦ No visible image degradation 
♦ Fast (real time) data decoding 
♦ Efficient random texel access 
Obviously, if any compression technique uses variable length data 
encoding (including RLE, LZW, Huffman, arithmetic, etc. 
[5,11,13]), it is not applicable to texture compression, because it 
violates the requirement of random texel access. For example, 
RLE (run-length encoding) strategy encodes sequences of 
repeating elements into counter-element pairs; therefore, decoder 
has to analyze data stream from the very beginning in order to 
retrieve the required texel. As most of standard image 
compression formats are based on mentioned above algorithms, 
they could not efficiently be used for textures. 
The existing texture compression approaches may be divided into 
two major groups: (1) vector quantization (VQ) and palletizing; 
(2) Block decomposition and block transforms. 

2.1 Vector Quantization 
VQ is based on the principle of look-up tables. For every texture, 
the VQ-coder constructs a codebook, which is an array of blocks 
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(typically 2x2 pixels) that appear most frequently in the 
corresponding image. When a codebook is generated, the whole 
image is divided into rows of blocks of the same size, and each 
block is substituted by the index of the most acceptable entry of 
the codebook. The typical size of the codebook is 128 or 256 
entries. If blocks of 1x1 pixels in size are considered, than the 
compression procedure is called palletizing and the codebook is 
called palette. 
However, VQ techniques suffer from two major problems. The 
first problem is memory access. If a decoder needs to extract any 
individual texel, it must first retrieve the index of the 
corresponding block, and then get the block colors from the 
codebook. This decoding procedure requires two serially 
dependent memory references per one texel, unless the whole 
codebook is stored on chip. The latter solution in its turn requires 
the codebook be uploaded to graphics accelerator before any 
decoding begins. Thus, none of these approaches provide 
acceptable compression ratios in terms of bus traffic. 
The second problem of VQ technique is visual quality. VQ has a 
potential possibility of representing sharp edges (if codebook is 
large enough); however, it cannot represent smooth variations of 
colors very well, because in this case almost all blocks will differ 
from one another giving no possibility to group them on visual 
similarity basis.  
For these two reasons (small reduction of actual bus traffic and 
poor quality on smooth surfaces) VQ is rarely used for texture 
compression. 

2.2 Block Decomposition 
The other group of techniques, which is called block 
decomposition, solves the problem of two separate memory calls 
per one texel. This approach is based on the idea of dividing an 
image into equally sized blocks (typically, 4x4 pixels) and storing 
each of them in a uniform manner, so that each block takes the 
same amount of memory after compression. Thus, all blocks may 
be stored row by row, and an offset of a block containing any 
individual texel may be easily calculated. The decoder has to 
retrieve the data of the block containing the required texel, 
decompress it, and extract the corresponding color. 
This basic idea is used widely in most existing texture 
compression approaches. Recently, the following techniques 
based on block decomposition have been developed. 
♦ Texture and Rendering Engine Compression (TREC) [15]. 
♦ S3 Texture Compression (S3TC) [14]. 
♦ 3dfx’s texture compression (FXT1) [6]. 
2.2.1 Texture and Rendering Engine Compression 
Texture and Rendering Engine Compression (TREC) was 
developed by Microsoft. This technique is very similar to the 
JPEG standard since it is based on the two-dimensional discrete 
cosine transform (DCT) of 8x8 pixel blocks and further 
quantization of coefficients. This approach provides variable 
compression ratios with satisfactory visual quality; however, it is 
relatively expensive to put hardware implemented DCT decoder 
on a graphics accelerator board only for texture decoding 
purposes. 

2.2.2 S3 Texture Compression 
The other technique, which was originally developed by S3 and 
then licensed by Microsoft for DirectX texture compression 
(DXT) [3], is very efficient, and therefore is implemented in 

several graphics accelerators, such as Savage2000, Voodoo 5 and 
6 series, ATI RagePro. The simplest scheme encodes blocks of 
4x4 texels. Each texel is represented by a 2 bit index of color 
from a local palette, which is generated for each block. The 
palette has 4 entries that are linearly interpolated from 2 RGB565 
colors stored in the block (Figure 1). 
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Figure 1: S3TC block encoding scheme 
DirectX texture compression (DXT) has 5 variations of the S3TC 
scheme. These variations support transparency and alpha channel; 
however, none of them provides more then 2 original and 2 
derived colors per each block. 

