
Realtime view-dependent isosurface visualization for regular volume data

Maxim V. Kazakov
Moscow Institute of Physics and Technology

Dolgoprudny, Russia

Abstract
The problem of the interactive visualization of isosurfaces in
volume data arises in medical applications, visualization of
mathematical simulation results and many other areas. We
propose an adaptive approach for interactive extraction and
visualization of isosurfaces that employs hierarchical
representation for the volume data and view-dependent isosurface
reconstruction at the different levels of detail. To speedup
extraction process an isosurface is constructed only in the visible
part of the dataset and its updates are performed incrementally as
observer moves. Possible cracks between isosurface parts
constructed at different hierarchy levels are eliminated by
proposed stitching procedure. Due to low dataset preprocessing
costs our approach has been proven to handle dynamical updates
in volume data.
Keywords: interactive isosurface reconstruction, volume datasets,
Marching Cubes, level of detail.

1. INTRODUCTION
Isosurface construction is one of widely adopted approach for
scalar volume datasets visualization. Methods constructing
polygonal approximation of isosurface are appealing in the
applications where rendering rates are need to be near real ones
because of powerful 3D hardware accelerators boosting rendering
of polygonal meshes. Existing polygonal isosurface construction
methods are based on Marching Cubes algorithm [9], which
performs triangulation for every cell of a scalar volume dataset
thus reconstructing the whole isosurface. Several methods exist to
disambiguate cell triangulation and eliminate “holes” that are
possible in a mesh produced by original MC algorithm [2,5,10].
However simple and robust, Marching Cubes algorithm produces
unacceptably huge amount of polygons for datasets that are
typical for CT and numerical simulations. Besides, mesh
construction times also make a real-time visualization for such
datasets almost impossible.
To handle such a mesh complexity one can employ various mesh
simplification methods on a post – process step
[3,4,5,7,8,11,14,16] but it does not help with mesh construction
times that are generally determined by the dataset’s dimensions.
The latter issue is of a concern for methods that construct
hierarchies of datasets with successively smaller dimensions from
source dataset that are employed for a coarser isosurface
representation [13,15]. Some of them are based on the octree
approach where each of the eight neighboring cells corresponding
to octree nodes can be recursively combined into a larger cell that
corresponds to parent octree node.
Selecting a hierarchy level for cells to be processed during
isosurface construction one controls a level-of-detail for resulting
surface. This idea had its further refinement in [15] where
isosurface is constructed with dataset’s hierarchy level varying

over dataset parts thus producing varying level-of-detail in
resulting surface’s parts. A distance to observer and local surface
curvature determines hierarchy level selected at a dataset part.
Another selection criteria can be applied as well.
Construction of isosurface patches at different dataset hierarchy
levels imposes problems with isosurface continuity [5]. This issue
was addressed in [5, 15] where special stitching procedure for
isosurface patches extracted from different hierarchy levels was
proposed.
Implementation of this adaptive hierarchical approach in
isosurface construction was shown to be a basis for real-time
isosurface visualization [15]. Although the method for interactive
isosurface visualization this paper describes is based on similar
ideas it proposes certain optimizations on isosurface extraction
and visualization processes. Another issue concerned by method
proposed is a visualization of dataset modifications. The paper
layout is as follows: in the Section 2 we overview hierarchical
construction approaches for faster extraction and visualization of
isosurfaces. Section 3 addresses stitching isosurface patches
generated at different level of hierarchy. Section 4 describes how
we employ view dependency to minimize processing and amount
of polygons produced during isosurface construction. Section 5
addresses visualization of dynamically updated datasets. Paper is
finalized with results described in Section 6. Conclusion and
plans for future are in Section 7.

