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Abstract 
The commonly used solution for real-life 3D model representation 
is polygonal spatially consistent geometry, with texture, and, 
optionally, bump or displacement maps attached. Although the 
idea of displacement mapping is well known, there are just a few 
approaches to its efficient implementation. In this paper we 
present a technique that allows for efficient representation and 
rendering of real-life 3D models by getting a new angle on the 
displacement mapping concept. We introduce a new primitive that 
is defined as the range image of a small part of the model’s 
surface; therefore, it is called a spatial patch. The whole model is 
just a collection of patches with no connectivity information 
between them. Such a representation can be directly acquired by 
3D scanning machinery, and stored in a compact uniform form. It 
also allows for efficient visualization. In this paper we present 
some aspects of spatial patch rendering technique that utilize 
conventional z-buffer and benefit from modern features of 
computing units. We also discuss our experience in representing 
3D models by spatial patches, provide some practical results and 
set up directions for future work. Our preliminary evaluation of 
the technique makes us believe that spatial patch technology can 
be efficiently used in a wide range of applications dealing with 
real-life 3D data. 
Keywords: Rendering Primitive, Displacement Mapping, Spatial 
Patch, and 3D Model Representation  

1. INTRODUCTION 
Three-dimensional computer graphics has recently become 
ubiquitous at the consumer level due to the creation of affordable 
3D hardware accelerators. These accelerators, ranging from high-
end workstations to low-priced boards, are used for efficient 
visualization of triangles, which have been traditionally 
considered as a basic rendering primitive. Being very simple in 
shape, triangles seem to have met the right balance between 
descriptive capabilities and computational burden. Thus, the 
exponential growth of computing power, observed by Gordon 
Moore, is expected to allow for the rendering of 3D models of 
much better quality at the same speed. However, processing 
scenes consisting of a large number of small triangles leads to 
certain problems, such as bandwidth bottlenecks and excessive 
floating-point requirements [3]. A number of techniques have 
been developed in order to overcome these limitations. 
Texture mapping, originally proposed by Catmull [2], is now 
supported by most of 3D engines. This technique makes it 
possible to use larger and fewer triangles by filling polygon 
interiors with colors taken from an attached image, called a 
texture. Although this strategy allows for rendering more 
naturally looking models at interactive speeds, it works 
satisfactorily only for flat or slightly curved surfaces, such as 
walls and tables, and often fails representing complex shapes. For 

example, many objects in real-time games, which are considered 
the “killer application” for 3D graphics, exhibit noticeable 
artifacts revealing their polygonal nature. 
In order to simulate the roughness of polygonal surfaces, a 
technique called bump-mapping can be applied. Bump-mapping, 
invented by Blinn [1], does not change the underlying geometry 
of a model, but produces shading effects as if the polygons were 
wrinkled. Obviously, additional computational efforts are required 
to realize these effects, while they only seem to be helpful for 
small variations of the surface that is observed from the close to 
normal direction. However, the silhouette of a model remains 
unchanged; besides, the human vision system, having 
stereoscopic capabilities, is likely to recognize the proposed 
deception at close distances. 
Further improvement of bump-mapping leads to performing 
actual displacement of surface elements in addition to appropriate 
shading computation. Although this idea is simple and well 
known, there can be found quite a few implementations in 
literature. The proposed solutions are based on volumetric 
textures [8], ray casting [9] or remeshing of the initial geometry 
[4]. The latter technique seems to be the most amenable to 
hardware acceleration; however, its output is a collection of 
smaller triangles forming dense meshes based on original 
polygons. 
Obviously, polygonal representation of model geometry is not the 
only possible solution. There exist a large number of others, 
including implicit surfaces, NURBS, or subdivision surfaces, 
which still require additional knowledge about material and 
texture for realistic rendering. Besides, higher order primitives are 
usually decomposed into triangles before being visualized by 
graphics hardware. 
Another important thing to discuss with respect to surface-based 
representation is modeling. Since we usually require that 
computer models look very much like real objects, accurate 
acquisition of real-life 3D data is likely to be involved. Several 
scanning technologies have recently been developed to the level 
that allows archiving quite sufficient results [7]. Commercially 
available 3D scanners, based on time-of-flight, structured light, 
and other principles, produce point clouds or, more commonly, 
regular depth fields with spatial resolution as small as fractions of 
millimeter. Attached with a camera or 1D color sensor, this 
machinery is capable of generating range images (images with 
depth information for every pixel) at reasonable speed. 
Unfortunately, further registration of multiple scans and 
generation of a spatially connected, surface-based representation, 
which is required for efficient rendering, takes a much longer time 
and often degrades the acquired data. 
Range images possess several important qualities. First, being 
directly acquired by 3D scanning systems, they seem to be quite 
natural for representing fragments of a surface. Second, the 
corresponding data can be stored in a uniform manner, unlike 
today’s practice where textures, bump maps, and geometry 
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information are usually stored separately. Finally, range images 
have regular structure, which makes it possible to apply various 
optimization techniques during rendering. Thus, they are 
amenable to acquisition, storage, and efficient rendering. 
Guided by these considerations, in [5] we first proposed a new 
primitive for 3D model representation and rendering. This 
primitive, called a spatial patch, is defined as a range image of a 
small part of the surface taken in the direction close to the normal. 
In this context, the whole model is just a collection of spatial 
patches. No connectivity information between neighbor primitives 
is required for such a representation. 
In [5] we described in details one of the approaches to rendering 
of spatial patches. This approach utilizes conventional z-buffering 
strategy and is designed to benefit from advanced features of 
modern processing units, including “single instruction multiple 
data” (SIMD) operations and on-chip caches. In this paper we 
highlight some of the important aspects of the proposed rendering 
technique. 
Since we had no 3D scanning machinery at our disposal, we 
generated spatial patches from models represented by other 
means, such as polygonal meshes and point clouds. In this paper 
we also introduce some ideas that we used for development of the 
conversion algorithms and discuss our experience in operating 
with 3D models represented by spatial patches. 
Our practical results showed that significantly magnified views of 
models represented by spatial patches might experience some 
artifacts in the areas where neighbor patches overlap. However, 
the proposed representation proved to work very well for 
rendering with screen resolution comparable to resolution of 
range images treated as spatial patches. 

