
Different approaches to reduce shaft hierarchy in dynamic radiosity

Yann Dupuy, Mathias Paulin and René Caubet
IRIT - Computer Science Research Institute

Toulouse, France

Abstract
Hierarchical radiosity provides a good model for the lighting of
static scenes. But when an object moves, this model requires an
update of all the lighting. In fact, thanks to space-time coherence,
we just have to compute some of the geometry parameters (form
factors). The problem is to determine which part of the hierarchy
of links must change or not.
A shaft is a practical mean to represent the interactions of light
between two objects. A hierarchy of shaft describes all the
interactions in a 3D scene. So the intersection of the moving
object and the hierarchy of shafts directly gives the part of the
hierarchy that are concerned by the displacement.
The time needed to compute the new required form factors is
somehow proportional to the total number of shafts of the
hierarchy. Therefore, in order to decrease this computation time,
we present a method based on the Oriented Bounding Box of the
objects and compare it to a more standard Axis Aligned Bounding
Box approach.
Keywords: Dynamic Radiosity, OBB, AABB, Visibility, Shaft.

1. INTRODUCTION
Radiosity is a perfectly suited model for walk-through class
applications. The lighting of the scene is computed only once, and
afterward, today's hardware is able to cope with the high number
of polygons needed by the rendering of the solution. But as soon
as the scene turns dynamic, things are much more complicated.
As for any global model, the smallest change implies a different
solution for the whole scene. Some works ([1], [2], [10], [9]) have
already shown that it was possible to profit by the space and time
coherence to avoid computing everything from scratch.
In fact, we can characterize two kinds of “dynamic” environments.
On the one hand, in scenes where every move is known at the
beginning, we can compute all the changes in lighting before
displaying the first frame. This can take a while, but it is then
possible to display the dynamic scene in “real-time”. This would
typically be the case when creating movies, instead of computing
a frame at a time.
On the other hand, many other applications require a different
approach, as we might neither have the necessary long pre-
processing time, nor know what will append. For instance, in a
virtual visit of a building, the visitor might want to interact with
the furniture, or even do simple things like opening or closing a
door, switching on or off a light. This implies we are able to
compute the new lighting situation on the fly. And we must
absolutely compute it in a very short time.
We can define this constraint as “interactive time”: the acceptable
delay for rendering a new correctly light scene after the user
action. Longer than real-time, but short enough to provide

interaction between the user and the application. As we only have
little time, we must reduce the computations.
Considering the radiosity model, many form factors will not be
affected by the displacement of an object. Knowing that the
computation of the form factors is the longest part of the
resolution process, this is a rather good piece of news. In the case
of hierarchical radiosity, only a few links will change. And we
need a quick identification of these.
Convex objects have very interesting features, such as providing
real light occlusion: a chair cannot lead to plain shadow, whereas
the convex seat itself does. This is why, from now on, we will
only consider convex objects, as most of complex concave objects
can be divided into many convex ones.

2. WHAT'S TO BE MODIFIED?
The use of shaft, as defined by Eric Haines, provides an excellent
subdivision of space: each shaft bounds the interaction between
two objects, as far as light transfer is concerned. Considering a
shaft as the volumic representation of a link, it is possible to
merge the hierarchy of links (from the hierarchical radiosity
method) and a hierarchy of shafts.
Now if we consider an object moving from a position to another,
we can split the set of shafts into three parts:

• the shafts based on the moving object

• the shafts being intersected by any position of that object

• the shafts not being intersected
The third part will not need any new computation of form factor
and/or visibility factor. On the contrary, both first and second
parts require work.
When an object moves, so does its bounding box. Remember a
shaft relies on axis aligned bounding boxes of two objects. We
must then calculate again every shaft based on the moving object:
in a scene of n objects, this involves the computation of a
hierarchy coming from n-1 shafts (about twice that amount if we
differentiate transfer direction). This results in approximately o(n)
complexity.
If a shaft is intersected by the starting or finishing position (or
both), this will most of the time result in a change of the visibility
between the sides (the objects) of the shaft. In a hierarchical
radiosity method [7] (as well as in wavelet radiosity [5]), we can
compute the form factors without any visibility consideration, and
apply a visibility factor to the energy transfer. Doing so, we will
only need do compute the changes in visibility. Here again, there
are several possible cases. The new position of the object can lead
to a new occlusion in a shaft, as well as it can undo a previous
one. A shaft that was occluded (and therefore not subdivided),
will require a complete computation of its hierarchy. To avoid
part of this particularly bad situation, we can only deactivate the
part of the hierarchy that is not useful anymore when a change