2. HIERARCHICAL ISOSURFACE
CONSTRUCTION
Hierarchical approach in volume visualization implies usage of
datasets originated from the source dataset that can be used to
construct successively coarse representations. Some methods
construct such a dataset hierarchy applying low - pass filter to the
source data several times and then adaptively process smoothed
dataset regions extracting isosurface in it [5,15]. Although
creating appealing visualization results, those methods require
complex and lengthy filtering of the dataset.
Another approach used to construct such a dataset hierarchy
employs subsampling. In this case the even samples along each
direction are employed to create a subsampled dataset
representing another level of hierarchy.
If datasets from neighboring hierarchy levels differ for two times
in size for each direction, it is easy to construct an octree over
their cells. As one cell contains eight smaller ones from neighbor
hierarchy level, the corresponding octree node refers eight other
nodes corresponding to smaller cells. Octree nodes may carry
some information used during isosurface extraction/construction.
In our case the main goal is checking an existence of an
isosurface patch in cell. When using an octree the node existence
can represent a surface patch existence for a corresponding cell so
an isosurface can be constructed by simply traversing existing

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

nodes in octree and pruning traversal as required level-of-detail is
reached.
As shown in [15], usage of more than 2 or three detalization
levels and corresponding dataset hierarchy levels results in
distracting visual artifacts during isosurface construction so a
support for all log2N hierarchy levels (where N is a number of
samples along direction for original dataset) is excessive.
Moreover, usual octree organization where each node requires up
to eight (possibly 4-byte) pointers to its children might be
memory consuming. We propose another hierarchical data
structure that holds information about surface patch presence in
dataset cell. For each dataset hierarchy level a bitmask is created
and supported. Each cell containing isosurface patch in it or one
of its children cells has corresponded “one” in bitmask while
others have “zeroes” set in it. Such a bitmask adds a memory
overhead no more than 12,5 % for each dataset hierarchy level if
byte is used for scalar value and even less if four-byte floats or
eight-byte doubles are used. The memory overhead imposed by
bitmask allows checking an isosurface patch existence in a cell
from any hierarchy level of interest using a single bitmask lookup
instead of traversing of several octree levels. Moreover, the
amount of operations required for bitmask construction does not
exceed corresponding amount for an octree construction.
Summarizing above it could be said that our approach while being
based on hierarchical isosurface extraction / construction ideas as
illustrated in [15] uses its own hierarchical data structures that
speed up checking an isosurface patch existence in any cell from
any dataset hierarchy level.

3. STITCHING PROCEDURE
Straightforward usage of different dataset hierarchy levels for
LOD isosurface reconstruction leads to certain problems with
continuity in resulting polygonal mesh [5]. As stated in [15] it is
due to scalar field discontinuities introduced by subsampling or
low – pass filtering used to construct levels of dataset hierarchy.
Cracks in surface produced at the boundary of dataset regions
with different detailing in them are illustrated at Fig. 1. That is
why after applying regular MC-like method for hierarchical
isosurface construction an additional stitching procedure should
be performed for elimination of possible cracks.
This procedure may modify isosurface patch at finer detailing
level, coarser detailing level [5] or both. Our approach employs
fine-detailed patch modifications and assumes that neighboring
cells are reconstructed using the same or neighbored dataset
hierarchy levels (i.e. they differ for no more than two times in
their dimensions).
Let us consider rectangle ABCD that is on the boundary between
regions with different detailing. Linear interpolation of values at
corresponding edge centers A’, B’, C’, D’ between values at
vertices of the hosting edges AB, BC, CD, DA leads to patches
coincidence at the edges mentioned causing points P” and Q”
where isocurve intersects rect’s edges to became the P’ and Q’.
But this does not eliminate cracks in internals of ABCD [15]
because isocurve is approximated by straight line at coarser
detailing level while being a broken line at the finer one. That is
where our stitching procedure comes into play. It is proposed to
straighten (if necessary) isocurve at the finer detailing level by
moving isocurve vertices that lay inside rectangle ABCD to their
neighbors on rectangle edges (moving P to P’ and Q to Q’). After

that modifications the finer isocurve completely coincides with
coarse one.
Because result of stitching procedure is ruled only by data from
the coarser level the original value at the center of ABCD is of no
concern. However, it is required for initial construction of the
finer isocurve. Actual value at the central vertex is of no concern
but its sign choice should be ruled by a disambiguation method
employed during polygonizing of isosurface. In our work the
“preferred polarity” [2] approach is used so the value sign in face
center is chosen to comply with “polarity” used during cell
polygonizing.

Cell from finer level Cell from coarser level

Actually, only sample signs at face corners as well as interpolated
samples signs in the centers of the face edges determine all vertex
replacements performed during stitching. Thus all possible (valid)
combinations of the signs can be easily summarized in lookup
table to speedup stitching process.

