
Tiled Hardware-Accelerated Texture Advection
for Unsteady Flow Visualization

Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini

School of Computational Science and Information Technology
Florida State University, USA

Abstract
Particle tracking in liquid and gaseous fluids is a very useful
technique to better understand flow dynamics. In this paper, we
develop a novel algorithm to track a dense collection of particles
in unsteady two-dimensional flows. To capitalize on the rapid
improvements in graphic hardware technology, the algorithm is
exclusively based on subsets of the OpenGL implementation of
SGI. Making use of several proposed extensions to the OpenGL-
1.2 specification, animations of over 53 10× are produced at one
frame/sec. on an SGI Octane with EMXI graphics. These
animations are based on a multidomain implementation that
overcomes hardware limitations such as insufficient memory in
the hardware frame buffers to store temporary arrays and the low
number of bits per color channel in buffers and textures. High
image quality is achieved by careful attention to edge effects,
noise frequency, and image enhancement. We provide a detailed
description of the hardware implementation, including temporal
and spatial coherence techniques, multidomain tiling, and the
effect of hardware constraints on the precision of the algorithm.

Keywords: unsteady, vector fields, multidomain, hardware,
advection.

1. Introduction
Traditionally, unsteady flow fields are visualized by time integra-
tion of a collection of pathlines that originate from user-defined
seed points. However, dense representations of the flow provide
the highest information content [3,5,8,9]. While the resulting
flow fields are more realistic, they are very expensive to
compute.

As the performance of commodity 3D graphics cards continues to
increase at a rate substantially faster than that dictated by
Moore’s law (doubling of CPU performance every 18 months),
an increasing fraction of the visual computations will be
subsumed by the graphics processor. New hardware capabilities
of the next generation of graphics cards are leading to a new
class of visualization algorithms [6,7]. They will within a few
years outperform the current algorithms. The trend towards
increased reliance on hardware is clearly demonstrated in the
evolution of OpenGL, a graphic standard introduced in 1992.
Since then, a large number of extensions have been proposed,
and a subset of them adopted. Among the more interesting
proposed extensions advanced in 1997 is the notion of a pixel
texture [1], a form of indirect addressing that allows many
algorithms to operate on a per pixel basis that were not
previously possible [6].

In this paper, we propose a tiled hardware-accelerated algorithm,
based on texture advection, to animate a dense set of particles in
two-dimensional unsteady flows. The algorithm is equivalent to a
texture advection scheme applied to every pixel and highly
accelerated by available hardware features on advanced graphic
workstations. The algorithm makes use of texture maps, hard-
ware framebuffers, pixel textures, color matrices, and blending.
Seamless animations are achieved through a careful treatment of
inflow and outflow boundaries, temporal and spatial correlation,
and loss of high frequency information. To handle increased
domain sizes, the size of several intermediate temporary buffers
is decreased and the physical domain is tiled with a collection of
overlapping textures. The basic algorithm described in [7] is
applied in each domain with special treatment at the domain
edges. Particles are represented by a two-color noise distribution,
stored in a texture.

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. Texture advection is described in
Section 3. The algorithm is examined in Section 4, which
addresses notation, an overview of the algorithm, data structures,
and the algorithm itself. Constraints imposed by the hardware
are addressed in Section 5, followed by concluding remarks in
Section 6.

2. Related Work
Several techniques have been advanced to produce dense repre-
sentations of unsteady vector fields. Best known is perhaps
UFLIC (Unsteady Flow LIC) developed by Shen [9], and based
on the Line Integral Convolution (LIC) technique [2]. The spot
noise technique, initially developed for the visualization of
steady flowfields, has been extended to unsteady flows [3].
Advection of the spots along pathlines produces animations of
unsteady flows. Max and Becker [8] propose an alternative
texture-based algorithm to represent steady and unsteady flow
fields. The basic idea is to advect a texture along the flow either
by advecting the vertices of a triangular mesh or by integrating
the texture coordinates associated with each triangle backward in
time. When texture coordinates or particles leave the physical
domain, an external velocity field is linearly extrapolated from
the boundary. This technique attains interactive frame rates by
controlling the resolution of the underlying mesh. Heidrich et al.
[6] describe the first hardware-accelerated implementation of
LIC to depict the directional information of 2D steady flow
fields. A white noise texture is advected along streamlines,
forward and backward, to generate several advected textures.
When blended together, these textures produce the desired LIC
image. Two major contributions of this algorithm are the

delegation of the numerical integration of texture coordinates to
the graphics hardware and the use of pixel textures to handle
indirect addressing on a per-pixel basis.