2.2.3 3dfx’s Texture Compression 
The most recently developed texture compression technique was 
presented by 3dfx Interactive, Inc. and is called FXT1. This 
technique may be considered a powerful extension of S3 
approach, since it separately encodes equally sized blocks of 4x8 
texels by small local palettes (look-up tables). FXT1 has 4 
modifications, each of which is specially designed to represent 
different color distributions within a block. However, the major 
idea remains the same: (1) some original colors (RGB555) are 
stored in a block; (2) local palette (or palettes) is generated by 
interpolation of provided colors; (3) each texel is represented by 
index of the most appropriate look-up table entry.  
Table 1 briefly presents the FXT1 encoding parameters for 
different modifications. For CC_HI scheme, 2 original RGB555 
colors, which are stored in a block, are used for interpolating 7 
RGB8888 look-up table entries, while the 8th entry is defined 
transparent; thus, 3 bits per texel are required. CC_CHROMA 
refers to storing 4 colors, which are used with no change as the 4-
entry palette. CC_MIXED is very similar to S3TC approach, since 
two 4-entry palettes are generated, each by interpolating between 
2 colors (therefore, 4 colors are stored for a 4x8 block); then, two 
sub-blocks of 4x4 texels are encoded separately by their own 
palettes. For CC_ALPHA, two palettes of the same size are 
generated as well, but one of the colors out of 3, stored in a block, 
is shared during interpolation. This solution provides some extra 
space for storing alpha channel data in a block. While 
compressing, FXT1 encoder produces all representations of each 
4x8 block of texels, chooses the one that introduces the least 
error, and stores the corresponding data in the resulting data 
stream. 

FXT1 mode Colors stored Palette size Bits/texel 

CC_HI 2 8 3 

CC_CHROMA 4 4 2 

CC_MIXED 4 2x4 2 

CC_ALPHA 3 2x4 2 

Table 1: FXT1 block encoding schemes 
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Thus, S3TC represents each block of 4x4 texels by 8 bytes (4 for 
colors + 4 for indices), while FXT1 uses 16-byte data chunk for 
each 4x8 texel block. Compression ratio, provided by these 
techniques, is 6:1 for TrueColor 24bpp images, and 8:1 for 32bpp 
images, which is appropriate regarding texture compression 
requirements.  

2.2.4 Quality Degradation on Compressed Textures 
However, high compression ratio is archived by serious reduction 
of color data available for texels representation. For all described 
above schemes, excluding CC_CHROMA, generated local palette 
for each block consists of the colors belonging to a strait line in 
the RGB color space due to linear interpolation. For 
CC_CHROMA, 4 unique colors per 32 texels are used. Therefore, 
we can summarize that current techniques provide each block of 
4x4 texels with 2 original colors, while others are linearly derived 
from them. This severe limitation may introduce perceptible 
quality degradation in some cases. For example, if a block 
comprises texels of at least 3 completely independent colors in 
RGB space (it could be pure red, green and blue), there is no way 
to reproduce them appropriately by interpolation of any two. 
Figure 2 validates this fact. 

Original S3TC FXT1 

 
Figure 2: Visual degradation of compressed images. Each flower 
is approximately 50x50 pixels. The original compression software 

was downloaded from S3 and 3dfx web sites, respectively. 

3. COLOR DISTRIBUTION 

3.1 Color Distribution Basics 
In order to provide more originally different colors on a block, we 
propose another approach to constructing a local palette it. Instead 
of interpolating colors from those stored in the reconstructing 
block, we propose to use colors stored in its neighbors. For 
example, we can put just one color in a block, and form a 4-entry 
palette by retrieving colors from the left, bottom and left-bottom 
adjacent blocks (Figure 3). 

