Visualization of 3D clouds using free forms

Sergei 1. Vyatkin, Boris S. Dolgovesov
Institute of Automation and Electrometry SB RAS, Novosibirsk, 630090 Russia
Alexander V. Yesin
Institute of Informatics Systems, SB RAS, Novosibirsk, 630090, Russia

Abstract

At the present work the method of fast rendering the translucent
objects formed by free form surfaces is offered. For the majority
flight simulators or car simulators atmospheric effects are
realized in the manner of 2D texture (clouds) or simply resulting
colour in the pixel is blended with some weight, which depends
on the coordinate Z with the white colour (fog). In given work
realization of three-dimensional atmospheric effects is offered,
in which the information on deep complexity of scene is
presented. The purpose of the given work is a realization
rendering such objects, filled by the texture, for which integral
of transparency on the given length is fast calculated.

Keywords: free forms, 3d clouds, voxels, multilevel ray casting.

1. INTRODUCTION

In work [1] the method of generation a 3D clouds and fog
proposed by company Evans & Sutherland is described. In this
project 3D clouds are presented as layers of ellipsoids,
estimation of necessary amount of ellipsoids for more or less
realistic scene is done. The model to calculate colour of object
observed through clouds is described. Since clouds divided into
layers, colour Ci and attenuation constant pi are assigned for
each layer. Formula for colour calculation of object observed
through clouds is presented.

Apparent color= (Actual Color)*exp[-0.5 (ay; +a;)d] +0.5
(co+ 1)*{1 - exp[-0.5(ap + a;)d] },

where Actual Color is real colour of object.
d is a distance between observer and object.

As possible understand from the given formula colour and
constant of attenuation is linear interpolated between two layers.
If object close several layers, author resorts to such term as a
virtual colour of object. For the apparent difficulty of this notion
stands enough simple thing, first Apparent color is calculated
for two layers, afterwards result is substituted as Actual Color
for two other layers and so on. The author notes that attenuation
constant must increase as increasing a layer height. Such
approach reduces an amount of calculations when calculates
colour of object on the land observed through N layers. If all
layers sufficiently transparent it is necessary to carry out
calculations of colour of object for each layer. If upper layers
sufficiently thick the observer can see nothing except the colour
of given layer of clouds. The benefit of such strategy of
visualization of atmospheric effects is underlined in the article
[2]. Visualization of complex scenes, for instance, terrain,
includes a problem of displaying the objects under changing
levels of details. Let us consider the terrain as example: if we
have a grid of heights with sharply changing values, at
animation possible to observe sudden changes on the silhouette

of mountains. In the first place all said concerns to a case of
polygonal approximations of terrain. So developers resort to
using a fog. Then if fog is used, the sudden changes on the
silhouette will not so noticeable. And if take more general case,
it is possible do not display small details of objects far from
observer, or not at all display distant objects. So it leads to
reducing an amount of rendered objects, i.e. to reducing a
number of processing primitives, and hereunder to increasing a
frequency of generation frames.

In the article [2] the different ways of modeling of fog are
described. The two ways of calculation of colour of pixel
subjected to the fog are proposed:

1. Colour of pixel subjected to the fog is calculated in
vertex of triangles, then approximates in the pixel as of values in
vertex.

2. Colour of pixel subjected to the fog gets from lookup
tables and does not depend on vertexes. Such way of calculation
is called table or pixel method.

In the same way it is needed to distinguish two ways of
calculation of attenuation. More precisely, the difference is
concluded in the following: what to consider as a point of entry
into the fog and on what distance to calculate attenuation.

1. Distance is a length between some plane and given
point. Fog defined by the table possible to use with such way of
calculation of attenuation only. On the one hand this rather fast
method, but its using associates with arising number of artifacts,
for instance, objects can appear and disappear in the fog when
an observer moves.

2. Distance is a length of segment from the eye of
observer to the object. This way more stable with respect to
artifacts, but more expensive on computation time.

These are formulas to calculate function of attenuation:
Linear attenuation:

F = (fogend - d)/ (fogend — fogstart),

where fogstart, fogend — points of entry and output in the fog.
d is a distance between the observer and the object.
Exponential attenuation:

F =1/ (d * fogdensity)

fogdensity is a density of fog.