2. DEFINITIONS 
The concept of range image is well known in computer graphics 
literature. It is usually defined as a raster image attached with per-
pixel distances from the viewing point to the surface. A spatial 
patch is defined in the same manner as follows. 
Given the model orthonormal coordinate system, a spatial patch 
is defined by the origin point P, orthogonal frame (Δx,Δy,Δz), and 
a rectangular m×n array of (c,d)i,j pairs, each representing a point 
Ni,j=P+iΔx+jΔy+di,jΔz of color ci,j on a surface (Figure 1). 
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Figure 1: Spatial Patch definition 

It is important that all patches of a model are defined in one 
coordinate system, referred to as model space. An orthogonal 
frame (Δx,Δy,Δz) of each patch corresponds to its local coordinate 
system, called patch space. We also define world space with the 
origin placed in the eye and z-axis parallel to the viewing 
direction, and screen space as the result of the perspective 
projection. The world-screen transformation maps the viewing 

frustum into an axis-oriented cube with the center at (0,0,0) and 
sides equal to 2, as it is suggested in OpenGL [10]. 
In practice, we use the standard RGB888 format for color 
representation and signed 8-bit integers for displacements, which, 
in total, result in a 32-bit storage requirement for a node. Such a 
low displacement precision makes sense if patches are relatively 
small compared to the model; thus, only small surface variations 
are expected. Pure black color is reserved for transparent nodes, 
including those whose displacement falls out of the [-128,127] 
range. If more accurate geometry or an alpha channel is required 
we use RGBA (8 bits per channel) and 32-bit displacements, 
thereby doubling the storage size. The origin point and the frame 
of a patch are stored separately using floating-point numbers. 

3. RENDERING WITH Z-BUFFER 
In [5] we presented the logical structure of the rendering unit that 
renders spatial patches generating appropriate data for z-buffer. It 
should be mentioned that patches can also be rendered by means 
of the standard graphics pipeline if they are considered as regular 
meshes. This solution would involve neither texture- nor bump-
mapping, but would produce a large number of small triangles, 
which usually leads to bottlenecks and high computational 
requirements. Having this option in mind, we may think of the 
proposed rendering unit as an extension to the commonly used 
pipeline. As using the traditional rendering pipeline is optional it 
is shown in gray on Figure 2. 
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Triangle Rendering
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Figure 2: Logical structure of rendering unit 