3. Problem Formulation
We are interested in computing the temporal evolution of
particles in an Eulerian framework. A fluid particle at position
x and time t is tagged by the value of a function (,)N tx ,
encoded as a two-color noise texture. This particle describes a
trajectory (, ,)t τ[as a function of τ , called a pathline. At each
point along the pathline, the velocity of the particle is

((, ,),)t τ τv [; the trajectory satisfies the evolution equation

(, ,)

((, ,),)
d t

t
d

τ τ τ
τ

=[

v [(1)

From (1), if a particle passes through the point x at time t and
the point ’x at time ’t , the coordinates of these points are
related by

’

’ ((’, ’,),)
t

t

t dτ τ τ= + ∫x x v [(2)

Since (,)N tx describes an invariant particle property, it is
constant along a pathline:

 (,) (’, ’)N t N t=x x (3)

Equation (3) is the departure point for the algorithms of Max [8]
and the one presented in this paper, both based on texture
advection. Max computes the particle property at x by backward
integration to 0t = . As stated, the method does not work for
unsteady flows and he has proposed alternative formulations [8].
Instead, we compute the particle property given the flow state at
any previous time. Another distinction between the two algo-
rithms is that Max advects the texture coordinates on a coarse
triangular mesh while we advect every texel independently.

In the sections that follow, we describe a new algorithm that
computes (,)N tx based only on OpenGL routines that directly
access the hardware available on an Indigo 2 SGI with a
Maximum Impact graphics board or on an SGI Octane with
EMXI graphics.

4. Hardware Implementation
Our implementation largely capitalizes on new per-pixel
operations and other recent OpenGL extensions provided by
some SGI graphics boards. The core of the texture advection
process relies mainly on two hardware features: 1) additive and
subtractive blending between framebuffer content and incoming
fragments from textured polygons or pixel arrays, and 2) an
indirection operation, called pixel texture, that uses a buffer as a
lookup table into a texture. These hardware operations are
further detailed in Section 4.1.

The basic advection algorithm follows the scheme proposed by
Heidrich et al. [6]. Particle coordinates, stored in the red and
green color components of a framebuffer, are blended with
velocity textures to implement a first order discretization of (2).
A pixel texture is then applied to these new coordinates to advect
the property texture N computed at the previous time step.

We extend this implementation through several innovative steps
to treat edge effects, to compensate for the nonzero divergence of
the flow, and to address the loss of accuracy that results from the
discrete nature of the algorithm. Moreover, we extend the
maximum size of each animation frame from 256 256× [7] to an
arbitrary size using texture tiling.

In the next section, we describe the notation used in the remain-
der of the paper. Section 4.2 summarizes the algorithm, Section
4.3 enumerates the required data structures, and Sections 4.4 and
4.5 describe the inner and outer algorithms.

4.1 Notation
This section describes a simplified notation that maps to the
hardware operations used in this paper. In our algorithm, data is
drawn from, read to, and copied between a combination of
buffers and textures. During these operations, incoming data can
be blended into the destination buffer, colored using per-pixel
color tables, and color transformed using color matrices.

Buffers and Textures. The physical variables used are coordi-
nates and velocity. They are stored either in a 2D/3D texture or
in a 2D hardware RGB framebuffer. However, rather than using
an entire buffer allocated by the X window visual for this
purpose, the hardware back and front buffers are divided into
several sub-buffers from which data can be read and to which
data can be written. In the remainder of the paper, a buffer refers
to any subset of a hardware framebuffer used as a storage area.
Buffers and textures are denoted by B and T respectively with
subscripts that characterize their function or content. Finally, the
depth of a buffer or texture refers to the number of bits in a
single color component, unless otherwise noted.

Blending operations. Blending is a per-pixel operation executed
when an incoming fragment merges with the corresponding pixel
in the destination buffer. Additive (B+) and subtractive (B−)
blending of a texture T into a buffer B are denoted by

 (,)B α β± B T� � equivalent to α β← ±B B T� � (4)

The first argument of B± is always a buffer; the second
argument can be a texture, a pixel texture, or another buffer.

