
 

 
Abstract  -- An efficient algorithm for joint connectivity compression and fast rendering of triangle meshes is proposed in 
this paper. We introduce an ordering scheme for traversing the vertices in the mesh such that the connectivity 
information of a large proportion of faces can be captured with only very few bits. This scheme is simple and easy to 
implement, and yields comparable compression performance when compared to some of the reported methods.  
Moreover, the proposed compression scheme facilitates the efficient rendering of the mesh. Based on our reorganized 
representation of the mesh, we present an efficient algorithm to achieve so called Minimum Time Rendering (MTR) by 
using a relatively small FIFO mesh buffer.  The order of MTR rendering sequence is exactly same as the order of 
reordered faces of the mesh, thus the MTR rendering does not cost any additional computation. Moreover, due to the 
well predictable order of the vertices in mesh buffer, the proposed MTR algorithm avoids searching the buffer so as to 
access certain vertex data, which speeds up the mesh rendering.  
 
Index Terms -- Triangle mesh, Connectivity compression, Adjacency list, Minimum-time rendering 

I. INTRODUCTION 

Polygonal model plays an increasingly important role in medical imaging, manufacturing, video games, Geographic Information 
Systems, scientific visualization and industrial CAD applications. With the advent of range scanning systems, meshes of extreme 
complexity are rapidly becoming commonplace. These large meshes are very expensive to store and transmit. Therefore, more 
and more attentions have been drawn on the field of mesh compression, and a number of compression scheme have been 
proposed [1, 2, 3, 4, 5]. 
 
Generally, the computer graphics rendering pipeline consists of three conceptual stages: application (e.g., feeding commands to 
the graphics subsystem), geometry subsystem (i.e., per-polygon operations, such as coordinate transformations, lighting and 
clipping.) and raster subsystem (i.e., per-pixel operations, such as writing color values into the frame buffer, depth buffering and 
alpha blending.). When handling some large meshes, the pipeline stage that does geometry operations is heavily loaded, and 
consequently real time graphics hardware is increasingly facing a memory bus bandwidth bottleneck in which the large amount of 
geometry data cannot be sent fast enough to graphics pipeline for rendering due to slow memory subsystems. Therefore, it is quite 
desired that a mesh compression technique facilitate the fast rendering of the mesh.  
 
In this paper, we propose an efficient algorithm for joint connectivity compression and rendering of the triangle meshes. Section 
II describes the mesh compression algorithm. Based on our representation of the mesh, we present an efficient rendering scheme 
in section III. Section IV shows the experiment results for some typical 3D meshes. Finally we give our conclusions. 

II. COMPRESSION ALGORITHM 

VRML [10] is the emerging standard for the delivery of 3D content in a networked environment. In VRML standard, a polygon 
model with V  vertices and F  faces is generally represented by a vertex coordinates array V , a face array F  and one or more 

optional property array such as surface normal, color and/or texture coordinates. 

A. Vertex reordering 

In the following, we propose a scheme for reordering the vertices in a mesh such that in this ordering a good proportion of the 
connectivity information is captured. The proposed vertex reordering has the following basic structure: We maintain a list R  that 
is gradually updated until it includes all the vertices in the mesh, and we call R  the “reordered vertex array”. The algorithm also 

produces a set of lists of the form Li : { }i
l

ii
i i

wwwr ,,, 21 L→ , Ki ≤≤1 ; which we refer to as “trimmed adjacency lists”, such that 

as the algorithm terminates R  is exactly: { }K
l

Ki
l

i
l Ki

wwwwwwr ,, , ,,, , ,,, , 11
11

11 1
LLLLL . 
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In detail, it works as follows. We pick an arbitrary initial vertex r1  in V  and set { }1rR = . Set ROOT= r1 . Let w1
1  be an arbitrary 

neighbor of r1  and define the first list L1  to be { }11
2

1
111 1

,,, : lwwwrL L→ , where 11
1 1

,, lww L  are decided by starting from w1
1  and 

enumerating the neighbors of r1  in a clockwise or counter-clockwise fashion that depends on the input mesh. Notice that in the 

above notation l1  is exactly the valence of root r1 , i.e., )valence( 11 rl = . We then update R  by appending to it 11
1 1

,, lww L . Thus, 

at this stage of the algorithm, { }11
11 1

,,, lwwrR L= . 