The rendering unit (Figure 2) is designed as a sequence of stages, 
which are executed sequentially to visualize spatial patches on a 
displaying device. 
In the first stage, the unit verifies the visibility of the spatial 
patch, and discards it if the answer is negative. This is done by 
checking the relative position of a bounding solid, i.e. box or 
sphere, and the visible frustum. If partial visibility is determined, 
the patch is recursively clipped by the frustum, and the residual 
parts are considered new smaller patches. However, we would 
like this condition to happen as rarely as possible because 
clipping is relatively expensive operation; thus, we use the 
common technique of allowing patches to extend outside the 
viewing region by several percent, which significantly decreases 
the probability of ‘partially visible’ event. 
When the patch is guaranteed to lie within the visible frustum, the 
decision is made on whether or not optimized techniques can be 
used to render it, or whether a regular sequence of required 
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procedures should be executed. The importance of this decision is 
based on the fact that under certain conditions some of the regular 
procedures can be omitted without any influence to the result. 
Thus, having detected these conditions, the rendering unit can 
process the patch several times faster. 
The regular procedures of patch rendering include two major 
stages: nodes traversal and cell rendering. As the rendering unit is 
designed to reproduce the original geometry of a patch, it should 
find the projections of all nodes onto the screen. Seemed to be 
computationally expensive from the first sight, this operation can 
be efficiently implemented in practice exploiting the patch’s 
properties of being small and having regular structure. These 
properties make it possible to find perspective projection of the 
patch’s bounding box and approximate node positions by trilinear 
interpolation between its corners. Applying this strategy 
drastically reduces the number of arithmetic operations by 
omitting per-node perspective projection. The price that is paid 
for speed increase is absence of perspective correctness within the 
patch; however, for patches that are much smaller in size than the 
visible frustum the distortion is not perceptible. 
The node traversal stage ends up with screen coordinates of each 
node, which can be directly placed into the z-buffer. However, the 
question arises: What happens between the nodes? Obviously, if 
magnification occurs, we expect to see gaps between visualized 
pixels. Considering the patch as regular mesh, the task, then, is to 
render its cells provided that the nodes have been already 
rendered. The common solution would be to divide each 
quadrilateral into two triangles, and flush them into the standard 
pipeline. Leaving quality issues of this strategy aside, we run into 
dealing with large number of small triangles, which leads to high 
computational costs. In order to render the produced 
quadrilaterals efficiently and more naturally from visual point of 
view we proposed in [5] to apply the commonly used strategy of 
subdividing the geometry recursively until the desired level of 
accuracy is reached. There were proposed two schemes of 
quadrilateral subdivision. The first one finds bilinear interpolation 
between 4 cell corners, while the other one constructs smoother 
surface that is C1-continuos over a patch. The bilinear scheme 
requires no more than 1 addition and 1 bitwise shift per each new 
node, while the smooth one requires about three times this 
number of operations. However, for significantly magnified view 
the C1-continuos interpolation leads to more good-looking 
surfaces. 
Shading can be implemented utilizing either Phong or Gouraud 
approaches - the rendering unit can light patch’s nodes and 
interpolate final colors within each cell, or it can interpolate 
normals (bilinearly or smoothly) and perform per-pixel shading. 
As reconstruction of a normal vector is a relatively expensive 
operation, which involves cross product and normalization, it was 
proposed to reconstruct normals in local orthogonal patch space 
where much fewer arithmetic computations are required due to 
patch regularity. In this case, the light sources should be 
converted to patch space in order to light nodes properly. 
The other technique that can significantly reduce the number of 
computations required for normal reconstruction is buffering of 
normal vectors once they are computed and reusing them during 
further rendering. The fact that all patches of a model are likely to 
have similar or equal |Δz|/|Δx| and |Δz|/|Δy| ratios increases the 
probability for each normal to be computed many times, which 
ensures a gain in performance. The price for this gain is the 
allocation of memory, which can be as small as 512 Kb since 

