
Fast Volume Deformation Using Inverse-Ray-Deformation and FFD

H. Chen, J. Hesser, R. Männer
Lehrstuhl für Informatik V, Universität Mannheim,

Mannheim, Germany

ABSTRACT

In this paper we present a new approach for free-form-
deformation of volume object. Free-form-deformation (FFD) is
used as method for calculating the deformation. Rendering is
based on the inverse deformation of viewing rays using
approaches adapted from Barr [1] and Kurzion [10]. Thus this
new approach doesn’t suffer from the overhead of the
intermediate step to reconstruct the deformed volume as
traditional approaches do. Compared to these earlier methods we
integrated algorithmic optimization like distance-coding based
space-leaping and early-ray-termination. This is achieved by
approximating the deformed viewing rays with polylines and by
treating the linear segments as conventional rays.

 The performance of this optimized rendering method depends
on the length of the ray segments. The higher the local curvature,
the smaller the segment length which is determined automatically
during rendering. For semi-transparent volumes we thus achieve
speedups of the optimized algorithm vs. the non-optimized
algorithm between 3.13 and 4.43. In the case of opaque objects
and empty space in-between the speedup decreases from 14.16 of
non-deformed volumes to 4.52 for severely deformed volumes.
Thereby the decrease of speedup is mainly determined by less
efficient space-leaping due to shorter segments in the polylines.

Keywords: volume deformation, inverse ray deformation, volume
graphics, , volume animation, volume rendering, algorithmic
optimization.

1. INTRODUCTION
In computer graphics, an object is traditionally modeled using
polygon-based meshes. The rendering of polygon models can be
accelerated by graphics hardware. The real time rendering of
polygon-models is therefore commonly applied in a wide range of
fields, such as computer games, film industry, and TV. However,
applications such as medical surgical simulation require the
visualization of both the objects’ surface and inner structure. In
such applications, objects can not be easily described with a
polygon-model, especially when there is fuzzy edges-transition
between different parts of the objects. Volume rendering is more
suitable for such applications.

 When volume rendering was first introduced in the 1980s, it
was notorious for its enormous requirements on the computer
resources. The improvement of techniques results in the steady
increase of computing power and turns impossible things now
possible. Today volume data with reasonable size(≥2563) can be
rendered in real time[5][23]. Nevertheless current available
interactivity of volume rendering can only be achieved for the
static volume data. Many applications need to deform the volume
as response to the external stimulation assigned on the volume
objects. To deform the objects in the scene, the volume must be
resampled once whenever a snapshot of the volume is rendered.

Such a process slows down the available frame rate, since
resampling the original volume is of the complexity of O(n3). In
addition, extra memory space is necessary to hold the intermediate
deformed volume.

 To render the deformed volume with the same complexity
as rendering static volume, we propose a rendering scheme based
on inverse bending of rays. In this scheme the deformed volume is
not reconstructed, instead, in the rendering phase the ray is bend
to the inverse direction of the deformation, thus generating the
image of the deformed volume. This volume deformation
approach does not generate the intermediate deformed volume.
The extra memory for holding the intermediate deformed volume
is therefore not required. In principle, this method is independent
of the deformation definition. FFD[2][3][4], functional
deformation[1] or other special operators[10] all can work well.

 The paper comprises 6 sections. Section 2 outlines some
related work on volume deformation. In section 3 we shortly
describe the background of volume rendering and two popular
rendering acceleration algorithms. Section 4 contains the
implementation of the new deformation algorithm. The
experimental results and analyses can be found in section 5. The
outlook in section 6 concludes this paper.

2. EARLIER WORK

A rich literature on object deformation can be found since the
1980s. However, volume deformation is less discussed, since
interactive volume rendering became available only after 1995.

 Volume morphing[13] by Hughes generates a smooth
transition from a source volume model to a target through a
scheduled interpolation of two objects’ Fourier frequency. It
provides a method to reconstruct the intermediate shape of the
deformed volume, just like the popular keyframe interpolation
method for mesh models used by computer animators. However,
in interactive applications the target volume object itself is not
available, therefore volume morphing cannot be used in such
applications, besides, the computing power requirement is
enormous to carry out twice the 3D Fourier transform each frame.