Quadratic exponential attenuation:

F =1/ (d * fogdensity)?

It is necessary once again to note that all above said is referred
to polygonal techniques. In the article [2] is mostly concentrated
on functions realized in Direct3D.

In the article [3] the new technique Elevation Maps is described.
Its main idea is to use alpha-channel for storing of some values
(conditionally heights), which are used to select appropriate

82

GraphiCon'2001

texture layer. In this work new way of rendering the three-
dimensional atmospheric effects (3D clouds, smoke) is offered.
To value of given method should refer using a small quantity of
primitives, such as triangles and at the same time of the rich
texture. However there is a restriction on the orientation of
object when applying of a given method. That is to say

Bars
corresponding
not last
recursion level.

Sl s —

v

Axis Z

Bars minimum
possible sizes.

Figure 1. An optimized algorithm skips through uniform area.

impossible observe a silhouette of object under the certain angle.

In the flight simulator system MaxView [4] from Canadian
company CAE Electronics clouds realized as a set of raster light
points. To defects of given approach should refer a greater
amount of primitives for modeling more or less realistic cloud.
So in the system MaxView, in first, it is impossible
simultaneously render greater groups of clouds, and in secondly,
in such clouds are absent heterogeneity. Model of calculation of
colour of object observed through such clouds does not
correspond physical.

Also it is known one more technique of modeling of
atmospheric effects: the form of clouds is built from base
primitives; colour and transparency are taken from texture map.
Probably the most difficult problem of visualization of such sort
of objects is a modeling of atmospheric perturbations without
additional calculations.

The simplest method of perturbations modeling of atmospheric
effects offered in number of work is the applying a texture for
the calculation of functions of density. In this case colour on
surfaces of object gets from texture map, but function of
transparency is calculated according to this colour (or in general
gets from the other table), for instance, possible take density to
the proportional colour, or inversely proportional.

Also it is known way of visualizations of atmospheric
perturbations, which possible get by POV-Ray [5]. Summarizing
all said above it is necessary to note that in most of mentioned
articles the three- dimensional atmospheric effects are achieved
basically by applying of rich textures with the small amount of
primitives (excluding are [1] and [4]). The absence of forms of
such objects causes the undesirable artifacts. So in the present

work is offered to use alongside with the rich textures and
complex form of objects.

2. RENDERING OF TRANSLUCANT
OBJECTS FORMED BY FREE FORM
SURFACES

The method was developed by authors who show how rendering
of uniform translucent objects can easily be performed using a
free form surfaces [6]. Figure 1 illustrates an optimized
algorithm skips through uniform area. In given work the
mechanism of rendering the objects with pseudo-heterogeneous
density distribution was developed. It is used such types of
functions of attenuation as to easily calculate integral of
transparency for intervals along Z coordinate.

In given work the following method of modeling of atmospheric
perturbations is applied: using a texture as function of colour
and density. In this case colour for object surfaces gets from
texture map, but function of transparency is calculated by this
colour, for instance, pro rata colour, or inversely pro rata. By
this method the objects modeled with the perturbations of
density are processed such way either as uniform. Also
processing speed differs unessential.

3. MODEL DESCRIPTION

Difference between ray casting and ray tracing algorithms is that

in first from them in purposes of increasing speed processing are

not traced secondary rays. When light passes through

translucent regions it is also neglected a refraction and

attenuation of secondary rays (Fig. 2). In given models

considers only reflection and attenuation of light on the length
by fading is

Object
Observer ’
-
neglected.

K Light from

source

On given area

Figure 2. Model description.

from the object to the eye of observer.

3.1. Algorithm of colour accumulation

Formula to calculate colour of pixel possible to express as
follows [7]:

N n-1
P=>1.lla-2,) o
n=0 m=0

Nizhny Novgorod, September 10 - September 15, 2001

&3

where F)/1 is the final colour of pixel, A may be r, g or b (i.e.
red, green or blue, accordingly). | 4 intensity of n-voxel,

evaluated by Phong illumination model, Qn opacity of n-voxel.

| 40 reflected light from first point on ray, | ,n background

colour and € = 1. Overrunning of density threshold possible
to check as follows. If on k-step overall transparency

(1-Q)H(1-€))...(1-Q, ;) becomes less certain e, it

means that contribution all following for k-voxel will be small
and therefore scan possible to stop.