internal symmetries and some reduction in precision can be 
exploited efficiently. If patches representing a model have various 
configuration, which does not allow reuse of normal vectors, they 
can be divided into groups considering similarities of their |Δz|/|Δx| 
and |Δz|/|Δy| ratios. Then, normals buffering can be applied within 
each group separately. 
The technique that was proposed for optimized engine is based on 
the determination of the fact that no magnification of patch’s cells 
occurs during rendering. In such event, no quadrilateral 
interpolation stage is executed. However, regular algorithm 
verifies this condition for each cell separately, which requires per-
cell computations. On the other hand, it appeared to be relatively 
cheap to detect those patches that do not require cell interpolation 
on a per-patch basis. As the node traversal stage can also be 
optimized for such patches they can be efficiently rendered by a 
specially designed procedure. 
It should be mentioned that the proposed rendering strategy for 
spatial patches can be implemented using parallelism on different 
levels. The SIMD (Single Instruction Multiple Data) approach can 
be applied not only to coordinate triples or quads, but also to the 
whole node data in many cases. Thus, for example, coordinates 
and colors may be interpolated in the same manner in the 
quadrilateral rendering stage. Significant increase in performance 
is expected if additions and bitwise shifts on 6-tuples or 12-tuples 
are executed in parallel by a single instruction. Besides, two 
parallel computing units can be used for quadrilateral subdivision 
process. 
From the global point of view, each spatial patch is a separate 
object that is expected to be relatively small. This property makes 
it possible to divide the frame buffer into several rectangular 
areas, often called chunks, and provide each one with a separate 
rendering unit. This approach is highly efficient if patch clipping 
caused by internal partitioning occurs rarely. Introducing small 
internal guard bands can help a lot in this case. 
Thus, the proposed rendering unit appears to efficiently exploit 
the advantageous properties of spatial patches and, in practice, 
proved to work quite well in simulators. More details on the 
presented above techniques can be found in [5]. 

4. MODELS GENERATION 
We had no 3D scanning machinery at our disposal; therefore, we 
had to produce spatial patches by other means. As textured 
polygonal 3D models are the most convenient for dealing with, 
they were chosen as the major source data for production of 
spatial patches. 
There exist two general approaches to acquisition of spatial 
patches from the models represented by their surfaces. The first 
approach utilizes ray-tracing strategy in order to produce range 
images; the second is based on surface analysis and selection of 
the areas that are most suitable for conversion to spatial patches. 
Although implementation of ray-tracing seems to be more natural 
for simulation of range finders, it provides no control over 
resulting range image (spatial patch), which may have 
unpredicted discontinuities and gaps. Thus, our choice was in 
favor of the second approach, which, in our opinion, could result 
in more optimal partitioning into patches by utilizing connectivity 
information of mesh elements. In retrospect, this strategy 
appeared to have certain disadvantages, as well. 
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As we also wished to convert some models represented by point 
clouds, which have no explicitly defined surface, we implemented 
a simple algorithm based on production of range images from 
them. Some details of this approach are discussed in Section 4.5. 

4.1 Conversion Algorithm 
The idea of the conversion algorithm is partitioning the surface of 
a model, which is defined by a triangular connected mesh, into 
fragments that can be represented efficiently by spatial patches. 
The algorithm is implemented in three stages, which are creation 
of preliminary areas, creation of secondary areas, and merging. 
On the first stage an arbitrary face is selected and used as a seed 
element from which the corresponding area is grown. Areas are 
grown by adding adjacent faces iteratively, on each step selecting 
the one whose normal deviate least from the normals of already 
selected faces. The growing process stops if there is no adjacent 
face such that the adjusted set of normals lies within a solid cone 
of predefined size. By applying this procedure the whole surface 
is partitioned into connected, relatively smooth submeshes. 
These submeshes, then, can be converted to patches, since the 
corresponding surfaces can be uniquely projected onto a plane 
provided that deviation threshold for normals is set to a small 
value. However, these areas usually have very complex blot-like 
shape, and converting them into patches would result in 
significant overlaps and data overuse. 
In order to get areas of better shape, the central face of each 
preliminary submesh is used as a seed element for the secondary 
partitioning stage. On this stage the areas are grown 
simultaneously yielding to a more convenient shapes. 
In practice, we observed that better result may be obtained if 
relatively small deviation threshold for normals is used on the first 
two stages, and resulting small areas are then merged using 
analogous strategy. 

 
Figure 3: The 2 models represented by spatial patches 

Using the described above algorithm, we converted large number 
of polygonal models into spatial patches. Among them were the 
well-known bunny, provided by Stanford University, and the 
model of head mannequin, provided by Hugues Hoppe from 
Microsoft Research (see Figure 3). Both models were not initially 
textured, so we applied some kind of stone texture using standard 
mapping utilities. Some statistics on the original and the produced 
geometrical data is present in Table 1. 
 