Pixel texture. Proposed by SGI in 1997 as an extension to
OpenGL [1], pixel textures have been used to advantage in a
variety of algorithms ranging from steady-state LIC to a wide

1 1 1(,) (, ,)x y r g b=A

y

y

x

x x

y

y

x

s
r

(,) (, ,0)x y r s=A

2 2 2(, ,0) (, ,)r s r g b=T

1 1 1(,) (, ,)x y r g b=B 2 2 2(,) (, ,)x y r g b=B

A A

B B

T

Figure 1. Pixel transfer: (left) A color triplet is transferred
directory to the framebuffer. (right) Under the action of a
pixel texture, a color triplet is used to address a texel,
whose value is then sent to the frame buffer.

range of sophisticated lighting models [6]. Pixel textures allow
the projection of a texture onto the framebuffer through the
intermediary of a texture coordinate map [1]. Rather than directly
affecting the color in the framebuffer (see Figure 1, right), the
color components of the incoming fragment are interpreted as
texture coordinates. The texel color at these coordinates is then
sent to the framebuffer (Figure 1, left). Let A be an array of
pixels and T be a texture. The action of a pixel texture opera-
tion, denoted by (,)P A T , can be viewed as the construction of
an intermediate array of pixels ()T A , where the RGB compo-
nents of the pixels in A , acting like texture coordinates (, ,)r s t ,
are replaced by the corresponding texel values of T . The resul-
ting pixel array can be stored or blended with the contents of a
buffer B . If a pixel array A is contained in a buffer ′B , the
composite blending operation is expressed as

 (, (,))B P± ′B B T (5)

Read, draw, and copy. A draw operation, denoted by (,)D B T ,
copies the contents of a texture T into a buffer B . In practice, a
polygon, texture-mapped with T , is drawn into B . A read ope-
ration, denoted by (,)R T B , takes the contents of a buffer, and
transfers it to a subset of a texture, called a sub-texture, of equal
size. In practice, we use the OpenGL extension glCopyTexSub-
ImageEXT() to directly write to texture memory. Finally, a copy
operation from a buffer 1B to a buffer 2B is denoted by

2 1(,)C B B . Although a part of the proposed SGI extensions to
OpenGL, the copy operation does not work when the second
argument is a pixel texture. In practice, the copy operator is
replaced by the combination glReadPixels() and glDrawPixels()
at the cost of accessing conventional memory. Both these
routines work with pixel textures.

4.2 Algorithm Overview
Jobard et al. [7] described a hardware-based algorithm that com-
putes the advection of a two-dimensional dense representation of
particles in an Eulerian framework. Their algorithm consists of
the following steps: noise advection, edge correction, fractional
update, noise injection, and noise blending. All the calculations
are performed in a physical domain of 256 256× pixels. As
larger domains are considered, e.g. 512 512× , the algorithm
suffers from a lack of real estate in the available hardware-
enabled buffers. It can no longer be applied. As an alternative,
we break up the physical domain into a series of overlapping
tiles (Figure 2). The main obstacle to overcome is the treatment
of particles that advect across adjacent tiles.

The algorithm is composed of an inner and an outer part. The
inner component operates successively on each subdomain. A
noise is first advected on each tile. Simultaneously, the particles
that originate from outside the tile are identified, and referenced
through a mask. In the outer algorithm, these masks are used to
reconstruct a global seamless texture. This global texture is then
corrected to suppress artifacts caused by particles entering the
physical domain, and for the effects of flow divergence. The
rebuilt and corrected noise is then divided into tiles that serve as
input textures for the next inner iteration. The global noise
texture is finally blended with previous global textures to
generate animation frames with appropriate degree of spatio-
temporal correlation.

4.3 Data Structures
The algorithm makes use of textures and buffers of different
sizes. The next two sections consider them in turn.

4.3.1 Textures
The algorithm manipulates textures of three different sizes:
global textures that cover the entire physical domain, tile
textures that store information from each subdomain, and velo-
city textures that contain the velocity field. Their respective sizes
are denoted by the subscripts l (large or global), s (small or
tile), and v (velocity). The overall width, height, and depth of
textures are powers of two and are identified with the uppercase
letters W , H , and D respectively. We define the useful part of
a texture as the subregion that contains the data. Its dimensions
are denoted by the lowercase letters ()w W≤ , ()h H≤ , and

()d D≤ . Uppercase dimensions are the smallest power of two
greater than the associated lowercase dimensions. Uppercase (A)
and lowercase (a) letters are related by

 2log ()2 aA   =

The physical domain is lw pixels wide and lh pixels high and is
covered by a global texture of dimension l lW H× . Global
textures include NT (two-color noise texture), %

