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Abstract 
Simulation of natural human movement has proven to be a 
challenging problem, difficult to be solved by more or less 
traditional bio-inspired strategies. To simulate human-like 
movements in a virtual environment a sample database of real 
movements has been first transformed into sequences of 
instantaneous states of an explicit biomechanical model.  These 
are then associated to an anthropometrical class of reference in 
order to be interfaced with an artificial neural network, 
resulting in a new hybrid approach for data aggregation. 
Experimental tests have been performed on the upper part of 
the human body, in particular on the movements of arms and 
head with respect to the trunk. The analysis has been focused 
on three different tasks, chosen in assembly line, car interior 
and manufacturing environment. 
Keywords: Ergonomics, simulation, modelling, virtual humans, 
optimisation, neural networks. 
 
1. INTRODUCTION 
Human interaction with such complex systems as working places, 
driving seats, or cockpits is more and more asking for designers to 
face both the human-machine compatibility ("industrial 
ergonomics"), and the efficiency of the overall engineering 
system. Because of the rising costs in product development, the 
market is issuing a growing demand for advanced ergonomic 
tools, capable to assist the product designer in evaluating the 
human behaviour under several perspectives. In particular, the 
correct simulation of pseudo-human movements in virtual 
environments could help designers to assess the suitable 
ergonomic variables and their influence on some product features. 
This gives the opportunity to avoid both the construction of 
physical mock-ups and the execution of long experimental runs on 
real people at an early design stage.  

In opposition to several existing solutions, mainly based upon 
deterministic algorithms [7][8], a data-driven approach is 
presented herewith, which is able to grasp the natural essence of 
human movements. The work aims to propose a methodology 
based on the inference of each pseudo-human (i.e. virtual) 
movement, starting from a sample database of real ones, 
previously logged by means of any data acquisition system. 

ANNs (Artificial Neural Networks) have shown their 
suitability in descriptive and predictive generalisation of complex 
systems. They offer the possibility to take real experimentally 
acquired kinematical data and to interpolate and extrapolate the 
movements into conditions that have not actually been recorded.  

The nature of the problem suggested a two-step methodology. 
 In the first step, each real movement is transformed into a set 

(or sequence) of instantaneous states (or postures) of a parametric 
biomechanical model. This transformation procedure also allows 
estimating the uncertainty associated to the biomechanical model 
parameters.  

In the second step an artificial neural network (ANN) has been 
adopted to learn the way humans perform elementary tasks. 

In order to reduce the complexity of the second step, data 
related to different subjects, or different tasks, can be compared if 
these different cases are referred to a standard mannequin. Such 
data are obtained by sampling the movement of suitable 
checkpoints that, in the actual experiment made herewith, 
correspond to passive markers (fig. 1) attached to the human body 
and logged by a specific acquisition system - ELITE – developed 
at the “Politecnico di Milano” [12].  

Therefore an anthropological classification, combined with a 
suitable data transformation procedure, is given in order to 
interface the network with a set of mannequins-independent data, 
representing a standard sequence of postures.  

An application of this hybrid approach to a simple 
experimental case is presented, which proves that the proposed 
data analysis could be afforded without any underlying 
hypotheses about the human dynamics. 

 

Figure 1: Example of marker position for detecting
the movement of a human arm.  

2. THE HYBRID METHODOLOGY 
In case of complex systems it is hard to assess all the system 

parameters by means of a set of direct and independent 
measurements, as the specific context could affect any 
identification methodology of the very parameters. 
Specifically, collected data can be represented as a series of 
Cartesian trajectories of checkpoints (hereafter referred as raw 
data), measured in laboratory co-ordinates. In principle, raw data 
could be completely interpreted by means of an ANN: the latter 
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could learn both the structural (i.e. anthropometrical) and dynamic 
relations among raw data and other ergonomic factors. Anyway 
the two faces of the same problem should better be de-coupled 
upon availability of an explicit model for structural relations only. 
This hybrid approach is justified by a set of reasons, listed below 
[3][4]. 

Since the biomechanical features of the person under test are 
known in advance, there is no use to make recourse to neural 
computation in order to determine those constraints imposed by 
geometric relations among the marker locations, which – in case 
of tests performed on a single person – are fixed throughout the 
whole set of experiments. Otherwise, the ANN would be 
indirectly charged with the target of modelling those time-
invariant relations that have a different nature from other time-
dependent relations and factors mentioned above. 