 

Table 1: Statistics on the bunny and mannequin models 
  bunny mannequin 

Number of nodes 34 834 40 289 

m
es

h 

Number of triangles 69 451 80 448 

Number of patches 1 526 1 145 

Number of nodes 441 014 330 905 

s.p
at

ch
es

 

Data size (Mb) 1.83 1.37 

4.2 Generation of the Earth Model 
In this section we describe the process that was implemented in 
order to generate the model of the Earth. We had no real data of 
the Earth’s relief; therefore, we decided to make the model more 
expressive to demonstrate the advantages of spatial patches. It 
should be mentioned that the resulting relief is just a broad-brush 
approximation of the Earth’s surface. 
The first step was generation of the height map for the Earth’s 
surface. We decided to estimate height from color of surface 
elements. The ocean, which has dominating blue color, was kept 
flat. The offsets of the land parts were divided into several levels 
depending on the hue of the corresponding color – the green areas 
were treated as plateaus, the brown ones as mountains. The 
obtained height field was smoothened by standard image 
processor, which treated height values as gray shades. The result 
of this operation is shown on Figure 4 (black areas correspond to 
the sea level, gray shades represent different heights above the sea 
level). 

 

a) The original texture of the Earth’s surface

b) Produced height map 
Figure 4: Estimated height field of the Earth's surface 

After the height map had been generated, the appropriate 
polygonal model could be produced. The starting point was a 
connected triangular mesh of about 40.000 triangles of similar 
size which represented a complete surface of a sphere (Figure 5a). 
Each node of this mesh was assigned with texture coordinates 
according to the standard cylindrical projection of a rectangular 
bitmap to a spherical surface (the texture on Figure 4a gave some 
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clues for cylindrical nature of the required projection). Then, each 
node was displaced along the corresponding normal vector to the 
value defined by its texture coordinates and the height map. 
Bilinear interpolation between the 4 nearest height map elements 
was used to produce the final displacement. 
The resulting mesh along with the corresponding texture was 
provided to the conversion algorithm described in Section 4.1. 
The 3 models of different resolution were produced in order to 
evaluate descriptive power of spatial patches with respect to their 
density. The algorithm was set to extract patches of 17×17 nodes 
in size, and the resulting models consisted of 383, 1128, and 2712 
separate patches. Figure 5b shows the model of 1128 patches 
visualized with the rendering engine described in Section 189. 
More close view of the top of the globe, which demonstrates that 
the land parts are actually raised above the sea level, is shown in 
Figure 5c. 

 

c) Zoomed in part of the surface 

a) Mesh of a spherical surface b) Produced spatial patches  
Figure 5: The model of the Earth 

Table 2 summarizes some statistics on the produced models. 
While the original triangular mesh of a sphere consists of about 
40.000 nodes, the produced patches have several times greater 
number of nodes in total. One may say that neighbor patches 
should overlap in order to represent consistent surface; however, 
the produced models are expected to demonstrate more dense 
geometry. The bitmap that was used as a texture for the surface is 
1024×512 pixels in size, which requires 1.5 Mb for True Color 
24bpp representation. As many pixels were actually projected to 
single nodes in polar areas of the globe, Earth_1128 model seems 
to comprise nearly all the initial data from visual point of view. In 
practice, we could not find any noticeable difference between the 
original model and Earth_1128 rendered from reasonable 
viewpoints. 

Table 2: Statistics on the Earth models 
Name # of 

patches 
# of nodes Data size (Mb) 

Earth_383 383 110 687 0.45 

Earth_1128 1 128 325 992 1.35 

Earth_2712 2 712 783 768 3.17 

4.3 The Perfect Sphere 
The concept of spatial patches was proposed for efficient 
representation of real-life bumpy objects; however, it has enough 
descriptive power for accurate representation of artificial surfaces, 
as well. To prove this fact, we generated a collection of spatial 
patches corresponding to a complete spherical surface of radius 
equal to 128 units. This model was called a ‘perfect sphere’. 
To build up the model, we selected 1362 almost evenly 
distributed points on the surface utilizing spherical coordinates. 
At each point we then reconstructed a spatial patch, which had z-
axis collinear to the normal to the sphere, and the lengths of the 
local frame vectors (Δx,Δy,Δz) equal to 1, 1, and 0.01, respectively. 
Displacing the nodes according to the formula of a sphere, we 
obtained a model of a complete surface. 
The displacement precision in the patches is 0.01; therefore, it is 
expected that being rendered on a screen of about 25000×25000 
pixels in size, the model would look as if it had been visualized 
using the explicit definition. The displacements are represented 
with 8 bits, and the patch’s frame can be defined by 40 bytes (10 
floating point numbers), which, in total, result in less then 440 Kb 
of data. The conventional triangular mesh representation with 
such accuracy would take much more space to be stored. 