4. VIEW-DEPENDENT ISOSURFACE
RECONSTRUCTION
Knowledge about observer's position during visualization helps in
performing certain optimizations on the visualization process. As
was already mentioned in Section 2, the isosurface in different
volume parts can be refined adaptively according to some criteria.
Distance to a current observer' position provides us with one of
such criterion that allows to leave distant surface parts at coarser
levels of detalization thus reducing the number of polygons
constructed. This criterion is employed in [15] where the
following correspondence between distance to observer and
recommended detailing level is proposed:

⎥⎦
⎥

⎢⎣
⎢

⋅
+

+=)
3

(log1 2 d
dsLevel (1),

where is a recommended dataset hierarchy level, Level ⎣ ⎦x is
an integer less or equal to x , is a distance to a cell center and s

3=d is a diagonal of the level 0 cell. This formulation
assumes that cells from different hierarchy levels used for

A A

Fig. 1. P’Q’ - isocurve at coarser level
 P”PQQ” - initial isocurve at finer level
 P’PQQ’ – isocurve at finer level with

interpolated values at A’,B’,C’ and D’

P’

P

Q

P”

Q’ Q” Q’

P’
D D

A’

C’

B B
B’

CC

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

isosurface reconstruction have their edge length depending on
hierarchy level chosen as follows:

levelLength 2= , (2), []Nlevel ..0∈

where is a hierarchy level used, is a maximal
hierarchy level employed, zero hierarchy level corresponds to an
original dataset.

level N

Another issue is that a camera frustum formed by clipping planes
bounds a visible volume region that is only a fraction of the whole
volume. One can restrict isosurface construction process to be
performed only in a visible volume part. This condition should be
considered for substantial processing decrease for the data to be
visualized in applications where observer does not see a whole
dataset at a time or this situation rather rare [6].
Both issues mentioned above can be considered along with
isosurface mesh reuse and its incremental updates caused by
changes in observer’s position and dataset modification to reduce
processing times during real-time visualization process and
number of polygons isosurface mesh consists of. Mesh cache or
reuse is one of the major differences of our method from [15]
where it is reconstructed from the scratch for each frame.
Supporting incremental mesh updates for moving observer results
in several difficulties in its implementation. First, level-of-detail
changes for reasonable amount of cells after observer make its
step in dataset. This causes a necessity to locate those cells and
update isosurface patches in them according to a new detailing
level. Next, a movement of a camera frustum requires processing
the certain dataset parts for an isosurface extraction and merging
with existing mesh while eliminating isosurface patches
associated with cells that leave frustum.
More serious concern is that cached mesh is constructed for
certain threshold value and should be dropped if threshold value
changes causing difficulties in interactive adjustment of the latter.
That is why our approach is appropriate when user spends more
time navigating in a visualized dataset and adjusts isosurface
threshold value rather occasionally.

4.1 Initial isosurface construction
Before construction of initial visible isosurface part it is necessary
to initialize data structures required for hierarchical isosurface
reconstruction, e.g. surface containment bitmasks for each dataset
hierarchy level of interest. This initialization starts from cells for
original dataset where each cell is examined for a containment of
an isosurface patch in it. Checking succeeds if dataset samples at
cells’ vertices have different signs compared to threshold resulting
in “one” set in a corresponding place in bitmask for original
dataset level. Otherwise, “zero” is set.
Next, bitmasks for remaining hierarchy levels are initialized. This
initialization requires only bitmask from the previous level to be
available as “one” is set when one of child cells from previous
level has “one” set in bitmask from their level, otherwise “zero” is
set.
Initial observer’s position and viewing direction along with depth
of view controls a viewable volume part. For simplicity, this
volume part is approximated with axis – aligned box that contains
it. Isosurface construction starts with covering this box by cells
from coarsest dataset hierarchy level of interest. Each cell that has
isosurface patch in it (that is detected as a result of inspection of
the corresponding bitmask) is checked if its level is equal to one

given by (1). If it is a case, a cell gets triangulated and triangles
are added to resulting isosurface mesh otherwise its processed
recursively until level recommended by (1) is met. During
triangulation a stitching procedure from Section 3 is applied if
necessary. Information about non-empty (those having “one” bit
set in a corresponding bitmask) cells that meet criterion (1) is
added into hash table for a future usage. This hash table allows an
easy lookup for cell information by its position and level. If a
surface patch was constructed for a cell then cell information in a
hash table is updated with a reference to the triangles constituting
a patch.
This initialization activity results in isosurface mesh for a
viewable part of a dataset with detailing level depending on a
distance to observer. Another result is the prepared internal
structures (such as bitmasks and hash table) that will be used for a
handling of future mesh updates with observer movement and
dataset modifications.