 
We proceed as follows to build KLLL ,,, 32 L  and update R  as each list is built.  

• Set i = 1 

• While VR < , 

⇒ 1+= ii  
⇒ Set ROOT to be the vertex right after its current position in R ;  

⇒ Set =ir ROOT. (For example, if i = 2 , then r w2 1
1=  in the above notation.) 

⇒ Set iL : { }i
l

ii
i i

wwwr ,,, 21 L→ , where Li  consists of exactly the neighbors of ri  in the mesh which have not 

appeared in R . As in L1 , the order of vertices in Li  is decided by enumeration in the same orientation. (The 

vertex wi
1  has yet to be specified, but we omit the details here.) Note: Unlike for i = 1, )valence( ii rl <  and can 

even be zero (in this case, Li  is an empty list). 

⇒ Update R  by appending i
l

i

i
ww   ,1 L  to its end. 

• End while 

• Set root ri+1  to be the vertex in R  right after ri . 

Note that r1  and w1
1  can be chosen arbitrarily, but once they are fixed, then the ordering is determined uniquely. Fig.1 (a) shows 

how the vertices are traversed in a small mesh. In this example, 13=V , 5=K . Trimmed adjacency lists Li  we generate are 

shown in Fig.1 (b), and the final reordered vertex array is { } 12 , ,2 ,1 ,0 L=R . We can see that the list with root 34 =r  is empty. 

 

 
Fig.3 shows the traversal order of the Venus model (black solid line). The blue dot is the initial vertex r1 . Notice that while the 

order of traversal does not necessarily form a path on the graph of the mesh, a large proportion (99.7% in this example) of 
adjacent vertices v vi i+1  indeed form edges of the underlying graph.  

B. Connectivity encoding 

We compress the connectivity of the mesh exactly at the same time of the above vertex reordering process. By definition, each 
vertex in the original mesh appears in the reordered vertex array R  exactly once, as shown in Fig.2 (a), where r1  is the initial 

vertex, Wi  is the trimmed adjacency list with root ri , thus in this notation { }KWWWrR ,,,, 211 L= . Fig.2 (b) shows the 

corresponding code bits we generate. 
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Fig.1 (a) Vertex traversing and reordering;  (b) Trimmed Adjacency lists; (c) Connectivity encoding. 
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Every vertex in i

K

i
W

1=
U  is assigned a bit of type I and II. For notational convenience, we are going to denote the type I and II bits 

associated with w j
i  by )(0

i
jwa  and )(1

i
jwa  respectively. The type III and IV bits associated with ri , Ki ≤≤2  are denoted by 

)(2 ira  and )(3 ira  respectively.  

1)  Type I bits 

The bit )(0
i
jwa  records whether w j

i  is the last vertex in the list Wi . 

2)  Type II bits 
We need to distinguish two cases: ilj <  and ilj = . 

• [ ilj < ]: )(1
i
jwa  records whether { }i

j
i
ji wwr 1,, +  is a face in the input mesh. For example, in Fig.1 the face (1,7,8) is in this 

form, so a1 7( )  is set to 0. Note that { }i
j

i
ji wwr 1,, +  doesn’t necessarily form a face, although it doesn’t happen in the example 

mesh used in Fig.1. Empirical observation suggests that most tuples { }i
j

i
ji wwr 1,, + (more than 98.7% in all our test cases) are 

indeed faces in the input mesh, so in our convention most of a w j
i

1 ( )  are set to zero and hence a simple entropy coding on 

the bit stream Kilj
i
j i

wa ,,1 ;1,,11 ))((
LL =−=  achieves good compression. 

• [ ilj = ]: )(1
i
jwa  records whether { }1,, +i

i
li rwr
i

 is a face in the input mesh. For example, the face (1,8,2) has this form, so in 

Fig.1 a1 8 0( ) = . As in the previous case, most tuples { }1,, +i
i
li rwr
i

 (more than 88.5% in all our test cases) are found to be 

actual faces in the mesh. 