 

Color 00 Color 01 

Color 11 Color 10 

Color 00 
Color 01 

Color 11 
Color 10 

Indices Indices 

Indices Indices 

Block to reconstruct Palette for selected block

Adjacent blocks 
considered for forming 

palette entries  
Figure 3: Generating local palette from adjacent blocks 

Thus, the idea is to use colors from neighboring blocks instead of 
simple interpolation of colors stored in the currently 
reconstructing one. This approach allows, for example, encoding 

the image shown on Figure 2 with no color degradation at all, 
because it has only 4 unique colors. 
Obviously, for constructing the local palette of a block we can 
choose any set of neighboring blocks, relative position of which 
may be defined by a pattern. Moreover, this pattern may even 
differ from block to block, and, in this case, should be stored for 
each of them. This strategy of color distribution is described in [9] 
with more details. 
However, this new approach was originally developed as an 
efficient technique of texture compression. Therefore, if relatively 
distant blocks are involved to generate the palette, the problem of 
several memory calls, being similar to VQ, may arise. In order to 
simplify the decoding procedure and avoid the problem of several 
memory calls, we have chosen the simplest scheme, which 
provides 4 unique colors per a block. This scheme corresponds to 
Figure 3, and may be defined in more detail by the following. 

3.2 Nodal scheme of Color Distribution 
Let us subdivide a texture by a uniform grid having cells of 4x4 
texels, and assign a color to every node of this grid. Thus, each 
block is defined by 4 corner nodes, which supply the decoder with 
4 unique colors (Figure 4). As local palette has 4 entries, each 
texel can be indexed by 2-bit value which indicates the color of 
which corner should be taken. 
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Figure 4: Nodal scheme of color distribution 

As shown on Figure 4, each block has 4 corners providing 4 
unique colors for decompression. On the other hand, each node is 
retrieved color from by 4 adjacent blocks, so the same color will 
be used in palettes of 4 blocks. This property significantly reduces 
the amount of memory required to store colors and indices. 
Indeed, the compressed texture has an equal number of blocks and 
nodes (we do not consider the last row and column here for 
simplicity), so each block takes 

16 bits (RGB565) + 2*16 bits (indices) = 6 bytes, 
which is 1/8 of uncompressed data considering TrueColor 24bpp 
images. Thus, providing compression ratios better than S3TC as 
well as FXT1, the color distribution approach allows 
reconstructing a larger number of unique colors on a block. 

3.3 Decompression algorithm 
Decompression of the data encoded by the described above 
technique can be implemented very efficiently. In fact, since color 
interpolation is not used, no arithmetic operations on colors are 
required. At this point, the proposed technique is even simpler 
than S3TC. However, color data is not as locally stored as it is 
done by standard block decomposition approaches, which may 
introduce a little more complex memory management. 
Pseudocode 1 presents the general strategy of decompressing 
images encoded by nodal scheme of color distribution. We 
assume here, that colors and block indices are stored as separate 
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2-dimentional arrays; however, interlaced storages may be 
considered as well. 

Pseudocode 1: Decompression algorithm for nodal scheme 
RGB565 GetTexel( int x, int y ) { 

block_x=x/4; block_y=y/4; 
index=GetBlockIndex(block_x,block_y); 
index=ExtractTexelIndex(index, x%4,y%4); 
if (index&1) block_x++; // shift left 
if (index&2) block_y++; // shift down 
return GetColor(block_x,block_y); 

} 

In Pseudocode 1, GetBlockIndex() and GetColor() 
functions are used for retrieving the index of the block and 
required color from the corresponding arrays, and 
ExtractTexelIndex() extracts 2-bit index of the 
corresponding texel from 32-bit index data of the whole block. 
Since decoding typically takes place during 3D scene rendering, 
the data obtained by calling these functions is likely to be used for 
decompression of the next texel. For this reason, the memory 
cache (standard or specially designed) may be efficiently used for 
providing faster access to previously loaded indices and colors. 