4.4 Holes on Sharp Edges 
The problem that we ran into while representing several models 
by spatial patches is possible appearance of small gaps between 
two surfaces having common curved edge. This problem has the 
same nature as aliasing effect for raster shapes. Indeed, given a 
flat disc in model space (Figure 6a), the corresponding spatial 
patch will naturally have z-axis collinear to disc’s normal, and the 
nodes whose (x,y) coordinates lie within the disc will be set to the 
corresponding value, while all other nodes will be left transparent. 
During rendering the quadrilaterals that have at least one 
transparent node are not rendered resulting in aliasing effects on 
edges (Figure 6b). This effect can be partially dealt with by 
interpolating alpha channel within semi-transparent quadrilaterals 
or by increasing patch resolution; however, the perfect circular 
shape cannot be represented. 

x

y

z

a) representation of a disc by 
spatial patch

b) rendered disc
(low resolution, no alpha)  

Figure 6: Accuracy of shape representation 
Unfortunately, the described above effect takes place in a large 
number of artificial models originally represented by polygons. 
The simplest one is the cylinder shown on Figure 7. Increasing 
patch density to the level of screen resolution would remove the 
holes; however, there would be a huge number of wasted nodes 
lying on the flat parts of the model in this case. The proposed 
solution that we used to overcome the problem is detection of the 
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sharp edges and generation of small patches that have 
intermediate orientation with respect to the faces adjacent in the 
selected edges. These patches should be of higher resolution 
compared to the other ones since they represent more complex 
geometry. The additional patches and the corrected model of a 
cylinder are shown on Figure 8. 

 

 
Figure 7: Holes on sharp edges 

a) additional patches on edges b) the resulting model 
 

Figure 8: The corrected model of a cylinder 

4.5 Dealing with point clouds 
Point clouds do not have explicitly defined surfaces, and building 
surfaces from them seems to be a complicated task; therefore, the 
conversion algorithm discussed in Section 4.1 cannot be applied 
to such representation. For this reason, we implemented simple 
strategy that is based on acquisition of large range images from 
the cloud. The algorithm produces several range images from the 
angles usually evenly distributed on a unit sphere, and extracts 
rectangular regions that can be efficiently represented by spatial 
patches. Production of a range image in this case is implemented 
by flushing all points into z-buffer. 
As the source data is a collection of separate points, its image in 
z-buffer may have certain gaps. We tried to setup parameters of 
the rendering viewport so that the appearing gaps were not larger 
then 1-2 pixels, and then filled the gaps by interpolating the z 
coordinate of neighbor elements. In addition, it was sometimes 
useful to apply some kind of smoothening filters to the range data 
stored in z-buffer since point clouds acquired by range finders 
often had certain noise. 
One of the models that were converted from point cloud 
representation is the head shown on Figure 9. The corresponding 
point cloud was provided by Max-Planck-Institute for Computer 
Science, where it had been acquired by a 3D range finder. The 
number of produced nodes is actually less than the number of 
original points in the cloud. The surface appears to be bumpy, 
which probably reflects the details of the original bust; however, 
spatial patch representation proved to represent it sufficiently.  

 

# of original points 915 498 

# of patches  837 

 

# of original points 915 498 

# of patches  837 

# of nodes 361 244 

Data size (Mb) 1.43 

  

Figure 9: Head model 

5. PRACTICAL RESULTS 
In order to evaluate the proposed 3D model representation, we 
implemented the rendering algorithms based on z-buffering 
approach in the scope of the spatial patch rendering unit 
simulator. Its primary objective was to collect as much statistics 
as possible; thus, it was not designed to make use of any 
particular CPU architecture. The simulator stores all statistics in 
plain HTML format, which can be visualized in bars and 
diagrams by our custom-made viewer. 
Some of the scene characteristics as well as rendering statistics 
are shown in Table 3. All models were rendered in a 500×500 
pixel viewport by the rendering unit simulator. The two bottom 
rows show how many normal vectors were actually computed (as 
a percentage of the total number), if a buffering technique and 
pre-ordering of patches within a scene were applied. Thus, patch 
ordering results in dramatic increase in performance. We have to 
note that if all patches have identical configuration, i.e. they are 
produced by calibrated scanning device, then the table of normals 
can be pre-computed, and used for all patches, which reduces the 
number of normal computations to zero. 