NT (a texture
with 2-3 percent random noise), and R

NT (a texture with random
uniform noise). The physical domain is evenly divided into xn
tiles, along the x axis, and yn tiles along the y axis. All the
subdomains of dimension s sw h× are stored in a collection of
textures of size s sW H× . Tile textures are labeled by a
superscript ij to indicate their position along the x and y axes.
Adjacent subdomains overlap by c pixels along both axes. The
width of the overlap region is at least the maximum distance
traveled by a particle in a single iteration. The tile textures used

Figure 2. Tiling approach. (a) An initial noise texture T
is (b) subdivided in smaller textures with an overlap
region. (c) Individual sub-textures are advected and (d)
are composited to form the advected version of T . (e)
Consecutive advected textures are blended together.

(a)

(b)

(d)

(c)

(e)

(a)

(b)

(d)

(c)

(e)

are
0xT (initial coordinates), ij

xT (coordinates in subdomain ij),
and ij

TT (noise in subdomain ij).

Finally, a 2D vector field defined on a v vw h× Cartesian grid at

vd time levels is stored in two 3D textures (,)− +v v
T T of size

v v vW H D× × .

4.3.2 Buffers
Buffers come in two flavors: large and small. There are two large
buffers. TB (stored in the front buffer) contains the current
advected noise that characterizes individual particles, while CB
(stored in the back buffer) contains the blended noise that
encodes the spatio-temporal correlation of the particles. Four
smaller buffers, defined by the size of a subdomain, are stored in
the back buffer and share space with CB . These buffers are xB ,

’xB , ∆xB , and NB . They are used in the inner algorithm to
update ij

NT , the noise texture inside a given subdomain. Their
individual roles are described in Section 4.4.1.

Given a physical domain defined with l lw h× pixels, a tile size
of at most w h× pixels, and a subdomain overlap of c pixels,
the minimum number of buffers required in the x direction is

 l
x

w c
n

w c

− =  − 
 (6)

with a similar formula for yn in the y direction. One easily
shows that the minimum possible size for the tile is

(1)l x

s

x

w c n
w

n

 + −=  
 

4.4 Inner Algorithm
Each tile is processed sequentially to produce a collection of
coordinate and noise textures (ij

xT and ij
NT). In succession, the

particles are advected (Section 4.4.1), the tile edges are handled
(Section 4.4.2), and corrections are introduced to offset the low
number of available bits in the framebuffer (Section 4.4.3).

4.4.1 Advection
A series of 2D time-dependent vector fields that cover the entire
physical domain are stored in 3D velocity textures whose third
dimension represents time. The two velocity components ()u t
and ()v t are stored in the red and green color components of the
texture after normalization by

 max max(| () |,| () |)
t

V u t v t=

To accommodate the fact that texture values can only be positive,
the velocity field is split into its negative and positive
components ()+ −= −v v v and stored in two separate 3D
textures, −v

T and +v
T [6]. Furthermore, since the entire 3D

(, ,)x y t vector field is often too large to completely reside in
texture memory, only two time slices of the velocity texture are
stored at any given time. They are updated any time the current
time is outside the range encompassed by these slices.

The buffers xB , ’xB , ∆xB and the textures
0xT , ij

xT store x
and y coordinate values in their red and green color compo-
nents. Among them, only

0xT and ij
xT are explicitly initialized.

The size of their useful region is s sw h× . Anchored at the lower
left corner of the texture, the initial values associated with each
texel reflect their relative location within the physical domain:

0

0.5 0.5
(,) (,) ,ij

s s

x y
x y x y

m m

 + += =  
 

x xT T

where max(,)s s sm w h= , {0,1,..., 1}sx w∈ − , {0,1,..., 1}sy h∈ − ,

{0,1,..., 1}xi n∈ − , {0,1,..., 1}yj n∈ − .

Coordinate update. Particle positions at time ’t t h= − are
computed from a first order discretization of (2):

 [(,) (,)]h t t+ −′ = − −x x v x v x (7)

Since the velocity components lie in [0.,1.] , h is related to the
maximum possible displacement p (in pixels) of a particle
between two consecutive positions by / sh p m= . To achieve a
sufficient degree of spatio-temporal correlation during an anima-
tion sequence, h must be sufficiently small. In practice, we find
that [0.5,3]p ∈ yields good results.