4. COMPRESSION ALGORITHMS 
Compression of an image by proposed nodal scheme of color 
distribution appears to be much more complicated comparing to 
decompression. Obviously, the complexity of the compression 
algorithm and its time requirement are not critical parameters of 
entire technique; however, the visual quality of compressed 
images is of great importance. Since each node is involved in 
local palettes of 4 adjacent blocks, some variational methods are 
natural to be used for finding colors introducing minimal error. 
In [9] we presented an algorithm that being relatively simple 
produces very good results on textures of various types. It does 
not reach the theoretical minimum of error, but the practical 
results proved to be quite sufficient. One of the advantages of the 
proposed algorithm is constant number of iterations that is equal 
to the number of blocks, since it sets up exactly one node by each 
iteration minimizing overall error as much as possible. On the 
other hand, nodes are assigned colors that are actually present in 
the original texture. This property is not required, but proved to 
result in compressed images of good visual quality. 
In this paper we would like to formalize this algorithm, because it 
can be used not only for nodal scheme of color distributions, but 
also for any approach that looks up the color of a pixels in 
specially reconstructed local palette.  
We also describe briefly the other solution, which is based on K-
means clustering and is called Iterative Conditional Mode (ICM). 
Some aspects of its improvement and optimization are discussed. 

4.1 Compression Algorithm 
Let us introduce the following notations. 
X = {xi, i=1…N} denotes the original texture of N elements. We 
assume that perceptually uniform color space is used allowing us 
to measure distance between colors by Euclidean metric function. 
In practice, weighted RGB or L*u*v* (L*a*b*) [4], which is more 
correct, can be used as adequate approximations of uniform color 
space. 

Y = {yi, i=1…K} denotes the global palette, i.e. the set of colors 
that are involved at least in one local palette. In case of nodal 
color distribution, Y would consist of all available nodes. 

R = {rij∈{0,1}, i=1…N, j=1…K} is the set of rules that define 
which entries from the global palette Y should be considered as 
the local palette for a texel. Thus, for a texel xi the local palette 
includes yj if and only if rij=1. For the nodal scheme, each row of 
the matrix R would have exactly four units corresponding to 
block corners. In general, the property (4.1) should be fulfilled. 

∑
=

>∀
Kj
ijri

...1
0 . (4.1) 

M = {mij∈{0,1}, i=1…N, j=1…K} is the assignment matrix. It 
has exactly one unit in each row. Position of this unit specifies 
which color from a global palette is currently used for 
representing the corresponding texel. Because, in addition to the 
palette we defined a set of rules, the assignment matrix M should 
comply with (4.2), which is 

∑
=

=∀
Kj

ijijmri
...1

1 . (4.2) 

Thus, the formalized problem of texture compression is the 
following. Given an arbitrary texture X and a set of rules R, the 
objective is to find the global palette Y and the corresponding 
assignment matrix M, such that the error between the compressed 
image 

X*=RM×Y, (4.3) 

and the original image X is minimal (the symbol × denotes here a 
standard matrix multiplication, while RM means ‘per element’ 
multiplication resulting in matrix of the same size).  
It is well known that, due to physiological nature of human vision, 
the color perceived in each pixel depends not only on its original 
colors, but also on colors of neighboring pixels, as well. At this 
point, some complicated models based on Gaussian kernel as 
spatial support of each pixel can be considered. This strategy is 
extensively described in [2,8,10,7]. However, for the sake of 
simplicity we consider the straightforward Euclidean distance in 
approximately uniform color space as the error of compression. 
Thus, this error is defined by (4.4). 

( )
2

...1 ...1

*XX, ∑ ∑
= =

−=Ε
Ni Kj

jijiji ymrx  (4.4) 

As was introduced previously, the proposed algorithm defines 
exactly one palette entry in each iteration; thus, let us assign a 
boolean value to each entry specifying whether it has been 
already set up or not. Denoting this values with 

S = {sj∈{0,1}, j=1…K}, we state that before the algorithm begins 
all sj are set to 0, and in the end, they are all equal to 1. 

E = {εi, i=1…N} is the set of errors calculated for each texel 
regarding only set-up palette entries. Each error is defined by 
(4.5), and in the beginning is set to the maximum possible value 
(we consider finite color space here). 

⎪⎩

⎪
⎨
⎧ =∃−

= =

otherwiseVALUEMAX

rsjifyx ijjjirsji ijj

,_

1:,min
2

1:ε  (4.5) 

For each palette entry that is not yet set up to the final value, we 
find the texel from the corresponding area, such that if the color 
of this texel were assigned to the palette entry, the overall error 
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would maximally decrease. The position of this texel for yj is 
obtained by (4.6)-(4.7). 