For later reference, the faces captured by bits )(1
i
jwa  are denoted by F1 , as shown by gray faces in Fig.1 (c). 

3) Type III bits 
a ri2 ( )  records whether the list Wi  is empty or not. For example, in Fig.1, 0)2()1( 22 == aa , 1)3(2 =a . 

4)  Type IV bits 

Let 




∅=
∅≠

=
+ ii

i
i

i
Wr

Ww
r

 if       

  if        
)(NEXT

1

1 , i
li i

wr ′
′

=)PREV(  where ii <′  is the largest index such that wi ′  is nonempty. Then )(3 ira  

records if { })(NEXT),(PREV, iii rrr  forms a face in the mesh. In Fig.1, (1,6,7), (3,9,4) and (4,9,10) are all examples of faces of 

this form. Unfortunately, there is no non-example in the mesh used in Fig.1, but in other more complicated mesh we have tested, 
{ })(NEXT),(PREV, iii rrr  can fail to be a face, but very rarely. Again, based on this empirical observation, entropy coding applied 

to ( ( )) , ,a ri i K3 2= L

 yields good compression. All faces in above form are denoted by F2 , as shown by green faces in Fig.1 (c). 

 
5) Handling other faces 

At each vertex list Li , after encoding the faces described above, we check if there still exist any “left faces” which have not been 

encoded, and the root ri  is one of its bounding vertices. We denote left face at ri  as the form { }i
j

i
ji mmr 2,1,  , , , Jj ≤≤1 , where J  
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(a)                                                                                           (b) 

Fig.2. This figure shows the code bits generated by our compression algorithm. 
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is the number of left faces at ri . To encode these left faces, we record the number J  and the two difference values 

i
i
j

i
j rm −= 1,1,δ  and i

i
j

i
j rm −= 2,2,δ  for each face. Because after traversing the vertices in adjacency-list order, three vertex indices 

of each face in F  are very close, we can reduce code bits by encoding the difference pairs i
j 1,δ  and i

j 2,δ . For example, the face 

(5, 7, 6) in Fig.1 is a left face, we record two difference values are 2575
1,1 =−=δ  and 1565

2,1 =−=δ  respectively. We denote all 

left faces as )(\ 21 FFFFL U= , as shown by red face in Fig.1 (c). 

 
At the decoder, the decompression algorithm reads the compressed representation from the input bit stream and enumerates the 
face set F1 , F2  and FL . Table.2 shows the decoded faces and their corresponding membership for the simple mesh in Fig.1. 

Notice that in comparison with original format of the input mesh, the decoded mesh have the following properties: (1) All faces 
are reorganized in the increasing order with regard to their first vertex indices; (2) For each face, the first index is the smallest 
among three indices of its bounding vertices. In the following sections, we will show that above properties are beneficial to MTR 
rendering of the mesh. 

III. MINIMUM TIME RENDERING 

In the traditional polygon-rendering pipeline, bus traffic between the graphics subsystem and memory can become a bottleneck 
when rendering geometrically complex meshes. In a triangle mesh, each triangle is typically represented by its three vertices, 
where each vertex contains three coordinates specified by floating point numbers, and possibly some other components such as 
color, normal and texture coordinates. Therefore the vertex data transmission is expensive, and it is desirable to minimize the 
number of times this data must be loaded into graphics pipeline from memory during rendering the mesh. 
 
The traditional wisdom of efficient rendering occurs to be based primarily on the idea of triangle strip [7, 8]. The basic 
observation is that a long strip of triangles can be rendered roughly 3 times more efficient (in terms of the amount geometry 
information needed to be sent through the graphics pipeline) than a straightforward scheme based on triangle-by-triangle 
rendering. Implementing such triangle strips require a set of three vertex registers in the graphics processor. The use of larger 
vertex register set has the potential to further reduce geometry bandwidth by another factor of nearly 2. Deering [6] suggests the 
use of an on-board vertex buffer of sixteen vertices. The input mesh is represented as a stream of variable length instructions that 
load vertices into the buffer and use buffer entries to form generalized triangle strips. Bar-Yehuda and Gotsman [9] proposed a 
MTR rendering algorithm such that each vertex of the mesh is sent through graphics pipeline only once by using graph separating 

algorithms combined with divide-and-conquer strategy. They show that to render an arbitrary mesh with V  vertices, a buffer 

size VC  is both necessary and sufficient, where C  is between (1.649, 12.72). 