In term of graphic hardware operators, xB , which initially
contains the initial particle locations stored in ij

xT , is blended
with texels from the velocity textures, and the result is stored in

’xB (steps 2-4 in Table 1 and Figure 3). In the pixel textures of

1

Fixed
Textures

Buffers
Changing
Textures

−vT

+vT

xB

∆xB

′xB

0xT

234

5

6

7

891112

1310

14

NB ij
TT

ij
xT

B−

B+

C

B+

B−

C

C

B−

C

B−

D
R

D

R

Outer Algorithm

1

Fixed
Textures

Buffers
Changing
Textures

−vT

+vT

xB

∆xB∆xB

′xB ′xB

0xT

234

5

6

7

891112

1310

14

NB ij
TT

ij
xT

B−

B+

C

B+

B−

C

C

B−

C

B−

D
R

D

R

Outer Algorithm

Figure 3. Flowchart of inner algorithm.

 Initialize
0xT and ij

xT
 Generate global noise texture NT
 Divide NT into subdomain noise textures ij

NT
 Insert blue frame one pixel wide around ij

NT

 0t =

 while max()t t<

 // Inner Algorithm

 for 0j = to yn

 for 0i = to xn

1 (,)ijD x xB T

2 ’(,)C x xB B

3 ’(, (, []))B hP t+
−

x x v
B B T

4 ’(, (, []))B hP t−
+

x x v
B B T

5 ’(, (,))ij
N NC P xB B T

6 1 0(,)ij RGB RG B
N NR C →T B

 // Fractional update

7 (,)D
0x xB T

8 ’(,)C ∆x xB B

9
0’(, (,))B P−

∆x x xB B T

10 (,)B+
∆x xB B

11
0’(, (,))C P∆x x xB B T

12 ’(,)B−
∆x xB B

13 (,)B−
∆x xB B

14 (,)ijR x xT B

 // Outer Algorithm

15 (,)R
T ND B T

16 (,)ij
ij T NBα B T

17 %(,)XOR
T NB B T

18 (,)ij
ij N TR T B

 Insert blue frame one pixel wide around ij
NT

19 (,)N TR T B

20 1 1(,)RGB RRR
C NB Cα →B T

 t t h= +

steps 3 and 4, the (R,G,B) components of xB are interpreted as
texture coordinates into −v

T and +v
T . Red and green values

range from 0.0 to /s sw m and /s sh m respectively; blue values
are set to zero. The active region of the velocity textures have
coordinates that range from 0.0 to /v vw W , /v vh H , and /v vd D
respectively. Scale and bias operations are used to map the
subregion of the velocity texture corresponding to the current tile
into xB . The use of 3D textures lets the graphics hardware
interpolate the velocity field in space and time. The velocity is
finally scaled by the integration step size h and added to xB

using blending operations via a call to the OpenGL extension
routine glBlendColorEXT().

Noise update. The second part of the advection process (steps
5,6) computes (’,)N tx in each subdomain using the pixel texture

’(,)ij
NP xB T and stores the result in ij

NT . Scaling factors
/red s ss m W= and /green s ss m H= applied to the colors stored in

’xB serve to reference the useful part of ij
NT . Although any

texture can be used for the advection, we choose a two-color
noise texture for its lack of spatial correlation. This property is
also required for the treatment of domain boundary effects
(Section 4.4.2), noise injection (Section 4.5.3), and noise
blending (Section 4.5.4).

The re-initialization of the coordinate buffer to
0xT in step 7

completes the translation of (3) into hardware-based operations
and implements a basic texture advection. However, several
issues must be addressed to correct and enhance the advected
textures. They are addressed in the following sections.

4.4.2 Edge Correction
A common problem with texture advection techniques is the
inadequate treatment of particles that originate from outside the
physical domain [8]. A proper treatment of edge effects requires
that these particles be identified and new property values
assigned to them without introducing extraneous visual artifacts.
We capitalize on the OpenGL property that states that before
storage into a buffer (or into a texture), floating point color
values are clamped to the range [0,1] . Consequently, particles
that enter the current tile are pixels in ’xB that have at least one
of their red and green components set to zero or one; they
reference tile boundaries. For clarity of exposition, let BS be the
set of pixels in ’xB that reference a point on the boundary, and
let IS be the remaining set of pixels in ’xB . By construction, all
the particles in IS originate from within the interior of the
physical domain. We seek to replace pixels in BS by a new
random two-color noise.