4.2 Processing incoming volume parts
As observer moves, both position and size of the closest axis-
aligned bounding box containing camera frustum change. Let us
denote this bounding box at previous camera position as prevΩ

and currΩ at current position. Volume that comes into camera

frustum box at current frame is and it can be

broken into several axis-aligned boxes . For each such
box we apply procedure similar to one described in the previous
subsection to construct new isosurface part. The only difference
comes from the following consideration. When previous
isosurface part was constructed the cells intersecting its box
boundary were possibly added. Isosurface construction for the
new volume regions should account for those cells and omit from
processing those ones that intersect a common boundary of

prevcurr ΩΩ \

nBB ..1

Fig. 2. bounds prevΩ , bounds cells that cover

prevΩ , bounds currΩ , bounds cells that cover

currΩ , is a common part of currΩ and prevΩ
boundary, marks actually processed cells, marks
cells omitted from processing.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

prevΩ and . The result of applying this procedure is

illustrated in Fig. 2.
currΩ

4.3 Updating isosurface within camera
frustum
Besides adding isosurface parts for volume regions incoming into
camera frustum box the camera movement forces modifications in
the isosurface part that is already constructed.
First, for cells leaving the bounding box for camera frustum
corresponding triangular patches should be removed from
isosurface mesh. Second, for cells that remain in the bounding
box detailing level recommended by (1) may change so they (and
isosurface patches within them) should be replaced with ones
satisfying (1). Third, changed detailing level in cells mentioned
above requires updates in surface stitching with their neighbors.
Solution for all those tasks is based primarily on content of the
hash table described in Section 4.1. Effectively this hash table
contains information concerning all non-empty cells that met
criterion (1) and are within the bounding box for a camera
frustum for previous observer position. Traversing a cell list for
this hash table one may perform all update activities mentioned
above.
All cells in the list that are not contained by the current bounding
box are erased from the hash table along with their corresponding
triangular patches (if any) removed from isosurface mesh.
Cells that do not satisfy (1) (patches implied) are replaced for
their children or parent cells depending on increase or decrease of
recommended detailing level by (1).
Boundary conditions determined by a neighborhood with cells
from another hierarchy level are cached in cell information in the
hash table for easier detection of their changes. If such changes
have place then cell’s triangles are dropped and new ones are
created stitched with neighbor cells’ patches.
Accomplishing update tasks means that both isosurface mesh and
hash table is consistent with observer’s position and direction of
sight, hash table is ready to handle future updates in observer
parameters.

5. VISUALIZATION OF DYNAMICALLY
UPDATED VOLUME DATA
Real-time visualization of dynamically changing scalar data may
be employed to emphasize the dynamics of some monitoring or
scientific simulation results. Another application area concerns
usage of geometric environment constructed as isosurface for
some time-dependent scalar function in a virtual reality system.
Modifications of the source dataset have several follow-ups to be
considered. Besides dataset modification itself they may require
updates in simplified datasets for other levels of dataset hierarchy.
It is not the case if those datasets are just a result of subsampling
of the source dataset, but when they are obtained from original
dataset by a low-pass filtering (like in [15]) then this filtering
procedure must be applied once again. That filtering requires
reasonable computational resources and results in noticeable time
spent on it. That is why in our implementation filtering is not
supported (yet).
Another issue is related to necessity for updates in internal
structures employed during isosurface construction and