 
In order to reduce the vertex data sent to graphics pipeline during rendering, the key is to reorder the faces within the mesh so as 
to maximize references to vertices already loaded in buffer. As described in previous section, our proposed compression scheme 
traverses all vertices of the input mesh in a very compact order, i.e., adjacency lists, and the vertex indices of each face change 
accordingly with respect to this new vertex order. Moreover, all faces are reorganized into a well predictable order, as described 
by properties (1) and (2) in previous section. These properties facilitate MTR rendering of the mesh. In the following, we 
describe our MTR rendering algorithm for mesh ),( FVM , where V  and F  are the reordered vertex list and reordered face list. 

A. Algorithm 

ALGORITHM: MTR 
Description. 
        Rendering the reorganized mesh in minimum time. 
Input. 

V -- vertex list of mesh M , i.e., }1-, 1, ,0{ VV L= ; F -- face list of mesh M . 

Result. 
        Rendering sequence of M , and the required buffer size b . 
 
Internal variables. 

bV : vertices in buffer 

} ) , ,(  form  thehas  i.e.,   , of icesfirst vert  theis   ,  {)( ⋅⋅∈=′ vffvFffvF  
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Procedure ),(MTR FV :    

1. ∅=bV , 0=b , 0=i  

2. While ∅≠F  

3.        iv focus =                                                                           /* pick a focus vertex sequentially */ 

4. If bfocus Vv ∉  

5.         push( focusv ), }{ focusbb vVV ∪= , }{\ focusvVV =  

6. Let }  )( of vertex bounding  theis | {maxmax focus
v

vFfvvv ′∈=  

7. If }max{max bVv > , set }  , ,2}max{ ,1}max{ { max
* vVVV bb L++=  

8. push( *V ), * VVV bb ∪= ,  *\VVV =                         /* vertices in *V  are needed for rendering )( focusvF ′  */ 

9. If bVb < , then bVb =                                                  /* update the required buffer size */ 

10. Render )( focusvF ′  

11. )(\ focusvFFF ′=                                                          /* faces in )( focusvF ′  have been rendered */ 

12. pop( focusv ), }{\ focusbb vVV =                                        /* focusv  will not be needed any more */ 

13. 1+= ii  
 

B. Correctness and related properties 

[I] The above algorithm always terminates after no more than V  steps:  at each stage, we pick one vertex as focusv , and render 

)( focusvF ′ . Therefore, after every vertex in }1-, 1, ,0{ VV L=  has become focusv , all faces in F  will be rendered, thus 

∅=F . 

[II] Each vertex is sent to mesh buffer only once:  at each stage, once )( focusvF ′  has been rendered, focusv  will be popped out of 

the buffer. Since this point, focusv  will not be needed any more (due to the properties (1) and (2) described in previous section), 

thus focusv  will never be sent to buffer again. 

[III] The vertices in bV  are exactly in increasing order (with regard to their indices): This is an immediate consequence of step 8. 

This property implies that we do not need to search the buffer to access certain vertex data during the above procedure, which 
speeds up our MTR rendering. 

[IV] The buffer is served as a FIFO buffer: it is due to [III] and the fact that each vertex in }1-, 1, ,0{ VV L=  becomes focusv  

sequentially. 
[V] The order of rendering sequence is exactly same as the order of the faces in F :  This can be easily derived from [IV] and 
property (2) in previous section. This implies that our MTR rendering algorithm does not cost any additional reordering 
computation. 
 
Fig.4 depicts the whole MTR rendering process of the simple mesh in Fig.1, and its face list F  is shown in Table 2. We can see 
that the required buffer size 9=b  in this example.  
 