To achieve this, we store in a single RGBA texture, both the
advected noise, and a mask that defines IS . The noise is stored
in the red color component of the RGBA texture and is mapped
to a black and white noise during the noise-blending phase (steps
19,20). The mask is built during the noise advection phase (steps
1-6) by making the pixels in BS transparent in the noise texture

ij
NT . By placing a one pixel wide blue border around ij

NT (as an
initial condition and between steps 18 and 19), all pixels in BS
acquire a blue component during step 5. While reading the noise
buffer into ij

NT , the blue channel is transferred to the alpha
channel using a color matrix transformation 1 0RGB RG BC → in step
6. Values of zero and one in the alpha channel are finally
exchanged by applying a scale and bias of –1 and 1 respectively.
At this point, ij

NT is transparent in BS (shown as a white region
on ij

NT in Figure 3 and 5) and opaque at all other locations. In the
outer algorithm, the partially transparent noise textures ij

NT are
used to reconstruct a global noise texture where only texels that
correspond to pixels in IS are visible (Section 4.5.3).

4.4.3 Coordinate Re-initialization
During the texture advection phase, the coordinate buffer ’xB
was updated to reference the location of incoming particles and a
new noise texture was computed from the advection of the

Table 1. Algorithm for unsteady flow advection on tiled
domains.

current noise texture. The subdomain coordinate buffers must
now be reinitialized in preparation for the next iteration, taking
into account certain constraints imposed by the discrete nature of
the algorithm.

The displacement of particles between successive frames must be
small enough to maintain a good spatio-temporal correlation.
However, if the displacement of a particle is such that both old
and new positions lie within the same pixel, the updated noise
texel remains unchanged. Even worse, once the coordinates are
reinitialized to their initial values (stored in

0xT) in step 7, any
subpixel displacement (also called fractional displacement) is
lost and cannot be recovered: the motion of the particle is
suppressed (step 5). This is very well illustrated in the central
region of the circular flow shown in Figure 4 (left).

The above discussion suggests that the fractional displacements
of particles be accumulated, and the noise texture be updated
once the accumulated displacement exceeds the width pw of a
pixel. The distance from 0x to ’x is the sum of an integer dis-
placement vector

 1
0 0(’) (int)[(’)]pw−− = −n x x x x , (8)

whose components are each an integral number of pixel widths,
and a fractional displacement vector

 0 0 0(’) (’) (’) pw− = − − −[[[[Q [[,

whose components each have a magnitude less than pw . If the
fractional displacements were neglected (omit steps 8-13), ij

xT
would receive 0x in step 14. The goal of the additional steps 8
through 13 is to extract 0(’)−[[from ’xB and store

0 0(’)+ −x [[into ij
xT in preparation for the next iteration.

The result of tracking fractional displacements is shown in
Figure 4 (right), and is contrasted with the advection of particles
in a circular flow without this correction. (left)

4.5 Outer Algorithm
Starting from the collection of tiles ij

NT (generated in step 6 in
the inner algorithm), the outer algorithm reconstructs a global
noise texture NT and blends it into the cumulative [GE1]buffer

CB .

4.5.1 Extended Notation
A new notation is necessary to describe operations between
textures and buffers of different sizes. For example, it may be
necessary to read a subregion of a buffer into a tile texture (e.g.,
step 18), or to blend a tile into a subregion of a buffer (e.g., step
16). The size disparity between the two arguments of an operator
is denoted by a subscript ij . In practice, the operator is applied
successively to all tiles.

4.5.2 Noise Reconstruction
The initial phase of the outer algorithm constructs the global
advected noise in a global buffer TB from the textures ij

NT
(steps 15-17). Before compositing the individual tiles into this
buffer, it is necessary to draw a background random texture R

NT
into TB . This serves to provide new noise in edge regions where
particles originate from outside the physical domain. Recall that
in these regions, the ij

NT have a zero α component. Rather than
construct a new random texture at every step, a random texture
translation is applied to R

NT , which avoids any possible temporal
correlation. This is accomplished with a texture coordinate trans-
formation matrix.