visualization. In our case those structures are bitmasks for each
dataset hierarchy level and cells hash table if changes occur in a
visible dataset part. Finally, updates in the dataset possibly cause
modifications in an isosurface mesh. Once again it is a case only
if visible portion of the dataset is modified.
All those issues are considered by the following update
procedure: completed dataset modifications make possible
updating bitmasks for each dataset hierarchy level. During
bitmask update the checking if a sample update in a dataset node
requires corresponding update in a constructed isosurface mesh is
eased by examining updates in the masks for each cell that
contain this node. If mesh update is necessary and node is within
visible dataset part then the hash table is used to lookup all non-
empty cells that contain this node and related triangular patches.
All patches (and, correspondingly, the isosurface mesh) are
updated according to changes in isosurface caused by sample
modification in node. As this update procedure completes for each
update in a dataset then both internal structures and the isosurface
mesh reflects the actual dataset contents and may be employed for
handling of the future updates in a dataset.
Some inefficiency in this implementation comes from the
consideration that update of a one dataset sample may require as
many as eight cell updates. If neighbor samples are modified then
cells that share them will be processed twice during update. To
reduce this overhead it is proposed to cache dataset updates based
on the spatial sample proximity and perform cell update for a
bunch of dataset sample updates.

6. RESULTS
An implementation was employed as part of a hybrid volume
modeling system [12,1] for fine-tuning of a model prepared on
previous modeling stages. In our implementation user can
interactively navigate and carve model when it seems fit. Fig. 3
illustrates high-resolution synthetic model with several detailing
presets – with no level-of-detail enabled and two intermediate
settings. Model is reconstructed and visualized from
256x256x256 dataset. Frame rates achieved were ranging from 3-
5 fps with LOD disabled and viewable volume dimensions of
100x100x100 (64700 triangles per frame, Fig. 3a) to 40-45 fps
with three levels of LOD enabled and same viewable volume
(5900 triangles per frame, Fig. 3c) on Intel Celeron 300A machine
with nVidia TNT graphics accelerator. This model was carved
using a sphere carver with its radius and position controlled
during carving. Modifications cover from 1% to 10% of the
model’s viewable volume and do not cause substantial drop in
frame rate making interactive carving possible. Carving results
are illustrated on Fig. 3e.

7. CONCLUSION AND FUTURE WORK
This work employs multiresolution dataset hierarchy to make
interactive level-of-detail isosurface visualization of scalar dataset
possible. Usage of frame-to-frame coherence along with clipping
the processing to a camera viewing frustum makes a difference of
our approach from analogs. Reuse of existent isosurface geometry
minimizes dataset processing during interactive navigation in it.
Adaptive level-of-detail isosurface reconstruction based on
multiresolution dataset hierarchy keeps polygon number in an
isosurface mesh moderate for interactive visualization with
sufficient detailing in surface areas close to observer. The

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

incremental mesh detailing updates performed as observer moves
allow keeping mesh up-to-date at a little processing cost.
Processing times for modifications in source dataset allow
interactive visualization of the changes affecting up to 10% of the
visible dataset volume. This renders interactive carving on the
visualized isosurface possible thus making for our approach usage
in an interactive volume modeling system.
Issues that remain to be addressed are the high cost of isosurface
threshold changes that is useful during interactive exploration of
scalar datasets and employment of filtered datasets for coarser
levels of dataset hierarchy that improves visual appearance of an
isosurface extracted. Both are subjects of our future work on
improvement of the approach.

8. ACKNOWLEDGEMENTS
Author would like to thank Prof. Alexander Pasko and Benjamin
Schmitt for supplied datasets and helpful comments on this paper.
Author would also like to thank for a support the chair of
computational mathematics of MIPT and Samsung Software
Membership.

9. REFERENCES
[1] V. Adzhiev, M. Kazakov, A. Pasko and V. Savchenko

“Hybrid system architecture for volume modeling”,
Computers & Graphics vol. 24, issue 1, Feb. 2000, pp.67-78

[2] J. Bloomenthal. "Polygonalization of Implicit Surfaces",
Computer Aided Geometric Design, vol. 5, 1988, pp. 341-
355

[3] J. Cohen, A. Varshney, D.Manocha, G. Turk, H. Weber, P.
Agarwal, F. P. Brooks Jr. and W. V. Wright. "Simplification
Envelopes", Computer Graphics, Proc. Ann. Conf. Series
(Proc. Siggraph'96), 1996, pp. 119-128