In case of tests performed on more individuals, relative raw 
data cannot be directly compared and used to train the same ANN: 
as a matter of fact, the constraints imposed by geometric relations 
among the marker locations would be different from person to 
person, and would ask for further integration to the neural 
computation. 

For both cases, given any other set of conditions, a demand for 
wider integration would negatively reflect on the total uncertainty 
of the ANN prediction. 

Another reason arises from the fact that the ultimate purpose 
of this work is to reproduce a realistic simulation of human 
movement by means of a virtual mannequin, implemented in a 
CAD environment. The latter obviously imposes its own 
geometric relations, thus giving rise to unavoidable discrepancies 
between the mannequin movements and the information got back 
by the ANN (based on raw data, whatever real test they may 
represent). 

As to what has been stated above the sampled raw data are first 
used to evaluate the parameters of an explicit model for the 
structural relations among marker locations. The fitting model is 
used to define a referring posture at every time step, which in its 
turn is identified by the set of model state variables (i.e. angular 
values of rotational joints). In such a way, raw data are 
transformed into a sequence of values for such variables, 
representing the information quota strictly related to the dynamic 
characteristics of human movements. 

The proposed structural model, in its overall form, consists of a 
cinematic chain with G segments and M joints, and with a total 
number of D degrees of freedom (DoFs).  

A local reference system is attached to each segment Sj in 
order to reconstruct its position and orientation in the space. 

Denote with Lj and Lw the local reference systems of two 
consecutive segments, respectively Sj (descendent) and Sw 
(parent). If  is a column vector specifying the homogeneous 
co-ordinates of a generic point k in the local reference system L

Pk
j

j, 
the vector , specifying the homogeneous co-ordinates of the 
same point in the parent local reference system L

Pk
w

w can be 
calculated as  

P A Pk
w

j
w

k
j= =

x
y
z

j

j
w

j

j
k

jR
P

0 0 0 1

 (1) 

where (xj,yj,zj) are the co-ordinates of the origin of the local 

reference system Lj with respect to Lw and  is the rotation 

matrix of L

R j
w

j with respect to Lw.  
By identifying the origin of each local reference system with 

the rotation joint centre that links the current segment with its 
parent, the co-ordinates (xj,yj,zj) allow for the straight recover of 
the distances between joint centres, that is the anthropometrical 
lengths or structural parameters of the biomechanical model. 

Now denote with S0 Sx Sy ...  Sw Sj the polygonal that belongs to 
the cinematic chain starting from the root, up to the segment Sj, 
where the elements of the polygonal are selected according to the 
topology of the current chain. The laboratory homogeneous co-
ordinates Tk of a checkpoint k integral to the anatomical segment 
Sj can be recovered starting from its local homogeneous co-
ordinates  with respect to LPk

j
j as follows: 

          (2) Tk ...= A A A Px y
x

j
w

k
j0

where the elements of eq. (2) are again selected according to the 
topology of the current chain. From the homogeneous co-
ordinates Tk it’s easy to obtain the laboratory co-ordinates tk by 
selecting the first three elements of the array. 
The biomechanical model establishes clear-cut hypotheses as to 
the nature of raw data before processing takes place. That is: 
1. All the checkpoint positions measured on the same individual 

during the same experimental session derive from the same 
instance of the biomechanical model, which means that the 
model structural parameters are time-invariant. 

2. All the checkpoint positions that belong to the same posture 
derive from an instantaneous state of that instance (i.e. not 
only the structural parameters, but also the DoFs are fixed). 

3. Discrepancies between the measured raw data and checkpoint 
positions arise because the formers are affected by noise. 

Of course the biomechanical model is not perfectly faithful. 
Strictly speaking there exist no “true” values of its structural 
parameters and DoFs. However “optimal” (i.e. maximum 
likelihood) values can be found through a suitable fitting 
procedure provided that a noise model is given. 

 

3. MODEL FITTING 
The model is characterised by G free structural parameters  

(segments lengths: pelvis, trunk, clavicles, arms, legs,…), M joints 
and D degrees of freedom 

jh

li ,ω  (rotation computed for G 

reference systems angles and translation co-ordinates of the local 
reference system attached to the root with respect to the laboratory 
system). Further unknowns are the locations pk of the checkpoints 
with respect to the local reference systems. 
The functional form (2) depends on the above-mentioned structural 
parameters whose values have to be determined to see the model 
practically behaving as a human emulator. So identification is 
necessary. The simplest way to proceed in this identification is to 
measure them with independent procedures for each frame starting 
by the marker positions registered by ELITE (intra-frame 
procedure). The estimates of the anthropometrical lengths are the 
mean values of the obtained samples. This way to identify the 
parameters is the simplest, but it can be criticised for two reasons: 
 
• it is based on hypotheses about the locations pk of the 

checkpoints with respect to the local reference systems. 
• it doesn’t provide the optimal estimate of the model 
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parameters.  
 