 Schiemann and Höhne[14] described a true volume
transformation method. The transformation is based on surface
models which fit the objects detected in the volume. First the
surface models are deformed interactively, the deformation of the
surface models is then spread to the whole volume through
interpolation, this way they achieved real time interactivity for
volume deformation.

 Gagvani [15] proposed a Skeleton-Tree based volume
animation method. The volume is first thinned to generate a
skeleton-tree. At the same time the shortest distance of each voxel
on the skeleton tree to the object boundary is estimated and saved.
The volume deformation is then realized by manipulating the
skeleton-tree followed by reconstructing the deformed volume

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

using the skeleton-tree and the distance information. However the
voxel’s gray value information is lost during this process.
Chandru’s volume keyframe animation system [16] creates
volume sequences through sculpting operations. Similar to
Gagvani’s method, the animated volume is binary and the voxel in
the volume has no gray value information.

 Approaches with physical fidelity are also proposed to deform
volume objects, for example the Finite-Element-Method(FEM)
[7][8][9], Mass-Spring systems [11][12]. These methods share a
common disadvantage: before the rendering of the deformed
volume a separate process to reconstruct the volume with the
deformation information is necessary. This additional
reconstruction process is redundant and is the main factor that
makes the volume deformation far more time-consuming than
static volume rendering.

 Kurzion and Yagel introduced ray deflectors [10] to deform
any ray-traceable objects in the scene. The ray deflectors are
derived from Barr’s idea of inverse-ray- deformation [1]. The ray
deflectors define a region in the 3D space inside which the ray is
bent to the opposite direction of the deformation. When the ray is
followed along its deformed trace, the object in the scene will
look as being deformed, although the original object in the scene
is in fact not modified at all. However, complex deformations are
difficult to be implemented by deflectors.

 The volume deformation approach we present in the following
sections uses also the inverse deformation of rays. Instead of ray
deflectors we use a FFD grid to define the space deformation,
because the FFD has been a powerful tool for interactive object
modeling and animation. Many users of popular graphics software
are familiar with it. Since the intermediate step to reconstruct the
deformed volumetric data is no more necessary in our approach
and the algorithmic optimizations, like early-ray-termination and
space-leaping, are easily incorporated in the deforming and
rendering process, the complexity increase of our deformation
approach is very limited compared to the static volume rendering.
We begin the presentation of our deformation method with the
background of volume graphics.

3. BACKGROUND

 Traditionally polygon meshes are used to describe objects in
3D space in computer graphics. Since a polygon mesh has zero
thickness, it can not fully describe the content of a 3D objects. A
complete presentation of a 3D object uses volumetric data. The
volumetric data stores the 3D objects information in a 3D lattice
of points, each point on the lattice is called a voxel which is the
basic element of volume graphics. Each voxel stores a constant
amount of information, for example, the density of a material at
that location. Through volume rendering the virtual scene of the
3D volume object is projected on the 2D image plane. Volume
rendering simulates the propagation of light through volume
space. For each pixel a ray is cast into the virtual scene. Using the
low albedo model the intensity I(a,b) reflected by a ray travelling
from point a to point b is given by the volume rendering equation:

() () ()∫ ∫=
′′−b

a

sds
dssqeb,aI

s
a
σ

 (1)

Where σ(s′) is the absorption function, q(s) is the emission
function. The standard solution for equation (1) uses

discretization in equally spaced sample points and applies the
rectangle rule:

() sqsqesqeb,aI
1n

0i
i

1i

0j
j

1n

1i
i

1i

0j

s
i

s1n

1i

j

1i

0j
j

∆θ∆∆ ∆σ
∆σ

∑ ∏∑ ∏∑
−

=

−

=

−

=

−

=

−
−−

= 









=










=

∑
=

−

= (2)