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

happens. We will only have to reactivate it when necessary. In
case of partial visibility, we only need to go deeper in the
hierarchy and do the necessary changes.
The potential number of shafts intersected by the moving object
approximately corresponds to o(n2) complexity.
Once the change made in the shaft hierarchy, we can go back to
the iterative resolution process to compute the new lighting of the
scene. We can either do a full gather pass, or only a local gather if
the scene is too big. The iterative resolution process will apply the
changes in the whole scene. Anyway, this is not the point in this
paper.
The shaft hierarchy provides an excellent way to locate the link
that will change because the movement of the object. Though we
only have to test at the higher level of the hierarchy to see which
shaft is concerned by the moving object, we must go down and
test any concerned part of the shaft hierarchy. And the bigger the
hierarchy, the more shaft to test and thus, the more time spent. So
we must absolutely reduce the total amount of shafts in the scene.
Here are a few approaches for computing the shaft hierarchy,
keeping in mind that we must be quite fast!

3. THE CASE STUDY
Before going any farther with some possible way to limit the shaft
hierarchy, we must briefly view how a shaft is represented. This
implementation as several useful properties we shall use.

3.1 Shaft implementation
To represent a shaft we need to use planes. We can define a plane
by its normal vector ()cbaN ,,

r
, and its distance to origin d . A

plane splits 3D space into two regions: we chose the normal to
aim at the exterior. We can tell whether a point ()zyxP ,,

r
 is inside

or outside a plane by computing dPN +⋅
rr

. A positive result
indicates that the point is outside the plane, whereas a negative
one implies P

r
 is inside the plane.

Figure 1. 3D shaft. The set of occluders is also represented.

We use E. Haines method [6] to build the shaft between two
objects. We obtain an axis aligned bounding box, bounding the
two AABB of the objects, and a set of planes, each plane lying on

one edge of each AABB. For further algorithms purposes, those
planes are sorted out, so that two successive planes have exactly
one common edge. The shaft is the intersection of the insides of
the box and the planes. Figure 1 is a 3D example of a shaft
between a neon light and a step in the Duplex scene.

3.2 Axis Aligned Bounding Boxes
AABB is a very fast (computationally speaking) and easy
representation of an object, as we just need to know about the min
and max values for the three reference axes. They behave very
well with shafts, as shafts themselves are built on AABB of
objects. The main drawback is the poor fit of an object by its
bounding box. Using AABB approximation of objects can lead to
erroneous intersection considerations.
Anyway, this is not a real problem. If we use a ray casting for the
final visibility computation, it will cope with possible intersectors
that should not be considered. It will only have to test for ray
intersection with more patches than real possible candidates.

3.2.1 Intersection
Computing an intersection between a shaft and an axis aligned
bounding box is really straightforward. An AABB is outside of a
volume defined by a set of planes, if one of the planes satisfies all
the vertex of the box are outside of that plane. In other words, a
box intersects a set of planes if there is at least one vertex inside
each plane (one vertex per plane, not a common vertex for all
planes).
To avoid testing all eight vertices of a box against each plane, we
use arithmetic for intervals [13]. If we consider the plane
analytical expression, the low bound of the function interval must
be negative. So we just need to compute that minimum value. The
plane expression is linear in every three dimensions, so to
compute the minimum value for an AABB, we must take either
the minimum or the maximum value of an axis, depending on the
sign of the normal vector coordinate.