A statistical estimation technique can overcome these 
inconveniences.  

By denoting: 
− i as the posture index, 
− k as the marker index, 
− ti,k as the laboratory co-ordinates of a checkpoint k in the 

posture i, calculated by means of eq. (2), 
the expected value E( ) of the measured data  is related 

to the quantity t

yi k, yi k,

i,k as follows: 
E i k i k( ),y t= ,      (3) 

It has been assumed that the errors ( )  are 

independent and normally distributed, with a standard deviation 
σ

y ti k i k, ,−

i,k, which expresses the uncertainty of the measured data ,  ki,y
In this way the statistical process can be stated as an optimisation 
of the likelihood function expressed by the following relationship: 
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Three kinds of parameters (i.e. quantities whose optimal values 
have to be found through the fitting procedure) are included 
therein: 
• Lengths of anatomical segments . jh
• Checkpoint positions pk in each local reference system. 
• Rotation angles and translation co-ordinates li ,ω . 

The fitting procedure performs an inter-frame estimation treating 
each movement as a whole. By denoting with λ i  a generic 
parameter included in the previous listed class (hereafter denoted 

with Λ), the set of values  that 
maximise the cost function L represent the set of maximum 
likelihood estimates for the set of parameters Λ.  

Λo o
i
o

n
o= λ λ1,..., ,...,λ

No hypothesis about the locations pk of the checkpoints is needed. 
The fact we leave free these parameters can permit an estimate of 
the positions of the markers, which do not enter as an input in our 
identification procedure, therefore permitting a better fit with 
experimental data.  
However, most elements of the roto-translation matrices are set in 
advance. Their values fix additional structural constraints. For 
example, some joints have less than 3 associated DoFs. Moreover, 
some critical checkpoints are used to identify reference frames of 
relative reference systems. In this way such critical frames - 
associated to critical checkpoints - are time-invariant. Provided 
that such critical checkpoints are carefully positioned on the body, 
the same “physical” meaning of joint angles could be preserved 
also across different individuals. 
After the fitting phase checkpoint positions loose their usefulness. 
The relevant informations inherited from the original 
experimental evidence together with the structural hypotheses are 
summarised into the optimal values of all the other parameters. 
Denoting with λ r , λ s  two generic parameters belonging to the 
set Λ, it’s possible to define the elements of Fisher’s matrix F as 
follows:  

(F Er s r s,
''= − l ),  (6) 

where: 
l = ln( )L  is the logarithmic likelihood function 

and  

l
l

r s
r s

,
'' =

∂
∂λ ∂λ

2

are second derivatives of l  computed in the 

maximum likelihood point Λo , ∀ ∈λ λr s, Λ . 
Using asymptotic properties of maximum likelihood estimators 
[11] the covariance matrix of the estimates can be expressed  as: 
 

 C F= −1      (7) 
where: 
− ci k i k, cov( , )= λ λ  is the covariance between the 

estimated parameters λ i  and ; λ k

−  is the variance of the estimated parameter ci i i, ( )= σ λ2

λ i  

The calculus of the covariance matrix  has been 
performed by means LU decomposition. In this way we took 
advantage of the properties of the matrix F, which is symmetric 
and positive definite, then it has a special, more efficient, 
triangular decomposition, i.e. the Cholesky decomposition that is 
about a factor of two faster than alternative methods for solving 
linear equations [10]. Instead of seeking arbitrary lower and upper 
triangular factors, Cholesky decomposition constructs a lower 
triangular matrix whose transpose can itself serve as the upper 
triangular part. 

C F= −1

4. THE NEURAL NETWORK 
Contrary to previous works, which rely on explicit assumptions 
about some relevant features of movement [5][6][7], our neural 
model is essentially based on the mere description of the problem 
itself. 

In this methodology it’s supposed that the execution of a 
determined sub-task is strongly dependent from the behaviour of 
one anatomical district called effector (e.g. the forefinger tip 
during a reaching movement, the rotation DoF of the hand in a 
screwing task, etc.); therefore the values of its state variables are 
taken into account both in the task description and in the joint 
angles prediction. This suggested separating the overall prediction 
in two subsequent stages: 
• The first stage predicts the motion of the “task effectors” on 

the basis of the detailed description of the task to be 
performed along with the initial state of the specific 
anatomical segment(s) involved [1][2]. 