Table 3: Model characteristics and rendering statistics 
 bunny man. earth head 
Patch nodes 441 014 330 905 325 992 361 244 
Interpolated nodes 1 076 888 863 600 541 462 263 589 
Norm. w/buffer 76% 76% 55% 46.6 % 
Norm. w/b, ordered 2.8 % 3.7 % 1.9 % 18.2% 
Figures in the interpolated nodes row of Table 3 shows that the 
models were actually magnified when rendered in the 500×500 
pixel viewport. For this reason, the global test, described in 
Section 3, determined no patch as being suitable for optimized 
rendering in the given configuration. When the viewport was 
narrowed to 150×150 pixels, then about 85-95% of all patches did 
not require interpolation, and 45-85% of them passed the 
criterium and were rendered by the optimized procedure. Thus, on 
average, the criterium eliminated nearly half of the occurrences 
while it is computationally cheap. However, more accurate, but 
more expensive, tests may be used, as well. 
The rendering unit is also capable of rendering triangles by 
conventional scan line algorithms that is used in most of the 
graphics boards and APIs.  Thus we could render each patch by 
conventional means, dividing each quadrilateral cell into two 
triangles. A statistical analysis showed that for the presented 
models and viewing configurations the average number of 
operation required in triangular mode is double the number of 
operations required for bilinear interpolation. That proves the fact 
that rendering of many small triangles leads to high computational 
requirements, since in our case the triangles were actually several 
pixels in size. 
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6. CONCLUSION AND FUTURE WORK 
In this paper we discussed some aspects of using spatial patches 
for 3D model representation and rendering. This primitive is 
based on the well-known concept of range image; however, each 
patch is expected to represent a small, relatively smooth fragment 
of a model surface for better performance. The proposed strategy 
unites the techniques such as texture and displacement mapping in 
one concept, for which it is thought of as highly efficient for 
model representation. 
We presented the logical structure of a rendering unit for spatial 
patches. Based on the conventional z-buffer, it is designed to gain 
maximal benefit from spatial patch regularity and uniformity. It 
can be efficiently implemented using currently available hardware 
solutions, such as SIMD instructions and on-chip fast cache. 
However, even more increases in performance are expected if 
more features amenable to parallel computing are available. 
Since neighboring spatial patches of a model are not spatially 
connected, noticeable artifacts may appear in the areas where 
several patches overlap if significant magnification occurs. This 
effect is mostly caused by low (8-bit) displacement precision that 
we used in our models and perspective incorrectness of 
interpolation. Such magnified views require more dense patches 
for accurate visualization.  
Therefore, spatial patches are best suited for visualization with 
nearly the same scale as they were captured. Minification can also 
be supported by various filtering techniques similar to mip-
mapping. The particular implementation is beyond the scope of 
this paper and is regarded as future work. 
The other problems that are not discussed in this paper are anti-
aliasing and backside culling. Aliasing effects can be dealt with 
by common supersampling strategies. The only solution for 
culling seems to be storing some kind of a bounding cone for 
patch surface and disregard patches that have their cones point 
away from the eye. However, there might be better solutions. 
The direct rendering strategy with the z-buffer is not the only one 
that can be applied efficiently to spatial patches. In [6] we 
describe our experience in implementing ray-tracing approaches 
for the proposed representation. The results proved that spatial 
patches have many advantages, including regular structure and 
small size, which are quite important for efficient rendering by 
this type of techniques. 
We have not yet paid attention to data compression for scenes 
represented by spatial patches. As the corresponding data stream 
may exhibit certain redundancies caused by displacement and 
texture similarity, various compression techniques might be 
applicable efficiently. Some progressive approaches might be 
used, as well. 
In conclusion, we consider spatial patch as a primitive that is 
natural for 3D scanning, since no post-processing is basically 
required. The scenes represented by spatial patches often require 
less storage space than polygonal models with textures of the 
same quality. Rendering approaches, direct (z-buffer) and realistic 
(ray tracing), can be implemented efficiently benefiting from 
existing and future hardware solutions. Therefore, the introduced 
concept can be used in many applications dealing with real-life 
3D graphics. 
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