Functioning of algorithm possible to express as follows:
if (Transparency > ¢) and (last level of recursion) and
(intersection= 1), then
{

Py; +=L; * Q; * Transparency

Transparency *=1 -
}
For the first step P, =0, for A = r,g,b; Transparency = 1.

If it is used perspective transformation, should contribute a
correction in the algorithm of accumulation of. This is because
size of voxel, as a result geometric primitive transformations,
becomes dependent from the coordinate Z. That is to say with
increase Z coordinate the size of voxel increases also. So at the
each step opacity of voxel should also be recalculated with the
correction for changing its length.

If replace sum with integral, intensity [8] is:

| = I color(x(s))exp {—iopacity(x(t))dt}ds)

D is a distance on Z coordinate, where a calculation of intensity
is performed.

X(s) is a point on the length along the ray of observation.

Color and opacity are colour and value of opacity in a given
point.

This formula more suits for our case in contrast with the formula
(1), since it takes into account a length on axis z. However, it
would be to calculate an integral on each length or approach
with some expression. So we use an assumption, for instance
that on length of segment a value of transparency constantly. In
this case (1) for N elements possible to change:

P=1-(1-Q)" 3
Q) is opacity in point.

P is total opacity for N elements.

If consider N not as all amount of elementary lengths on ray, but
as its length, finally:

P=1-(1-9Q)* @

where AZ isa length of segment.

As already noted due to distortion of the geometric primitives a
length of voxel becomes dependent on Z coordinates (Refer to

3.2. Projective transformation). This dependency possible to
express as follows:

AZ — M ZZ(Zmax _ Zmin)
M,Z, ..+M M,Z,.. +M

tz = max tt tz = min tt

“
it is necessary to perform transformation for coordinates of start
point of segment and the end one.

M - M > M are the elements of perspective
transformation matrix,
Zmax) Zmin are start and end of segment in the coordinate

system of object.
Finally this part of algorithm possible to express as follows:
if (Transparency > ¢) and (intersection = 1), then

{

AccomulatedColor += Color * P * Transparency
Transparency *=1 - P

}

AccomulatedColor is the final colour of pixel,

Color is colour calculated the in point, for instance, on Phong
illumination model.

Transparency is a value that is equivalent to composition from
the formula (1), meaning total transparency from the beginning
of ray before the given point.

P is opacity in the point calculated on the formula (3.1) where
length of segment gets from the formula (4).

In the same way should point to the fact: in check is not met
condition Last recursion level, this corresponds segments on the
ray of scan can be a different length.

3.2. Projective transformation

Projective transformation extrapolates the rendering algorithm
to pyramidal volumes and thereby allows generate images with
perspective. In 3D space, the point with the Cartesian
coordinates (x, y, z) is associated with an infinite set of
homogeneous coordinates (x’, y’, z’, a) such that x=x’/a, y=y’/a,
z=z’/a i.e. the homogeneous coordinates are determined within a
common nonzero factor. The transformation matrix affects the
homogeneous coordinates in the following manner:

Cit Ci2 Ci3 Cus Xm Xp
C2t C2 C23 Cx « Ym _ Yp or (C)(M) = (P)’
C31 C32 C33 C34 Zm - Zp
Ca1 C4 C43 Cas 1 ap

where (C) is the transformation matrix; (M) are the
homogeneous coordinates of the point of space M; (P) are the
coordinates at P corresponding by the transformation. In
projective geometry proves a theorem that the projective
transformation of the space M to the space P is unambiguously
defined by specifying five pairs of points corresponding by the
transformation, on conditions that from five points specified in

84

GraphiCon'2001

VxObject VxQuadric

VxTexture

VxHeight

VxOperator

Figure 3. Hierarchy of classes.

the space M none four ones are in the same plane. Let us choose
five pairs of such reference points (M') and (P') (the upper index
corresponds to the number of pair) and compose the set of

Figure 4. A scene consists of the composition of two
main objects Lid and Cloud.

equations:

(OM)=p' (P,

where i = [1,..,5], p', p>, p° and p* are the unknown factors;
p’=1. Solving these equations, find the coefficients of the
projective transformation matrix (C) used further to transform
the geometric primitives.