IV. EXPERIMENT RESULTS 

We test our joint compression and MTR rendering algorithm on several typical meshes with different genus. Table.1 shows their 

experiment results, where b  is the required buffer size, VbC /= . We can see that the compression ratios of connectivity are 

all less than 2.5 bits/triangle, which is comparable to some reported compression schemes. From our experiments, we found a few 
factors that affect the compression ratio: (1) initial vertex of traversal: the compression efficiency can be improved more or less if 
a proper initial vertex is chosen. Unfortunately, we do not have a general guidance for the choice of initial vertex. In current 
implementation of our algorithm, it has been chosen arbitrarily; (2) regularity of the mesh: like some other compression methods, 
our compression performance generally depends on the regularity of the mesh, i.e., how uniform is the valence of vertices within 
the mesh. The more regular the mesh, the fewer left faces will be, and consequently the higher compression ratio can be achieved. 
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As shown in Table 1, the required buffer size b  of our MTR rendering is reasonably small. Surprisingly, the constant C  for all 
tested meshes are all around 2, which is much smaller than the upper bound 12.72 that Bar-Yehuda and Gotsman’s MTR 
algorithm [9] achieves in worst case. Instead of using a controllable mesh buffer in [9], the buffer used by our MTR algorithm is a 
FIFO buffer. Although it is hard to give an upper bound of b  for the proposed MTR rendering, through our experimental 
observation, our MTR algorithm works well in practice. From a theoretical point of view, it would be useful to develop precise 
mathematical models for “practical” meshes that can be used to understand under what situations would our proposed MTR 
rendering can be guaranteed to perform well. We are currently working toward this goal [13]. 

 

V. CONCLUSIONS 

The complexity of 3D models is growing rapidly due to the improved design and model acquisition tools, the widespread 
acceptance of the technology, and the need for higher accuracy. Over recent years, the delivery of 3D models over the network 
gain popularity. In interactive modeling, mesh reconstructing has to be done in real time. Therefore, it is urgent to develop bit-
efficient formats of 3D meshes for the purpose of both efficient compression and fast rendering.  
 
The proposed algorithm in this paper provides an effective tool for compressing the connectivity of triangle meshes with arbitrary 
topology, as well as efficient rendering. In order to hide connectivity information of the mesh in the vertex data, we traverse and 
reorder the vertices in adjacency-list manner, and generate the code bits at the same time. The compression performance is 
comparable to some of the reported methods. Based on the reorganized representation of the mesh, we present an efficient 
scheme for rendering the mesh in minimum time. The experiment results show that only a relative small buffer is required by our 
MTR rendering. Due to the FIFO characteristics of the buffer and the well predictable order of vertices in mesh buffer, our MTR 
algorithm does not need to search the buffer so as to access the desired vertex data, which speeds up the rendering procedure. 
Furthermore, the proposed MTR rendering is achieved without any overhead computation. The current version of the proposed 
algorithm is based on meshes that only contain triangular faces. However, it may be easily generalized to arbitrary polygon 
meshes. 
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Fig.3. The above figures depict the order of vertex traversal generated by our algorithms (black solid lines). The blue dot is the 
initial vertex r1 . Notice that while the order of traversal does not necessarily form a path on the graph of the mesh, a large 

proportion (99.7% in this example) of adjacent vertices v vi i+1  indeed form edges of underlying graph. 
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Fig.4. MTR rendering of the example mesh. 

Decoded faces Membership 

→1f  (0 1 2) 1F  

→2f  (0 2 3) 1F  

→3f  (0 3 4) 1F  

→4f  (0 4 5) 1F  

→5f  (0 5 6) 1F  

→6f  (0 6 1) 1F  

→7f  (1 6 7) 2F  

→8f  (1 7 8) 1F  

→9f  (1 8 2) 1F  

→10f  (2 8 9) 2F  

→11f  (2 9 3) 1F  

→12f  (3 9 4) 2F  

→13f  (4 9 10) 2F  

→14f  (4 10 11) 1F  

→15f  (4 11 12) 1F  

→16f  (4 12 5) 1F  

→17f  (5 7 6) LF  

 
Table 2. Decoded faces and their 
corresponding membership of the 
simple mesh in Fig.1.  
 
From above table, we can notice that 
the decoded mesh have the following 
properties: (1) All faces are 
reorganized in an increasing order with 
regard to their first vertex indices; (2) 
In each face, the first index is the 
smallest among three indices of its 
bounding vertices.  These properties 
facilitate MTR rendering of the mesh. 
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