• The second stage predicts the sequence of states of the 
biomechanical model on the basis of the outcome of the 
preceding stage [13][14]. 

Even though we focus here on the first step, the meaning of the 
pre-processing procedure can be fully understood only if we 
consider the overall system.  
We can represent the behaviour of the first stage as a discrete-time 
mapping: 

( )yxxxx ,,...,,F 21 innnn −−−=  
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being  the position of the anatomical point of interest at the n-
th time step,  a generic non-linear function;  the number of 
previous positions to be taken into account; the set of 
“exogenous'' inputs that describe the task to be performed; that is, 
for reaching movement, the desired initial and final positions of 
the forefinger tip, together with the duration 

nx
F i

y

T  of the movement 
of the effector. 

In this way we allow the network to learn how duration affects 
the shape of the trajectory as well as the velocity profile. This 
reformulation of the problem, that is the determination of the 
appropriate mapping , finds its immediate neural counterpart in 
a recurrent auto-regressive network. Supervised training can then 
be accomplished by means of - for instance - the popular Back-
Propagation Through Time (BPTT) algorithm 

F

[15]. A second-
order regression scheme (i.e. with ) allows the network to 
“sense'' both the velocity and the acceleration of the checkpoint. 
This leads to an almost complete definition of the outer 
architecture. The insertion of a single hidden layer with full 
connectivity simply meet a parsimony requisite (fig. 2). 

2=i

 

x(n-1)
y(n-1)
z(n-1)
S1(n-1)
S2(n-1)

T
x_start
y_start
x_end
y_end

D

D

x(n-2)
y(n-2)
z(n-2)
S1(n-2)
S2(n-2)

x(n)

y(n)

z(n)

S1(n)

S2n)

 
Figure 2.  Neural network topology  

 
Figure 3. Cost function versus number of epochs 

 
This kind of network could easily be extended to learn more 

general (i.e. non time-invariant) mappings. To this purpose some 
“floating'' state neurones are added to the output layer; their 
responses are fed back to the hidden layer according to the same 
second-order scheme. 

During the training phase the recurrent network has to be 
unfolded in time in order to compute the error signals coming 
from all the points of the trajectory. It therefore becomes like a 
huge multi-layer perceptron with massive weight sharing, whose 
depth depends on the duration of the movement. Because of that 
gradient components are likely to span a very large dynamic range 
both across weights and training epochs. 

The training process, supported with the Davidon-Fletcher-
Powell algorithm [16][17], represents the first step of quantitative 
validation of the network capabilities. The fig. 3 shows the cost 
function versus the number of training epochs in a manufacturing 
press experiment. The total square error (SSE) in a point to point 
lifting movement, after 1000 epochs, leads to a RMS error on the 
single trajectory point about equal to 39 mm. Starting from 
random weight values, it can be noticed that the function 
decreases about 2 orders of quantity in magnitude. Fluctuations 
take in evidence the “line-search” phase, in other words the 
research of the direction along which the function value is 
minimised. 

5. SOME RESULTS 
The experimental tests have been performed on the upper part of 
the human body, in particular on the movements of arms and head 
with respect to the trunk. The analysis has been focused on three 
different tasks, chosen for their industrial relevance, in three 
different environments: 

• Workbench tasks, assembly line environment  
• Driver operating controls, car interior environment  
• Mechanical press tasks, manufacturing environment  

performed by individuals belonging to 5th, 50th and 95th 
percentile. 

Figure 4: Kinematic chain
 

The adopted structural model consists of a kinematical chain with 
11 segments and 8 nodes (fig. 4) for a total number of 30 DoFs, 
arranged as follows:  
• Pelvis:  The pelvis has 6 degrees of freedom to define its 

position and orientation with respect to the laboratory 
reference system.  

• Trunk:  The trunk has 3 degrees of freedom to define its 
orientation with respect to the pelvis.  

• Head: The 3 DoFs describe the head orientation with respect 
to the trunk. 

• Clavicles: The 2 DoFs approximately describe each clavicle 
orientation with respect to the trunk. The rotation of the 
clavicle along its longitudinal axis has been neglected.  

• Arms: The 3 DoFs describe each arm orientation with respect 
to the clavicles. 
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• Forearms: The single DoFs describes each forearm 
orientation with respect to the arms. It’s the rotation angle of 
the forearm with respect to the arm along the normal around 
to the plane defined by the longitudinal axis of both the arm 
and the forearm. 