3.3. Texture

As a new technique, authors demonstrate that it is possible to
perform texture mapping on free form surfaces with perturbation
functions [6]. In hierarchies of classes a class of texture
VxTexture is inherited from VxObject base class (Fig. 3
Hierarchy of classes) so exists a possibility to perform
manipulates with the texture to similar manipulates with other
objects, for instance, rotation, shift, are realized closely as this
performs with free form surfaces. Consequently there is a
possibility to use such objects as the textures itself, i.e. object
that used as texture is not displayed, but limits texture mapped
on other object. It is necessary to note an advantage that texture
is separate class, rather then is a field of already existing classes.

This does a process of texture mapping independent from
objects to which it is covered. For instance, if we have only such
classes of objects rendering as quadrics and quadrics with
analytical perturbations, and it is required to add scalar
perturbations to the system. In the first case we have to
implement function for class of scalar perturbations, then to
implement function of texture mapping in this class itself, but if
the texture does not depend on the object to which it covered,
second it is not already needed to do. For the texture also
realized several methods of parameterization. By default it is
considered that texture not parameterized: it is located inside
cube by layers to perpendicular axis Z, in this case for the
calculation of texture coordinates, X,Y are simply scaled on the
size of texture. If texture rotates, it multiplies by corresponding
rotation matrix. In the case of spherical parameterization, for the
calculation of texture coordinates the transformation
corresponding to projection on the sphere is performed.

Also a method of filtration a texture is developed. There is a
possibility to apply MIP-map and perform bilinear interpolation
of texture. In general, voxel gets between four texels from the
given level of detail and colour in given voxel gets from these
four values, which are taken with certain weights. Also the
method of trilinear interpolation of texture for this approach was
designed. This method of interpolation is close to others well

Figure 5. An example with cloud.

known methods [9-10]. Having been developed very well a
trilinear interpolation of texture is widely used.

4, CONCLUSION

On the figure 4 shown a scene consists of the composition of
two main objects Lid and Cloud. Cloud is defined by free form
surfaces; also one texture map is applied. Value of opacity is
proportional to the value of colour, opac = R+ G +B)/ 3,
where opac is a value of opacity; R,G,B components of colour.

Rendering speed of given scene unessential differs from the
speed of rendering the similar scene without using a texture for
Cloud object. On figure 5 is shown one more example with
other cloud.

Nizhny Novgorod, September 10 - September 15, 2001

85

References

1. B. Schachter, “Computer image generation”, A
Wiley-Inderscience Publication John Wiley & Sons, New York,
1980.

2. D. Rogers, “Implementing fog in Direct3D”,
NVIDIA Corporation,
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/White
papersFrame?OpenPage

3, S. Dietrich, “Elevation Maps”, NVIDIA
Corporation,
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/White
papersFrame?OpenPage

4. Visual Systems. & Components, Maxvue,
http://www.cae.com/aerospace/visualsystems/maxvue.shtml
5. A. Castro, “POVRAY III: Design of Recursive
Structures”, LinuxFocus,

http://www.linuxfocus.org/English/July 1998/article50.html

6. S. Vyatkin, B. Dolgovesov, A. Yesin, etc. “Voxel
Volumes Volume-Oriented Visualization System” International
Conference on Shape Modeling and Applications (March 1-
4,1999, Aizu-Wakamatsu, Japan) IEEE Computer Society, Los
Alamitos, California, 1999, P. 234.

7. G.Knittel, “Voxel Engine for Real-time
Visualization and Examination”, Eurographics’93,Volume 12,
number 3, p. 37-48.

8. N. Max, R. Crawfits, B. Becker, “Application of
Texture Mapping to Volume and Flow Visualization”, p. 108,
Proc. GRAPHICON’95, Moscow.

9. S. Paul, “Heckbert. Survey of Texture Mapping”,
IEEE Comput. Graph. and Applicat.- 1986.-6, N11, P. 56.
10. L. Williams. "Pyramidal Parametrics”, Computer

Graphics, 1983-12, N 4, P. 270.