3.2.2 To cast, or not to cast?
We build most of our link hierarchy without really computing any
visibility value. At any node, if there is an occluder, the visibility
is set to “partial” (0.5), else, it is set to “full” (1). This avoids the
calculation of the visibility with for instance a ray casting. As far
as the size of the hierarchy is concerned, this of course not a good
thing. We can develop some part of the hierarchy though it is fully
occluded.
So we also tried to create the links with a systematic visibility
computation, in order to avoid those unwanted branches of the
hierarchy. Anyway, this method cannot work properly: the ray
casting can hardly deal with small objects. To be correct, we must
cast a lot (how many?) of rays between two patches. But this
would require too much time. We chose to cast 16 rays, and we
will carefully use this other method, mostly to characterize the
others.

3.3 Oriented Bounding Boxes
Minimal volume oriented bounding box provides a much better
approximation of a convex object than the AABB. Figure 2 (left)
gives a good example of this feature. Of course, there are some
convex objects that can hardly be represented through their
oriented bounding box. Even worse, a sphere or a tetrahedron will
never fit in a box.

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

For visibility computations, we replace each object by its OBB.
This leads to wrong but plausible results, all the more than the
objects are properly subdivided into convex parts. But if we
consider that an OBB is precise enough to represent an object, we
can use the OBB to compute whether an object fully (not partly as
we did for AABB) occludes a shaft. Of course, we reduce the
number of objects to test for occlusion by testing only objects that
intersect the shaft.

Figure 2. Didactic 2D examples of bounding volumes

3.3.1 Intersection
Using the same method as for axis aligned bounding box, leads to
wrong results. There might be, for each plane of the shaft, a vertex
inside, but no intersection. Figure 2 right is a 2D example. As we
said for AABB, a wrong intersection itself is not annoying. But,
this time, we test for occlusion. This means that we cannot
consider an object that is not really intersecting the shaft.
Otherwise, it could result in very disturbing artificial shadows in
the rendered solution.
This why we use a totally different algorithm, based on the
separating axis method. It is based on the following statement. For
any line of 3D space, an object projects itself onto that line as a
segment. If there is a line for which two objects project onto two
separate segments, the two object do not intersect. As it is stated
in Dave Eberly's paper [4], we only need to test for a finite set of
lines. In our case, the set contains:

• the normals to the faces:
o the three axes of the oriented bounding box
o the three scene reference axes and the normals of the planes

• the cross products of pair of edges:
o the three axes of the OBB
o the three scene reference axes and the edges of the planes

Of course for both normals and edges we must avoid as many
redundancy as possible. This is done when creating the shaft: we
only keep the necessary vectors (e.g. two opposite normals are
considered as a single vector) and that way, reduce the size of the
set. We also profit by the specific geometry of boxes and shafts to
prevent projection whose we already know the result.
To compute the projected segment of the box, we just have to
calculate the minimum and maximum boundaries of the segment.
We then project the origin and add the projections of the axes.
To project the shaft, we can see no alternative to project the
vertices of the shaft. We can slightly reduce the number of
projected points by only taking into account the vertices that are
on the surface of the shaft, not fully in it. These vertices are also
computed when creating the shaft.

3.3.2 Occlusion
We already presented our method to compute occlusions in [3].
To sum up briefly, the occlusion of a shaft by an AABB is
straightforward. If we find a vertex of the box outside each side
plane of the shaft, the box occludes the shaft. This condition is

absolutely not enough for OBB, as we can see on Figure 3 (a).
Figure 3 (b) clearly explains why this is not sufficient.

(a) AABB occludes,

OBB does not

P1 SHAFT

P

P P2 3

4

(b) 2D slice of 3D shaft

Figure 3. 2D and 3D occlusions considerations

So we treat the side planes of the shaft, a pair at a time. We try to
find a point outside both planes, in other words a point in the
intersection of the outsides of each plane. The different cases to
consider are shown on Figure 4.