( )∑
==

−−=
Nk

kkikjri
xxrl

ij ...1

2

1:
max εχ , where (4.6) 

⎩
⎨
⎧ >

=
otherwise

xifx
x

,0
0,

)(χ . (4.7) 

And, finally, the error decrease that would occur if the node yj 
were set-up with the color xl is defined by (4.8) in each palette 
entry. 

( )∑
=

−−=
Nk

kklkjj xxrd
...1

2 εχε  (4.8) 

The general idea of the algorithm is to find on each step the node 
(palette entry) that will maximally decrease overall error E if set 
up. This entry is considered defined, and all others (only those 
that could have changes by this assignment) should be 
recalculated to reflect the changes. 
This idea is formalized in Pseudocode 2. 

Pseudocode 2: Iterative Compression Algorithm 
M,Y CompressTexture( X,R ) { 

set sj (j=1…K) to 0; 
set εi 
set y

(i=1…N) according to (4.5); 
j=xl (j=1…K), where l complies (4.6); 

set dεj (j=1…K) according to (4.8); 
while (not all si are 1) { 

m=arg maxj=1…K(sjdεj); 
sm=1; 
dεm=0; 
for (i:rim=1) recalculate εi by (4.5); 
for (j:∃i:rimrij=1) { 

if (dεj>0) continue; 
set yj=xl, where l complies (4.6); 
set dεj according to (4.8); 

} 
} 
// Y is defined, let us find M 
mij=1 if yj minimizes εi, mij=0 otherwise 
return M,Y; 

} 

The strategy presented in Pseudocode 2 is relatively simple and 
produces very good results on different types of textures. In fact, 
recalculations of εi and dεi are required for a small number of 
elements affected by changes made in a particular step; therefore, 
this algorithm is one of the fastest among other iterative 
algorithms of this class.  
4.1.1 Preliminary Clustering 
However, considering proposed nodal scheme of color 
distribution, the speed of this algorithm can be further improved 
by preliminary clustering of the colors within each block. Because 
proper clustering is a complicated task in general case, we 
propose to use a very simple algorithm, which produces sufficient 
results and works very fast considering that each time it needs to 
cluster 16 points. Description of this algorithm follows. 
Let us consider a set of points in a metric space, and denote it 
with X. The task is to find clusters not exceeding d in diameter 
and comprising all points from X. The number of clusters, 
obviously, should be as little as possible. At each step, the 
algorithm finds the diameter [xy] of X. Then, it forms a cluster 

around x with diameter d and removes covered points from X. 
The same procedure is also applied to y unless distance between x 
and y is less then d. We should point out, that this procedure has 
some assumptions, and does not construct a minimal set of 
clusters; however, in practice it works very well, and, what is 
more important, it is relatively fast. 
Thus, clusters can be treated in the same way as texels in 
Pseudocode 2. The only difference would be storing the number 
of texels belonging to each cluster, since this information is 
required for proper calculation of εi and dεi. In practice, this 
approach of preliminary clustering speeds up the iterative 
algorithm by 2-5 times, because the number of performed 
arithmetic operations is significantly reduced. 
4.1.2 Preprocessing 
To make algorithm even faster, some special cases may be 
determined before iterations start. Let us introduce two of these 
cases: 
♦ If all blocks adjacent to a node has clusters representing one 

color (similar colors in term of visual difference), this color 
is the only choice for this node; 

♦ If all clusters corresponding to a connected area of blocks 
represent, in fact, equal or less than 4 colors, than all nodes 
of this area may be set with these colors in a chess-board 
order. 

The above-mentioned cases may be validated and processed in a 
proper manner after clustering, but before calculating errors. This 
procedure excludes some of the nodes from further consideration 
generally reducing the overall time of conversion. 