Busyanusauma TpexmepHbIX 0OnakoB C
NPUMEeHeHUeM NnoBepPXHOCTEN
cBoboAHbLIX opm

IIpennaraercs peanusanusi MeTona OBICTPOTO OTOOPaKEHMs
HOJIYNIPO3payHbIX OOBEKTOB, OOPa30BaHHBIX ITOBEPXHOCTSIMHU
cBOOOIHBIX (popM. B GONBIIMHCTBE CHMYJISITOPOB TIOJIETA WIIN
aBTO-CHUMYJIITOpax aTMochepHble d(P(REeKThl peanusyloTcs B
BUJIE JBYXMEpPHOW TeKCTypsl (o0jaka) WIM IPOCTO
PE3YJIBTHPYIOLIMI IBET B MHUKCEJE 3aMEIINBACTCSI C HEKOTOPHIM
BECOM, 3aBHCSIIIM OT KOOPJIMHATHI Z ¢ OeNbIM IBETOM (TyMaH).
B nannHoit paboTe mpemiaraeTcs peanmusanus OOBEMHBIX
aTMocdepHbIX 3(GEKTOB, Te ecTh HHPOPMAIUS O TITyOWHHOM
cloXHOCTH creHbl. B cucreme Voxel-Volumes peanuzoBan
METOJ 0TOOpaKeH s MIOJTYTIPO3PaYHbIX 00BEKTOB,
00pa30BaHHBIX MOBEPXHOCTSAMH CBOOOAHBIX (opMm. Ilensio
JTAHHOW pabOTHl SBJISAETCS peaiu3alus PEHICPUHra TaKUX
00BEKTOB, 3alOJHEHHBIX TEKCTYpOH, UII KOTOpOH OBICTPO
BBIUMCISICTCS. MHTETPAIbHOE 3HAYEHUE TPO3PAvyHOCTH Ha
3aJJaHHOM OTpE3Ke.

CaeneHus 00 aBTopax:

JlaGoparopust Cuntesupyromux Cuctem Busyanuzamun, TAnd
CO PAH. Poccus 630090, HoBocubupck, mp. Komrora, 1.
tenedon: (+7-3832) 33-36-30

.c. Barxkun C.U., sivser(@mail.ru
3aB. 71a0. Jlonrosecos b.C., bsd@iae.nsk.su,

JlaGopaTopust TEOPETHIECKOT0 IPOTrPaMMHUPOBAHUS
HCU, COPAH, Poccust 630090, HoBocubupck, mp.
JlaBpentsesa, 6.