θj in equation (2) is the sample point’s transparency, it equals 1-
αj. where αj is the opacity of the sample point, which is
determined by the opacity-transfer-function. The sample
point’s emission qi is evaluated by the product of opacity and
shading function. To evaluate a pixel’s intensity, at each sample
point, the opacity is estimated by using e.g. tri-linear interpolation
and shading is calculated by using local gradients. Then the
sample points’ contribution to the pixel is accumulated by the
compositing operation. To avoid artifacts, the sample step ∆s is
chosen to be equal or less than the voxel size, thus the complexity
of standard volume rendering is of or larger than the volume size.
This makes volume rendering a computation intensive process. To
implement volume rendering in real time, algorithmic
optimization is necessary. Early-ray-termination and space-
leaping are two efficient methods for acceleration.

 Early-ray-termination is used to terminate the further sampling
and compositing along a ray when the remaining voxels’
contribution to the pixel intensity becomes neglectable. Return to
equation (2), when the transparency becomes too low, i.e.

∏
−

=
<

1i

0j
thj θθ , the remaining voxels along the ray are occluded, the

processing of the ray therefore can be terminated. Similarly, when
a voxel contribution to the pixel, i.e. the item qi in equation (2), is
too small, it is called an empty voxel. The sampling and
compositing for the empty voxel is unnecessary. Since the
emission function is the product of opacity and shading function,
we can determine before rendering if a voxel is empty or not when
an opacity-transfer-function is selected. By determining for each
empty voxel the shortest distance to a non-empty voxel in its 3D
space, the empty space in the volume can be efficiently leaped
over. This is how space leaping works. The distance for space
leaping is calculated view-independently in a preprocessing stage
to make the acceleration fully available in the rendering phase.

4. FFD AND INVERSE-RAY-EFORMATION
BASED DEFORMATION APPROACH

4.1 Define space deformation using FFD
 We consider only the volumetric data with voxels located on
a regular lattice. Correspondingly we use the uniform B-spline
presentation of FFD to define space deformation. The FFD is in
principle a R3 to R3 mapping which transforms any point inside
the boundary of the FFD grid to its new position. Through the
embedding of the volume object in the FFD grid, the deformation
of the volume object can be determined by only manipulating the
control points of the FFD grid. Figure 1 shows the procedure to
deform an object using FFD. Unlike standard applications of
FFD, we do not use the FFD to directly deform the volume object,
instead, we only use the space deformation defined by FFD to
inversely transform viewing rays in the rendering phase.

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

4.2 Inverse-Ray-Deformation
Inverse-ray-deformation [1][10] is a way to generate an image of
deformed objects without really deforming the original objects.
To generate the image of a deformed object, we can transform the
ray path in the space to the opposite direction of deformation.
Figure 2 shows how the inverse-ray-deformation works. Inverse-
ray-deformation is of great meaning for volume deformation,
since the volume rendering itself is very time-consuming. When
the deformation is merged in the rendering procedure, the
expensive intermediate step to reconstruct a deformed volume is
no longer necessary. The deformation is therefore of high
efficiency.

4.3 Calculate the ray path in the
deformed space
Let {P(i)|i=0,1,2...n} in figure 3 denote the point set on a viewing
ray which locates inside the boundary of the FFD grid.
{Pffd(i)|Pffd(i)=Tffd(P(i)), i=0,1,2...n} denotes the transformed
version of these points. The inverse transformed points set of the
ray {Pinv(i)|i=0,1,2....n} is then defined with:

 Pffd(i)-2P(i)P(i)]-[Pffd(i)-P(i)Pinv(i) == (3)

 The sequence of inversely transformed points are connected
by linear segments. Thus the whole deformed ray is represented
by a polyline.

 The original points of the undeformed viewing ray, i.e.,
{P(i)|i=0,1,2...n}, are not selected arbitrarily. In order to follow
the known Sampling Theorem, the intervals between these points
are chosen according to the magnitude of the local deformation.