4.2 Iterative Conditional Mode 
The proposed above compression algorithm fills global palette 
with colors taken from the original image. This property generally 
does not introduce any perceived artifacts; moreover, in some 
cases this approach produces better images from human vision 
point of view (for example, on sharp edges). However, we can 
tune standard approaches to serve our needs. One of these 
approaches is so called ICM (Iterative Conditional Mode), which 
can be derived from [1,2]. ICM is, in fact, conceptually similar to 
K-means clustering, which iterates through color space 
converging to the minimum of error function E(X,X*). 
In our notations, if the global palette Y is defined, the assignment 
matrix M should comply with (4.9) to minimize overall error for a 
given palette. 

⎪⎩

⎪
⎨
⎧ −=

= =

otherwise

yxjif
m kirkij ik

,0

minarg,1 2

1:  (4.9) 

On the other hand, if the assignment matrix M is fixed, palette 
entries may be obtained by (4.10). 

∑
∑

=

==
Ni ij

Ni iij
j m

xm
y

...1

...1  (4.10) 

Thus, the ICM-like algorithm alternately finds the assignment 
matrix for the fixed palette, and calculates palette colors as the 
median of the set of pixels that are indexed by this palette entry. 
This strategy is expressed by Pseudocode 3. 
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Pseudocode 3: ICM – Iterative Conditional Mode 
M,Y CompressTexture( X,R ) { 

set yj (j=1…K) to arbitrary colors; 
do { 

set mij (i=1…N,j=1…K) by (4.9); 
set yj (j=1…K) by (4.10); 

} until (converged); 
return M,Y; 

} 

The ICM algorithm is quite efficient; however, it is well known 
that it gets frequently stuck in local minima. Therefore, some 
special steps should be taken to solve this problem. For example, 
multiscale (deterministic) annealing [10,12] can be considered. 
The complexity algorithm can be significantly improved by 
multiscale optimization, described in [7]. 

5. CONCLUSION 
In this paper we introduced a number of requirements that should 
be fulfilled by texture compression technique for its efficient use 
in real-time systems of 3D scene rendering. We analyzed the most 
exceptional approaches, currently invented, including S3TC and 
FXT1. These approaches proved to be very efficient; however, 
they may introduce perceivable quality degradation due to the 
lack of colors available for decompressing each block of texels. 
In order to provide more originally different colors to each block, 
we proposed a general technique of color distribution, and, in 
particular, the nodal scheme being the simplest one in terms of 
memory management, which is critical for real-time hardware-
implemented algorithms.  
The proposed technique perfectly complies with all introduced 
requirements. Thus, compression ratio is superior to the one 
obtained by S3TC and FXT1, and is equal to 8:1 for TrueColor 
24bpp textures. Visual quality of compressed images is better in 
most cases, because more independent colors are available for 
each block. Decompression algorithm is very simple and can be 
efficiently implemented in hardware. Finally, because color 
distribution is an improvement upon block decomposition 
approach, random access to the texture elements is naturally 
supported. 
Because, according to the proposed approach, color data are 
shared by several blocks of texture, finding optimal palette that 
minimizes overall error appears to be a relatively complicated 
task. We introduced an algorithm that being simple and efficient 
produces quite sufficient approximations to the optimal solution. 
Some optimizations, such as preliminary clustering and 
preprocessing, are discussed.  
We also described in brief the modification of standard ICM 
approach for obtaining distributed colors, and specified some 
possible improvements for preventing its getting stuck in local 
minima. 
In conclusion, the proposed approach of color distribution can be 
efficiently used for compressing images of any types, while nodal 
scheme, being specially designed for texture compression, is a 
valuable technique that allows real-time rendering of 3D scenes 
with much higher level of details. 

6. FUTURE WORK 
We would propose two directions of further investigations in the 
scope of color distribution approach to image compression. 
As was mentioned above, this approach may be used not only for 
compressing textural data, but also for regular image 
compression. In addition to nodal scheme, introduced in this 
paper, there could exist some other strategies that may serve 
different application. Careful investigation of these strategies 
seems to be very interesting and, possibly, worth developing. 
For the other topic of research we would propose careful analysis 
of compression algorithms. More correct models of human vision, 
such as Gaussian kernel in a pixel [2], can be implemented. Some 
properties of the proposed iterative algorithm may be 
investigated. ICM-like approach may also be carefully studied 
and improved by multiscale annealing and optimization. All these 
steps are likely to improve obtained visual quality of compressed 
images. 
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