Next, each tile ij
NT is composited into TB with the simple alpha

blend

 [1 ()] ()ij ij ij
T N T N Nα α← − +B T B T T

If a particle lies in an overlap region, there is always at least one
texture whose corresponding texel is opaque (by construction). In
the event there are two such textures, the noise value is the
same. Consequently, the result of the blending is independent of
the order in which the tiles are processed. This property may

Figure 4. Texture advection along a circular flow defined
by (,) (,)u v y x= − . Left: fractional coordinate correction is
disabled. Right: fractional correction is enabled. A dye has
been released to reveal the effects of long time integration.
(See [7] for details on dye advection)

 Inner
Algorithm

Fixed
Textures

Buffers
Changing
Textures

R
NT

%
NT

CB

TB

NT

15 16

17 19

20

18ijR

Bα

R

ijBαD

XORB

ij
TT

Inner
Algorithm

Fixed
Textures

Buffers
Changing
Textures

R
NT

%
NT

CBCB

TB

NT

15 16

17 19

20

18ijR

Bα

R

ijBαD

XORB

ij
TTij
TT

Figure 5. Flowchart for outer algorithm.

prove useful in parallel extensions of the algorithm that harness
the power of multiple graphics cards. If one refers back to the
discussion of edge correction in Section 4.4.2, it is clear that the
succession of alpha blends of ij

NT into TB results in a seamless
noise pattern with new noise only appearing at the edges of the
physical domain.

4.5.3 Noise Injection
In regions of positive flow divergence, adjacent pixels in ’xB
that reference the same texel location in ij

NT after the backward
integration step will share the same color. Therefore, the overall
spatial frequency of the successive noise textures decreases.
Figure 6 clearly demonstrates this decrease for a source after
several time steps. To maintain a constant noise frequency, a
small amount of new noise is injected into TB at every iteration
(step 17). Through experimentation, we find that randomly
inverting the color of two to three percent of the noise texels at
each time step is sufficient to maintain an approximately con-
stant high frequency noise without significant loss of temporal
correlation.

In practice, a black texture %
NT with a 2-3 percent random

distribution of white texels is XORed into TB with an OpenGL
blending mode. The injection process affects a different set of
texels at each time step by applying a random texture translation
matrix to %

NT . The contents of TB are then redistributed among
the tiles ij

NT (step 18) for use in the next inner iteration.

4.5.4 Noise Blending
We introduce an acceptable level of spatial and temporal
correlation into each frame by emulation of long time exposure
photography, which integrates an image over a finite time inter-
val. This effect can be simulated with standard alpha blending
formula

 (1)C C Nα α= − +B B T

The use of noise textures implies that the only spatial correlation
after filtering is along a pathline segment. Besides smoothing the
animation, the blending process adds directional information to
static frames, a feature not present in [8] for example. A two-
color black and white noise maximizes the contrast of the final

blended image. Good visual results are obtained with 0.1α = .

5. Hardware Constraints
When developing hardware-accelerated visualization algorithms,
the finite depth and size of buffers and textures affect both the
accuracy of the algorithm and its computational cost. These
effects are most pronounced when correcting the texture
advection for fractional displacements and when choosing an
optimal depth for the velocity textures.

The notion of fractional displacement is intrinsically linked to
the interplay between the depth of the framebuffer and the width
of the tiles. To illustrate this notion, consider a framebuffer with
12 bits per color component and a square tile 256 pixels wide. In
step 5 of the algorithm, the new noise texture (’())ij

NT x x is
computed with a pixel texture; ’x is stored in ’xB with a
precision of 12 bits. Two elements conspire to reduce the number
of significant bits in ’x . First, ij

NT is only 256 texels wide.
Second, the texture interpolation uses GL_NEAREST to
maximize noise contrast. The combined result is that only the
first eight bits of ’x affect the advected noise. We call the
remaining four bits the fractional part of the particle
displacement, used to increase the accuracy of the texture
advection (Section 4.4.3).

To quantify the above statements, we denote by bn the number
of bits per color component in the framebuffer, and by 2 sn the
size of the smallest square texture that covers a tile, where

 2logs sn m=   

Clearly, there are b sn n− bits available to store the fractional
part of the particle displacement. With a framebuffer depth of 12
bits and a range of tiles with sizes that range from 256 down to
32 pixels, the number of fractional bits ranges from 4 to 7, the
latter providing for advection with the highest accuracy but at the
highest cost per frame. Commodity graphics boards provide 8-bit
framebuffers. They would require tiles that are 16 times smaller
to achieve a comparable accuracy.

An internal texture format that is consistent with the depth of the
buffers is necessary to prevent a loss of accuracy during pixel
transfer operations. OpenGL accommodates several different
internal texture formats with various depths. We use a
GL_RGBA12_EXT internal format (12 bits per component) for
coordinate textures. We minimize the use of texture memory
without loss of accuracy by storing the velocity field and the
noise textures in the GL_RGBA8_EXT and GL_RGBA2_EXT
internal formats respectively.