4.4 Ray-casting in the deformed space
Since the ray is subdivided into a series of linear segments, each
segment is processed in the same way as rays in standard ray-
casters [18][19]. Along these segments, the ray is sampled at
equidistant positions using e.g. tri-linear resampling. Gradients
are estimated and shading is performed followed by compositing.

 An important issue is the opacity correction. Since the ray
path is approximated by piecewise line segments having arbitrary
length, there is no guarantee that the sample point interval length
is uniform. In general, the last interval is shorter (see figure 4). In
this case, we use opacity correction [20] based on a look-up table
to compensate the mismatch of sample distance.

 The ray casting procedure in the deformed space is described
as follows:

 c) d)

Figure 2. Inverse-ray-transformation for object deformation

a). the original object shape; b). the deformed object shape;

c). normal deformation—deform the object model then render it;

d). inverse ray transformation based deformation—let the object

 keep its original shape, during rendering follow the inversely

 transformed ray path to produce an illusion of the deformation.

 a) b)

 a) b) c)

 Figure 1. Deform an object with FFD

 a). Embed the object in the FFD grid

 b). Change control points on FFD grid to define deformation
 c). The deformed object

 Figure 3. The division of the original ray
and its inverse transformation

Figure 4. Mismatch of deformed ray segments

to the sample interval

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

4.5 Adaptively select the length of ray
segments
 In our ray-casting procedure the ray path in the deformed space is
approximated by a polyline. The polyline is generated by dividing
the original viewing ray into small segments and then inversely
transforming them as described in the section 3.1. On one hand,
the shorter the segments the original ray is divided into, the better
the polyline approximates the deformed ray path. On the other
hand, more segments cost more computations to perform the
deformation. An adaptive segment length is therefore necessary.

 The ray segment length is determined by a greedy-heuristic
algorithm [17]. It uses the angle between two consecutive
segments to recursively subdivide them. This method works well
if an upper bound on the maximal curvature is known. The
procedure to divide a ray segment (refer to figure 3) is realized as
follows:

During dividing the original ray, we set an upper limit to a single
ray segment’s length, i.e. maximalSegLength. The
maximalSegLength is determined by the radius of the largest
curvature of the deformed ray. This maximal curvature is obtained
by direct computation from the FFD-grid and the given spline
function. The minimal segment length is given by 0.5*voxel size
due to the Shannon Theorem.

4.6 Algorithmic optimizations
Volume rendering is a very computationally expensive procedure.
It achieves interactive rates if algorithmic optimization techniques
[21][22][23] are used. In the following we show that algorithmic
optimization can be integrated in our deformation approach
without any problems.

 The two techniques for algorithmic optimization we
implemented are early-ray-termination [19] and space-leaping
[24][25]. They are integrated in the following way:

• Early-ray-termination

Although the ray path is approximated by a polyline, the rays are
still followed from front to back through the volume, so early-ray-
termination can still be implemented by checking the transparency

Ray-casting in the deformed space

nitialize scene settings
manipulate the FFD grid’s control points //defining the desired deformation
for every pixel on the image plane do
begin
 generate a ray originated from the viewer and passing the pixel;
 divide the ray into small segments with proper interval length;
 transform ray-segments into a polyline approximating the deformed ray;
 Rayopacity =0 ;
 RayRGB =0 ;
 Rayposition = polyline’s start point;
 for each deformed ray segment do
 begin
 Raydirection = the segment’s direction;
 sampleNumber=(integer)length(raySegment)/sampleStep;
 distanceToCompensate=length(raySegments)-sampleNumber*sampleStep;
 for sample =0 to sampleNumber-1 do
 begin
 sampleopacity = tri-linear_interpolation(Rayposition);
 sampleRGB = PhongShading(light, Raydirection, Rayposition);
 RayRGB = RayRGB + sampleopacity *sampleRGB * (1- RayOpacity)
 RayOpacity = RayOpacity+ sampleopacity * (1- RayOpacity)
 Rayposition = Rayposition+ Raydirection * sampleStep
 End
 if(distanceToCompensate not equal 0) do
 begin
 // compensate the mismatch between
 // ray segments’ length and sample interval
 sampleopacity = tri-linear_interpolation(Rayposition);
 sampleopacity=opacityCorrect(distanceToCompensate, sampleopacity);
 sampleRGB = PhongShading(light, Raydirection, Rayposition);
 RayRGB = RayRGB + sampleopacity *sampleRGB * (1- RayOpacity)
 RayOpacity = RayOpacity+ sampleopacity *(1- RayOpacity)
 Rayposition = Rayposition+ Raydirection *distanceToCompensate;
 end
 end
 save pixel’s RGB and Opacity values;
end

