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Abstract 
The method proposed in the article adds the possibility of 
rendering fuzzy reflections to the existing ray tracing systems. 
It is based on the idea of special blurring . Depending on the 
roughness of the reflecting surface, the diffuse component is 
blurred. Even such special filtering does not require much time, 
besides it can be optimized  to concrete processor architecture. 
Even realization of the method in C++ (without any assembler 
code) resulted only in 2 % decrease in speed of the ray tracer.  
Keywords: Ray Tracing, Fuzzy reflections,  Rendering.. 

1. INTRODUCTION 
Due to lack of literature on this subject I will mention only draft 
versions of fuzzy reflection implementation. There have been 
several approaches to rendering fuzzy reflections. The first 
algorithm perturbs the local normal at surface point where 
backward ray hit it (in fact, in every screen pixel). Second  
approach is to trace multiple rays inside of a cone, constructed 
around the direction of ideal specular reflection, and then 
calculate average. The latter approach is very slow because too 
many rays from every point are traced. The first approach is 
relatively fast, but it is not qualitative because it results in 
grainy look of surface. 
 

2. METHOD DESCRIPTION 
The approach suggested also treats the surface as a set of 
random micro-facets, assuming that their size is much less than 
pixel size, thus no granularity is visible. Under some conditions  
this approach is physically accurate (it depends on the 
reflecting properties of materials); in other cases it is expected 
to give a good approximation sufficient for a photo-realistic 
appearance. 
This method is implemented via two-pass rendering. The 1st 
pass is the usual backward ray tracing assuming specular 
reflection. This pass is used to fill in image buffer where all 
pixel contains: 

1. Physical luminance L0 calculated for perfect specular 
reflection (because only “specular” component will be 
subsequently blurred). 

2. 3D coordinates of intersection point a in the glossy 
surface  

3. 3D coordinates of the “end of ray” b, that is the point 
in the scene which we would see reflected in the pixel 
where the reflecting surface ideally specular. 

In case of the so-called “subsampling” mode, when some pixels 
are not traced but interpolated, we calculate all the above values 
with bi-linear interpolation. 

In the second pass, the above image is “filtered”, that is, for 
those pixels whose intersection point belongs to the glossy 
surface, 
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where L0(x,y) is the luminance of the original image at pixel 
(x,y), and L(x,y) is the resulting luminance which represents 
fuzzy reflections. Here  f(x, xt, y, yt)  are weight coefficients 
depending on the material properties and on the ϑ angle. As in 
our renderer the reflective properties of material were 
characterized by the shininess and shin strength, the following 
formula were suggested 

f  =  2 * ShinStrength * pow  (cos (ϑ),  Shininess)   (2) 
In renderers where specular characteristics of material are 
determined by Phong coefficient  (glossiness), the following 
formula is suggested 

f  =  pow  ( cos (ϑ),  p)                                       (3) 

Where p is Phong coefficient and ϑ(x,x′,y,y′) is the angle 
between direction from intersection point to the end of “its” ray 
(=specular ray) and ray fired from this point to the end of ray 
for neighbour pixel (x′,y′): 

ϑ 
camera 
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b(x′,y′) 
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Figure 1: The thick green line is glossy reflector; thick blue 
line is the object reflected in it; blue arrows show local normals 
and solid black arrows show specularly reflected rays which 
were traced in the 1st pass; the dashed arrow is the ray 
representing fuzzy reflections and ϑ is the angle between it and 
specular direction. 
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From the Figure 1 one can calculate that 
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  (3) 
We assume that the reflecting surface is glossy, so that 

nearly all reflected energy contains in cone ϑ ≤ Θ < 10°. In this 
case contribution of far pixels is negligible, and we can confine 
the sum in (1) to the neighbourhood of pixel (x, y). The latter 
comprises pixels (x′, y′) such that the rays fired to them from 
camera deviate from ray fired to the central pixel (x, y) be angle 
less than 

 α = Θ/(1 + s/r) (4) 
where s is the distance from camera to intersection point on 
glossy surface (point a) and r is the distance from the latter to 
the end of ray (point b). From the angular size we can easily 
estimate the radius in pixels: 

ρ = α×(image size)/(view angle) (5) 
Thus, we obtain the following formula for determining the 
blurred color  
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(or equally we can use round instead of rectangular area) 

 The filter function is evaluated at the centres of 
pixels. It would be better to evaluate f(x,x′,y,y′) as average over 
pixel, but that is too expensive. 
 

3. BASIC OPTIMIZATIONS 
When realized as described above the algorithm considerably 
decreases rendering speed. The following optimizations were  
made . They do not lead to drawbacks in quality, but allow for 
fast rendering. 
The filtering (1) may be expensive in case of large filter size. 
The following means can be used to accelerate that: 
a) Force restriction on the filter size 
b) Adaptive interpolation is possible. We can “blur” the 

image ignoring antialiasing. While blurring we do not split 
pixel in subpixels. 

c) The weight coefficients can be tablulated on a regular 
mesh. It is done on the first pass of renderer. Then the 
calculation of arccos is obviated, as well as e.g. raising to 
power γ in Phong model. 

d) While testing the preliminary implementation it was 
observed that the coefficients calculated in the above-
mentioned way are similar to Gauss kernel. Therefore it is 
possible to use Gauss convolution. The subtle differences 
in images are usually not seen   by pure eye. 

e) The filter size can be calculated at each fourth pixel, 
because it is reasonable to assume that the angles does not 
change considerably between adjacent pixels. The 
procedure for calculating filter size can also be simplified. 

 

  

3.1 RESULTS 
 

Figure 2: Sample scene, no fuzzy reflections 
 

 
Figure 3:  Sample scene, surface roughness 50%. 
 

 
Figure 4:  Sample scene, surface roughness 100%. 

4. CONCLUSION 
The advantages of the method are its speed, physical accuracy. 
The algorithm can be added to any renderer as a second pass. 
The following limitations are inherent in the method. 
Reflections after reflection by the first encountered glossy 
surface are not handled. That is the method can not accurate 
handle the case when e.g. glossy surface reflects ideal mirror 
which in turn reflects something. This is because the method 

GraphiCon'2001 36



assumes that rays form intersection point till ray end are 
straight lines. 
Similarly, if one fuzzy object is reflected in other fuzzy object, 
the fuzziness of furthest object (first one) will be ignored. This 
assumption looks reasonable since fuzziness of primary 
reflection should hide sharpness of secondary one any way. 
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