[4] M. Ech, T. DeRose, T. Durchamp, H. Hoppe, M.
Lounsberry, and W. Stuetzle. "Multiresolutional Analysis of
Arbitrary Meshes", Computer Graphics Proc. Ann. Conf.
Series (Proc. Siggraph'95), 1995, pp. 173-182

[5] T. He, L. Hong, A. Varshney, S. Wang. “Controlled
Topology Simplification”, IEEE Trans. on Visualization &
Computer Graphics, vol. 2, no. 2, 1996, pp. 171-184

[6] L. Hong, S. Muraki, A. Kaufman, D. Bartz, T. He, “Virtual
Voyage: interactive voyage in human colon”,
SIGGRAPH’97, Computer Graphics Proceedings, 1997,
pp.27-34

[7] H. Hoppe. “Progressive Meshes”, Computer Graphics, Vol.
30.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle. "Mesh Optimization", Computer Graphics Proc.
Ann. Conf. Series (Proc. Siggraph'93), 1993, pp. 19-26

[9] W. Lorensen, H. Cline. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”, Computer
Graphics, vol. 21, no. 4, 1987, pp. 163-169

[10] G. Nielson, B. Hamann. “The Asymptotic Decider:
Resolving the Ambiguity in Marching Cubes”, Proc.
Visualization’ 91, pp. 83-91, Oct. 91

[11] J. Rossignac, P. Borrel. “Multi-Resolution 3D
Approximations for Rendering Complex Scenes“, Modeling

in Computer Graphics, Springer-Verlag, June-July 1993, pp.
455-465

[12] B. Schmitt, M. Kazakov, A. Pasko, V. Savchenko "Volume
sculpting with 4D spline volumes", The 2000 International
Conference on Imaging Science, Systems, and Technology,
(CISST'2000: Las Vegas, June 26-29, 2000) (to appear)

[13] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.
"Decimation of Triangle Meshes", Computer Graphics, vol.
26, no. 2, 1992, pp. 65-70 (Proc. Siggraph'92)

[14] G. Turk. "Re-Tiling Polygonal Surfaces", Computer
Graphics, vol. 26, no. 2, pp. 55-64, 1992 (Proc. Siggraph'92)

[15] R. Westermann, L. Kobbelt, T. Ertl. “Real-time Exploration
of Regular Volume Data by Adaptive Reconstruction of Iso-
Surfaces”, The Visual Computer, (1999) 15, pp.100-111

[16] J. C. Xia, J. El-Sana, A. Varshney. “Adaptive Real-Time
Level-of-Detail-Based Rendering for Polygonal Models”,
IEEE Trans. on Visualization & Computer Graphics, vol. 3,
no. 2, 1997, pp. 171-183

Author:
Maxim V. Kazakov, a postgraduate of Moscow Institute of
Physics and Technology.
Postage Address: MIPT-7, Dolgoprudny, Moscow region,
141700, Russia
E-mail: max@crec.mipt.ru

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Fig. 3a. Viewable dataset of dimensions 113x92x103 with
64706 triangles in reconstructed isosurface with LOD
disabled. Frame rate is about 6 fps.

Fig. 3c. Viewable dataset of dimensions 113x92x103 with
5911 triangles in reconstructed isosurface with 3 different
levels of detail in it. Frame rate is about 45 fps.

Fig. 3b. Viewable dataset of dimensions 113x92x103 with
21067 triangles in reconstructed isosurface with 2 different
levels of detail in it. Frame rate is about 16 fps.

Fig. 3d. Solid shading view for the isosurface with 3 different
levels of detail in it.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

Fig. 3e. Interactive carving in the isosurface with 3 different
levels of detail in it.

Fig. 3f. Overall view of the model visualized. Red line
bounds fragment shown on previous figures.

International Conference Graphicon 2000, Moscow, Russia, http://www.graphicon.ru/

	1. INTRODUCTION
	2. HIERARCHICAL ISOSURFACE CONSTRUCTION
	STITCHING PROCEDURE
	4. VIEW-DEPENDENT ISOSURFACE RECONSTRUCTION
	4.1 Initial isosurface construction
	4.2 Processing incoming volume parts
	4.3 Updating isosurface within camera frustum

	5. VISUALIZATION OF DYNAMICALLY UPDATED VOLUME DATA
	RESULTS
	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