 Adaptively select the length of ray segments

oldLength = minimalSegLength // initialize oldLength
oldDirection = directionOfOriginalRay // initialize oldDirection
oldPointIndex=0;
P[oldPointIndex]=StartPointOfTheRay
Pinv[oldPointIndex]=InverseTransform(P[oldPointIndex]);
while(not end of the ray) do
begin
 currentSegmentLength=2*oldLength;
 currentPointIndex=oldPointIndex+1;
 greedy-heuristic module:
 begin
 P[currentPointIndex]=P[oldPointIndex]+directionOfOriginalRay*
 urrentSegmentLength
 Pinv[currentPointIndex]=inverseTransform(P[currentPointIndex]);
 CurrentSegmentDirection=direction(Pinv[currentPointIndex],
 Pinv[oldPointIndex]);
 if(angle(currentSegmentDirection, oldDirection)>5 degree)
 begin
 currentSegmentLength=currentSegmentLength/2;
 if(currentSegmentLength<=minimalSeglength)
 currentSegmentLength=minimalSeglength;
 else
 redo greedy-heuristic module
 end
 if(currentSegmentLength>maximalSegLength)
 currentSegmentLength=maximalSegLength;
 oldPointIndex= currentPointIndex;
 oldDirection = CurrentSegmentDirection;
 oldLength = currentSegmentLength;
 end
end

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

of the ray as the polyline is followed and stopping the processing
of the current ray if the transparency becomes lower than an user-
defined threshold.

• Space-leaping

For space-leaping we rely on distance transform [24] that encodes
for each voxel the distance to the nearest non-transparent voxel in
its 3D neighborhood. Since each ray segment is a straight line in
the undeformed volume, we can apply the distance values to
determine the leap distances. There is only one restriction: the
leap distances must be shorter than the length between the current
sample point and the end point of the segment.

5. EXPERIMENTAL RESULTS AND
ANALYSES

 We tested the volume deformation approach with different
volumetric data sets as examples. Since we are primarily
interested in the efficiency of the new volume deformation
approach, we examined the effect of deformation amplitude on the
performance. To measure the performance, we use three values:
the average length of segments, the average number of non-

transparent sample points/ray (sampling/ray) and the average
number of transparent sample points/ray that are hit during space-
leaping (distance/ray). We use these measures instead of other
statistics like rendering time or frame rate because they are
independent of the platform and the level of code optimization.
We got similar results for different data sets. We present and
analyze here only the results for the volume data engine. In the
experiments, a semi-transparent mapping and two different
opaque mappings differing in the percentage of empty space in the
volume are tested. Images in figure 5 shows the deformation of
the volume engine (2562×113 voxels) with different magnitudes
of deformation and different opacity mappings.

 The curves in figure 6 show the performance change of the
deformation approach as the function of deformation amplitude
when early-ray-termination and space-leaping are used. As
comparison, the curves in figure 7 shows the performance change
of the deformation approach without algorithmic optimization.
For the non-optimized ray casting the opacity mapping has no
impact on the performance, therefore the curves in figure 7 are
all identical. On the contrary, for the optimized method the
impact of the opacity mappings on the performance is obvious, as
the curves in figure 6 show.