acniupanT Ecun A.B., esin@woland.it.nsc.ru

86

GraphiCon'2001

http://www.nvidia.com/marketing/%E4%90%A2%E6%94%80%E7%98%80%E6%94%80%E6%B0%80%E6%BC%80%E7%80%80%E6%94%80%E7%88%80%E2%BC%80%E4%90%80%E6%94%80%E7%98%80%E5%88%80%E6%94%80%E6%B0%80%E2%B8%80%E8%94%80%E7%8C%80%E6%98%80%E2%BC%80%E3%80%80%E3%90%80%E3%94%80%E6%8C%80%E6%98%80%E6%90%80%E6%88%80%E3%A4%80%E3%94%80%E6%94%80%E3%8C%80%E3%80%80%E3%98%80%E6%84%80%E3%90%80%E6%90%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%84%80%E3%9C%80%E3%80%80%E3%80%80%E3%94%80%E3%A4%80%E6%98%80%E6%84%80%E3%A4%80%E3%8C%80%E2%BC%80%E6%94%80%E3%A4%80%E6%88%80%E3%9C%80%E3%90%80%E6%8C%80%E3%94%80%E6%90%80%E3%84%80%E3%8C%80%E6%8C%80%E3%A4%80%E3%84%80%E3%8C%80%E6%84%80%E3%94%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%94%80%E6%8C%80%E3%80%80%E3%80%80%E3%80%80%E6%84%80%E3%A0%80%E6%8C%80%E6%84%80%E3%80%80%E2%BC%80%E2%90%80%E4%98%80%E4%A4%80%E4%B0%80%E4%94%80%E2%BC%80%E4%98%80%E6%BC%80%E6%9C%80%E3%88%80%E2%B8%80%E7%80%80%E6%90%80%E6%98%80
http://www.nvidia.com/marketing/%E4%90%A2%E6%94%80%E7%98%80%E6%94%80%E6%B0%80%E6%BC%80%E7%80%80%E6%94%80%E7%88%80%E2%BC%80%E4%90%80%E6%94%80%E7%98%80%E5%88%80%E6%94%80%E6%B0%80%E2%B8%80%E8%94%80%E7%8C%80%E6%98%80%E2%BC%80%E3%80%80%E3%90%80%E3%94%80%E6%8C%80%E6%98%80%E6%90%80%E6%88%80%E3%A4%80%E3%94%80%E6%94%80%E3%8C%80%E3%80%80%E3%98%80%E6%84%80%E3%90%80%E6%90%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%84%80%E3%9C%80%E3%80%80%E3%80%80%E3%94%80%E3%A4%80%E6%98%80%E6%84%80%E3%A4%80%E3%8C%80%E2%BC%80%E6%94%80%E3%A4%80%E6%88%80%E3%9C%80%E3%90%80%E6%8C%80%E3%94%80%E6%90%80%E3%84%80%E3%8C%80%E6%8C%80%E3%A4%80%E3%84%80%E3%8C%80%E6%84%80%E3%94%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%94%80%E6%8C%80%E3%80%80%E3%80%80%E3%80%80%E6%84%80%E3%A0%80%E6%8C%80%E6%84%80%E3%80%80%E2%BC%80%E2%90%80%E4%98%80%E4%A4%80%E4%B0%80%E4%94%80%E2%BC%80%E4%98%80%E6%BC%80%E6%9C%80%E3%88%80%E2%B8%80%E7%80%80%E6%90%80%E6%98%80
http://www.nvidia.com/marketing/%E4%90%A2%E6%94%80%E7%98%80%E6%94%80%E6%B0%80%E6%BC%80%E7%80%80%E6%94%80%E7%88%80%E2%BC%80%E4%90%80%E6%94%80%E7%98%80%E5%88%80%E6%94%80%E6%B0%80%E2%B8%80%E8%94%80%E7%8C%80%E6%98%80%E2%BC%80%E3%80%80%E3%90%80%E3%94%80%E6%8C%80%E6%98%80%E6%90%80%E6%88%80%E3%A4%80%E3%94%80%E6%94%80%E3%8C%80%E3%80%80%E3%98%80%E6%84%80%E3%90%80%E6%90%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%84%80%E3%9C%80%E3%80%80%E3%80%80%E3%94%80%E3%A4%80%E6%98%80%E6%84%80%E3%A4%80%E3%8C%80%E2%BC%80%E6%94%80%E3%A4%80%E6%88%80%E3%9C%80%E3%90%80%E6%8C%80%E3%94%80%E6%90%80%E3%84%80%E3%8C%80%E6%8C%80%E3%A4%80%E3%84%80%E3%8C%80%E6%84%80%E3%94%80%E3%A0%80%E3%A0%80%E3%88%80%E3%94%80%E3%98%80%E3%A0%80%E3%94%80%E6%8C%80%E3%80%80%E3%80%80%E3%80%80%E6%84%80%E3%A0%80%E6%8C%80%E6%84%80%E3%80%80%E2%BC%80%E2%90%80%E4%98%80%E4%A4%80%E4%B0%80%E4%94%80%E2%BC%80%E4%98%80%E6%BC%80%E6%9C%80%E3%88%80%E2%B8%80%E7%80%80%E6%90%80%E6%98%80
http://www.nvidia.com/marketing/Developer/DevRel.%C2%85sf/045cfdb95e306a4d882568170059fa93/e02300d70333940988256866007a46d9/$FILE/ElevationMaps2.pdf
http://www.nvidia.com/marketing/Developer/DevRel.%C2%85sf/045cfdb95e306a4d882568170059fa93/e02300d70333940988256866007a46d9/$FILE/ElevationMaps2.pdf
http://www.nvidia.com/marketing/Developer/DevRel.%C2%85sf/045cfdb95e306a4d882568170059fa93/e02300d70333940988256866007a46d9/$FILE/ElevationMaps2.pdf
http://www.cae.com/aerospace/visualsystems/maxvue.shtml
http://www.linuxfocus.org/English/July1998/article50.html
mailto:sivser@mail.ru
mailto:bsd@iae.nsk.su
mailto:esin@woland.it.nsc.ru

	Abstract
	3. MODEL DESCRIPTION
	3.3. Texture
	References
	Визуализация трехмерных облаков с применением поверхностей свободных форм