• Hands: The 3 DoFs describe each hand orientation with 
respect to the forearms. 

Roughly speaking, the set of hypotheses on the structural 
model can be possibly disproved by evaluating the residual 
discrepancies, i.e. the three-dimensional distances 

di,k= y ti k i k, ,−  between the actual marker positions and those 

derived from the model (virtual markers).  
In particular, the inter-frame process has carried out a mean value 
of the this set of distances about equal to 3.5 mm, approximately 
10 times less than the correspondent intra-frame value. 

However, the validation process has remarked some criticism 
on the pelvis marker, probably due to the skin motion on the Great 
Trochanters. This phenomenon, particularly present in a car 
driving experiment (driver operating controls), has led to a 
maximum distance from the measures about equal to 15 mm. 

The obtained mean value of the whole set of distances di,k is 
about 5 mm, which is an acceptable value for the scope of this 
work.  

The tables 1 and 2 show the results for some 
anthropometrical measures and for the angular positions of 
the rotational joints. 
 

 
 μ (cm) σ (cm) 

Clavicle 
 

Arm 
 

Forearm 

20.1 
 

33 
 

27 

5e-01 
 
1 
 
1 

 
Table 1.  Maximum likelihood values for the average and 

variance estimates of the anthropometrical lengths 
 

 
 ψ (°) θ (°) ϕ (°) 

Trunk 
 

Head 
 

Clavicle 
 

Arm 
 

Forearm 
 

Hand 

3 
 
2 
 
4 
 
5 
 
- 
 
2 

1 
 
4 
 
3 
 
3 
 
1 
 
2 

2 
 
3 
 
- 
 
2 
 
- 
 
3 

 
Table 2. Mean values of the uncertainties for the Eulero’s 

angles estimates (ϕj, θj, ψj) 
 

 
The following architecture has been validated: 7 inputs, 5 hidden 
neurones, 2 state neurones and 3 target neurones. To take into 
account the dependence by the past positions, a feedback of 2nd 
order mechanism has been introduced, on the state and on the 
output, by means of 4 and 6 supplemental neurones. 

 

 

Figure 5: Experimental set-up 
 

 
An extrapolation protocol has been developed to achieve this 

goal. A right- handed subject, belonging to the 50th male 
percentile, has been experimentally surveyed in reaching point to 
point movements of the right arm among 9 points on to the same 
plane (fig. 5). Considering the whole task formally composed by 
the forward and the backward action, 460 complete movements 
have been acquired and processed at a sample rate of 50 Hz. The 
figure sketches the experimental set-up. 
Leave one out procedure has been performed on the neural 
architecture implemented to support simulation in assembly, car 
driving and press environments. One movement at time is 
extracted from the training set, the network and its response is 
then compared with the left-out item. The fig. 6 and 7 show an 
example of this test performed on the hand effector net, both for 
the forward and for the backward movement, in 24 experimental 
trials of the same movement. We extracted the movement from 
the boundary of the training set region (in particular from the 
upper-left corner) in order to test the extrapolation capabilities of 
the network.  

 
 

 
Figure 6:  Hand effector net for the backward movement  
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Figure 7: Hand effector net for the forward movement 

 
 

In qualitative terms, the predicted trajectory appears very 
smooth and regular, even if training data coming from the 
identification procedure have also fitted measure noise. Moreover, 
also temporal features seem to be learned.  

The results intended as discrepancy between neural prediction 
and data left out from the training process, have been expressed in 
terms of average value of the RMS error on the repetitions of the 
same task. For the forward movement it varies from 6.28 to 48.51 
mm on the single co-ordinate. In the other case it is from 6.55 to 
50.08 mm. These values appear quite plausible with respect to the 
intrinsic variability of the movement, intended as the discrepancy 
among different trials of the same task, performed by the same 
subject. 

6. CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

Previous paragraphs show the reliability of our ANN data-
driven approach to human movement generation. We fixed a 
methodology tailored to relieve ANN core from the burden of any 
kind of structural identification. This method appears more 
flexible and no model is embedded. 

We use MLPs, checking the predictability of the movement in 
term of expectations. The validation procedure demonstrated the 
reliability of the architecture in learning and simulating the human 
movement in tasks, chosen for their industrial relevance, in three 
different environments. In particular, encouraging results arise 
from extrapolation capabilities also in tasks not explicitly taken 
into account during the design. 

New involved aspects about the simulation of the postural 
behaviour became visible. The possibility of learning kinematical 
time sequences of clustered individuals, weighted by their joined 
uncertainties, appears very interesting. 
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