Figure 5. Deformed engine with different deformation magnitudes and different opacity mappings

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

 The values minimalSegLength and maximalSegLength are
chosen to 0.5 and 8 (voxel size). According to figure 6a/7a, the
average length of the ray segments decreases with the
deformation magnitude from 8 to a value between 1.8 and 2.0. It
shows how the ray is adaptively divided into smaller segments to
match the deformation magnitude. Thus the extra computation
necessary to deform the viewing ray does not increase further
when the limiting value of the average length of ray segments is
approached. In addition, the adaptive segment length selection
guarantees high-quality rendering results. This can be found in the
rendered images in figure 8. In this figure image b, c and d are
rendered with the same magnitude of deformation using adaptive

division of ray segment and fixed segment with length of 2 and 4
separately. As a reference, image a in figure 8 is rendered with the
same camera settings but without deformation. The deformation in
image b is smooth, but in image c and d the deformation is rough
and discontinuous in the severe deformed region as marked by the
circles, showing the superior performance of the adaptive
selection of the ray segment length.

 For the optimized ray casting, the trends of the sampling/ray
change with the deformation magnitude is quite different
compared to that of the non-optimized method. For the non-
optimized method, as shown in figure 7b, the sampling/ray
increases steadily with the increase of the deformation magnitude.
The reason is that the ray path in the deformed space is longer due

b. severe deformed using
adaptive division of ray

(average length is 2)

c. severe deformed using fixed

 ray segment length of 2

d. severe deformed using fixed

 ray segment length of 4
 a. no deformation

Figure 8. Comparison of the deformation continuity

 a) b) c)
Figure 6. Results for ray casting with algorithmic optimization

a) b)
Figure 7. Results for ray casting without algorithmic optimization

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

to the increase of the deformation magnitude, but along the
deformed ray the volume is still sampled equidistantly. For the
optimized case, shown in figure 6b, the increase of sampling/ray
is only gradual. Theoretically, there should be no increase of
samples/ray if we use space leaping and adaptive ray termination
together. The reason is that the longer ray path in the deformed
space does not change the condition for early-ray-termination.
Nevertheless, since the length of the deformed ray segment is
often not an exact multiple of the sampling distance, the length for
the last sample interval is usually shorter than the standard sample
distance (which is compensated as described in section 4.4). This
leads to additional samples and increases the number of
samples/ray with the deformation. This is more striking for the
semi-transparent mapping. Here, for a ray, a long path through the
volume is traversed before the accumulated opacity of the viewing
ray exceeds the threshold for early-ray-termination.

 For distance/ray the case is different. Since the average
segment length is reduced, the maximal leap distance in space-
leaping is limited. The consequence is that additional sample
points at the boundaries between two consecutive segments are
necessary. This increase can directly be seen in figure 6c. This
effect of the average length of ray segments on the efficiency of
space-leaping can be observed more clearly if we compare figure
6a with figure 6c. When the deformation amplitude is between 0-
25, the average length of ray segments decreases dramatically and
the distance/ray increases correspondingly, as shown in figure 6c.
As the average length of ray segments approaches its converging
value, the distance/ray increases linearly with the deformation
since the length of the ray increases linearly as well.

 It is difficult to evaluate the change of the acceleration rate as
a function of the deformation magnitude, since there are two
computationally different types of operations in the optimized ray
casting: real sampling operations of the volume and operations to
access only the distance for space leaping. The latter is
computationally cheaper than real sampling operations which
involves opacity interpolation, shading and compositing. Even so,
we list the coarsely evaluated acceleration rates under different
deformation magnitudes in table 1, where every operation to
retrieve a distance value for space-leaping is also counted as a
normal “sampling” operation. As shown in the table, when there
is no deformation, the acceleration rate for the opaquely mapped
volume, which has a lot of empty space, is 14.16. This is much
higher than the acceleration rate for the semi-transparent mapped
volume, which is 4.43. For semi-transparent objects the number of
sample points decreases only gradually, while for opaque scenes
there is a significant decrease of a factor of two to three.

 This shows that the deformation has its main effect on space-
leaping due to the limitation of the space-leaping distance by the
segment length.