6. Conclusion
This paper describes a hardware-accelerated implementation of
an algorithm to visualize unsteady flow visualization based on a
per-texel advection technique.

Figure 6. Result of blending 10 successive noise textures.
Without noise injection (left), with continuous three
percent noise injection (right). Source field (,) (,)u v x y= .

We solved the problems that arise in texture advection algo-
rithms when they are applied to the long-time integration of
time-dependent data. Incoming flow regions are handled by
injecting uncorrelated noise where particles enter the physical
domain. Long time advection is achieved through a restoration of
the texture frequency at each time step without significant loss of
temporal correlation. Spatio-temporal correlation is enhanced by
the application of a temporal filter on advected textures. A tiling
procedure is introduced to increase the useful size of the image,
to increase the accuracy of the texture advection and to reduce
the memory requirements associated with the temporary hard-
ware buffers.

A 2D cut of an axisymmetric flow that represents the interaction
of a Mach 7 shock with a longitudinal vortex [4] is shown in
Figure 7. Each frame took one second to compute on an Octane.
Had the complete pixel texture specification been implemented,
the time would have been reduced to 0.55 seconds per frame.

At present, only the Maximum Impact and the Octane have the
required hardware in their graphics engines. However, these
features deserve to be incorporated into a wider class of
machines. We expect the algorithm presented in this paper to
become increasingly competitive with the best software
implementations as the power and cost of graphics cards
continues to outpace the development of new computational
chips. On the other hand, the precise control afforded by a
software implementation will often lead to higher quality images.

7. Acknowledgments
We would like to thank David Banks for lively discussions in all
areas of visualization, including several valuable suggestions to
improve the quality of this paper. We acknowledge the support of
NSF under grant NSF-9872140.

8. References
 [1] Advanced Graphics Programming Techniques Using

OpenGL. SIGGRAPH ’98 Course, http://www.sgi.com/-
software/opengl/advanced98/notes/notes.html, 1998.

 [2] Brian Cabral and Leith C. Leedom. Imaging Vector

Fields Using Line Integral Convolution. Computer
Graphics Proceedings. In James T. Kajiya, editor,
Annual Conference Series, pages 263-272, ACM, August
1993. ISBN 0-201-58889-7.

 [3] Wim C. de leeuw and Robert van Liere. Spotting
Structure in Complex Time Dependent Flow. Technical
Report CWI - Centrum voor Wiskunde en Informatica,
Technical Report SEN-R9823, September 1998.

 [4] Gordon Erlebacher, M. Yousuff. Hussaini, and Chi-Wang
Shu. Interaction of a Shock With a Longitudinal Vortex.
Journal Fluid Mechanics, 337 :129-153, April 1997.

 [5] Lisa K. Forssell and Scott D. Cohen. Using Line Integral
Convolution for Flow Visualization: Curvilinear Grids,
Variable-Speed Animation, and Unsteady Flows. IEEE
Transactions on Visualization and Computer Graphics,
1(2) :133-141, June 1995.

 [6] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl.
Applications of Pixel Textures in Visualization and
Realistic Image Synthesis. ACM Symposium on
Interactive 3D Graphics. pages 127-134, ACM, April
1999.

 [7] Bruno Jobard, Gordon Erlebacher, and M. Y. Hussaini.
Hardware-Accelerated Texture Advection for Unsteady
Flow Visualization. IEEE Visualization 2000. To appear.

 [8] Nelson Max and Roger Crawfis. Flow visualization using
moving textures. Proceedings of ICASE/LaRC
Symposium on Visualizing Time Varying Data. In David
C. Banks, Tom W. Crockett, and Stacy Kathy, editors,
NASA Conference Publication, 3321, pages 77-87, 1996.

 [9] Han-Wei Shen and David L. Kao. A New Line Integral
Convolution Algorithm for Visualizing Time-Varying
Flow Fields. IEEE Transactions on Visualization and
Computer Graphics, 4(2) :98-108, 1998.

Figure 7. The figure was extracted from a 500-frame animation sequence of a longitudinal vortex interacting with an unsteady
shock [4] on a domain of 1024 372× pixels. Note that both magnitude and direction of the velocity field are visible in this static
picture. To enhance the contrast, we blended the final image with a texture of velocity magnitude. Lighter areas denote regions
of higher velocity.