6. OUTLOOK
We have presented a method for volume rendering of deformed
objects with support of algorithmic optimizations by combining
FFD with inverse-ray-deformation. Through the inverse
deformation of the viewing ray, the desired deformation effect can
be achieved without reconstructing the intermediate deformed
volume. Rendering of deformed volumes is therefore of the same
complexity as the rendering undeformed volumes, although it
depends additionally on the magnitude of the deformation.
Further, the algorithmic optimizations, like distance-coding based
space-leaping and early-ray-termination are integrated in this
method without any difficulty.

 Experiments show that the magnitude of deformation have a
very limited effect on the efficiency of early-ray-termination,
while the efficiency of space-leaping is decreased due to shorter
segments of polyline which approximates the ray path in the
deformed space. With large deformations we still achieve a
speedup compared to the non-optimized version of 3.13, 6.20, and
4.52 for semi-transparently, opaquely, and opaque-emptily
mapped volume data respectively.

 Although the space deformation can be realized with different
methods, such as functional deformation and ray-deflectors, we
use a B-spline FFD grid to define the deformation, because FFD
is a very powerful deformation tool and is widely accepted in
computer graphics community. The FFD control points are
interactively changed to design the desired deformation. Such a
process has no physical fidelity. We plan to incorporate physical
reality into the deformation procedure. This will be implemented
by combining the FFD with the other physical deformation
models, e.g. Mass-Spring systems or Finite-Element-Method. In
fact, the FFD is suitable to be combined with such physical
deformation models [26][27]. With current technologies the
deformation using a Mass-Spring system or other simplified FEM
variations can be implemented in real time [8]. We plan therefore
to combine the Mass-Spring system and FFD grid into a generator
of space deformation, thereby developing a complete volume
deformation system which exploits the high efficiency of the
inverse-ray-deformation based ray casting approach proposed in
this paper to deliver volume deformation with interactive speed.

REFERENCE

[1] A. Barr, Global and Local Deformations of Solid Primitives,
ACM Computer Graphics, vol. 18, pp.21-30, 1984.

[2] T. Sederberg and S. Parry, Free-Form Deformation of solid
Geometric Models, ACM Computer Graphics, vol. 20, pp.151-
160, 1986.

[3] J. Griessmair and W. Purgathofer, Deformation of
Solids with Trivariate B-splines. Eurographics’89,
pp.134-148, 1989.

[4] S. Coquillart, Extended Free Form Deformation: a
Sculpturing Tool for 3D Geometric Design. ACM
Computer Graphics, vol. 24, pp.187-193, 1990.

Table 1. Ratios of overall sample number between non-
optimized and optimized ray casting

deformation magnitude
setting of engine’s opacity

0 15 30 45

Semi-transparent 4.43 3.29 3.13 3.23

opaque 13.70 7.11 6.23 6.20

opaque with lots of empty space 14.16 5.10 4.67 4.52

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

[5] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, L.
Seiler, The VolomePro Real-Time Ray-Casting System,
Proceedings SIGGRAPH 99, pp.251-260, 1999.

[6] D. Chen and D. Zeltzer, Pump It Up: Computer
Animation of a Biomechanically Based Model of
Muscle Using the Finite Element Method, Proceedings
SIGGRAPH’92, pp.89-98, 1992.

[7] S. Cotin, H. Delingette and N. Ayache, Real-Time
Elastic Deformations of Soft Tissues for Surgery
Simulation, IEEE Transaction on Visualization and Computer
Graphics, Vol. 5, pp.62-73. 1999.

[8] S. Gibson, B. Mirtich, A Survey of Deformable
Modeling in Computer Graphics,
http://www.merl.com/reports/TR97-19/index.html.

[9] Y. Chen, Q. Zhu and A. Kaufman, Physically-based Animation
of Volumetric Objects Proceeding of IEEE Computer Animation
'98, pp.154-160, 1998.

[10] Y. Kurzion and R. Yagel, Space Deformation Using Ray
Deflectors, Proceedings of the 6th Eurographics Workshop on
Rendering, Dublin, Ireland, pp.21-32, 1995.

[11] D. Terzopoulos and K. Waters, Physically-based
Facial Modeling, Analysis, and Animation, Journal of
Visualization and Computer Animation, vol. 1, pp.73-80, 1990.

[12] L. Nedel and D. Thalmann. Real Time Muscle
Deformations Using Mass-Spring Systems, Computer Graphics
International, pp.156-165, 1998.

[13] J. Hughes, Scheduled Fourier Volume Morphing,
ACM Computer Graphics Vol. 26, pp.43-46, 1992.

[14] T. Schiemann and K. H. Höhne, Definition of Volume
Transformations for Volume Interaction, in: Duncan J, Gindi G
[eds.], IPMI'97, Springer, Heidelberg, 1997.

[15] Nikhil Gagvani, Deepak R. Kenchammana-Hosekote, D.
Silver, Volume Animation Using the Skeleton Tree.
Proceedings IEEE Symposium on Volume Visualization, pp.47-
53, 1998.

[16] V. Chandru, N. Mahesh, M. Manivannan, S. Manolhar,
Voxel-based Sculpting and Keyframe Animation System,
Computer Animation’00, 2000.

[17] Algorithms and theory of computation handbook, ed. by
Mikhail J. Atallah. - Boca Raton, Fla. : CRC Press, 1999.

[18] R. A. Drebin, L. Carpenter, P. Hanrahan, Volume Rendering,
ACM Computer Graphics Vol. 22, pp.65-74,1988.

[19] M. Levoy, Efficient Ray Tracing of Volume Data, ACM
Transactions on Graphics, vol.9,pp.245-261, 1990.

[20] P. Lacroute, Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation, Ph.D. dissertation,
Technical Report CSL-TR-95-678, Stanford University, 1995.

[21] P. Lacroute, M. Levoy, Fast Volume Rendering Using a
Shear-Warp Factorization of the View Transformation,
Proceedings SIGGRAPH’94, pp.451-458, 1994.

[22] R. Yagel, Towards Real Time Volume Rendering,
Proceedings of GRAPHICON'96, Vol. 1, pp.230-241, 1996.

[23] Gunter Knittel, The UltraVis System, Proceedings Volume
Visualization and Graphics Symposium 2000, pp.71-79, 2000.

[24] K. J. Zuiderveld, A. H. Koning, M. A. Viergever,
Acceleration of Ray-Casting Using 3D Distance Transforms,
Proceedings of Visualization in Biomedical Computing, pp.324-
335, 1992.

[25] R. Yagel and Z. Shi, Accelerating Volume Animation by
Space-Leaping, Proceedings of Visualization'93, pp.62-69, 1993.

[26] J. Chadwick, D. Haumann and R. Parent, Layered
Construction for Deformable Animated Characters, Proceedings
SIGGRAPH’89, pp.243-252, 1989.

[27] G. Hirota, R. Maheshwari, M. C. Lin, Fast Volume-
Preserving Free Form Deformation Using Multi-Level
Optimization, Proceedings of ACM Symposium on Solid
Modeling and Applications, 1999.

About the authors

Haixin Chen is a PhD student of the institute of Computer Science
V, University of Mannheim, Germany.

Post Address:

 ICM, Universität Mannheim,
 B6, 23-29

 D-68131 Mannheim, Germany

E-mail: chen@mp-sun1.informatik.uni-mannheim.de

Tel.: +49 621 181 2554
Fax.: +49 621 181 2634

Dr. Jürgen Hesser is a deputy professor at the Institute for
Computational Medicine, University of Mannheim/Heidelberg,
Germany.

Post Address:

 ICM, Universität Mannheim,
 B6, 23-29

 D-68131 Mannheim, Germany

E-mail: jhesser@rumms.uni-mannheim.de
Tel.: +49 621 181 2635

Prof. Dr. Reinhard Männer, the chair of Computer Science V,
University of Mannheim, Germany.

Post Address:

 Lehrstuhl für Informatik V,
 Universität Mannheim,
 B6, 23-29

 D-68131 Mannheim, Germany
E-mail: maenner@ti.uni-mannheim.de
Tel.: +49 621 181 2640

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