N1

N2

outside

1P

2P

SHAFT

Pi

(a) Vertex of the box outside

both planes

N1

N2

outside

1P

2P

maxP2

maxP1

P

SHAFT

(b) No vertex but an edge

outside both planes

N1

N2

outside

1P

2P

maxP2

maxP1

SHAFT

P

(c) Neither a vertex nor an edge outside the planes:

there can NOT be an occlusion

Figure 4. Possible geometric configurations.

Studying each pair of planes until we find a case (c), we can tell
whether there is an occlusion or not. Though we can regret the
lack of theoretical validation of the whole method (see in [3], the
trick to cope with wrong occlusion), we did not notice any artifact
on the rendered pictures.

4. STATIC RESULTS
In order to compare the previous methods, we used them to
compute different kind of scenes. Here are some quite
representative results we obtained for the scenes shown at the end
of this paper. For each scene and each method (respectively
Oriented Bounding Box, Axis Aligned Bounding Boxes with
systematic visibility with ray-casting, Axis Aligned Bounding
Boxes without systematic calculation of the visibility), we present
in Table 1 the total number of links. We made 20 iterations to
ensure the convergence of the solution, and give the computation
time as an indication (600 MHz Pentium powered by Linux).

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

 OBB AABB with systematic RC AABB without systematic RC

Scene Links Time Links Time Links Time

Cornell (18 faces) 44688 11 s 55900 13 s 57796 16 s

Shadow (60 faces) 30593 10 s 35417 11 s 35501 12 s

Four Rooms (192 faces) 77612 36 s 113165 41 s 116931 44 s

Duplex (252 faces) 138173 155 s 184698 166 s 188973 163 s

Table 1. Quantitative results of the three methods, for different scenes

These results seem promising. Depending on the scene, the use of
the OBB method reduces the number of shafts by 15 to 35%. As
the hierarchical radiosity method is very sensitive to convergence
parameters, we cannot determine any straight relation between the
final number of links and the initial number of faces. Anyway,
reducing the size of the link hierarchy, we expect to reduce the
total amount of computations for dynamic update.
As far as time is concerned, the gain is a bit smaller, from 5 to
30%, but is not linearly dependent. If we try to define a “time per
shaft”, we get numbers quite coherent to what we could expect:
the complexity of the OBB algorithms involves a greater
computation time for each shaft compared to the AABB
algorithms. Additionally, casting rays systematically costs more
than computing the visibility for the leaves of the hierarchy only.
Last, we can notice that the systematic visibility computation is
costless than casting rays for the leaves only. We could explain
that with the compared cost of computing the intersection of
objects and rays, and computing a shaft and its intersection with
an AABB. We will only focus on the two best methods for the rest
of this paper.

5. DYNAMIC MODIFICATION
This work primarily aimed at reducing the time needed to
compute the new radiosity solution after a geometric change in the
scene. We therefore compared the above methods in a dynamic
environment.

5.1 Update strategy
As it was our first goal, we can greatly profit by the shaft
hierarchy to determine the part of the hierarchy that must be
recomputed.
Our algorithm is based on clustered hierarchical radiosity. We use
Smits [11] denomination of the links: β-links, α-links, and patch-
links. We associate one shaft to each link and thus, indistinctively
deal with the link hierarchy or the shaft hierarchy.
The higher-level shafts, which are shafts (or links) representing
the interaction between entire objects, necessarily correspond to
β-links. Therefore, we must have a specific treatment for those
links, whereas α-links and patch-links will have a similar but
reduce one.
Once the links computed, we collect the radiosity for the new or
modified links. After a quick push-pull, we obtain a first (but
already good) approximation of the final solution. We just need to
run the main resolution process to perform any additional transfer.

5.1.1 ββββ-links particularity
The first thing we must test is whether the source or the receiver is
the moving object. If this is the case, we must update the whole
involved hierarchy of the current link. As one of the base objects
of the shaft moves, we must recompute every shafts of the
hierarchy. This means that we have to destroy the children of the
current link, and recalculate everything from scratch.
This results in a o(n) complexity, and only concerns a maximum
of n-1 β-links at the top of the hierarchy (where n is the initial
number of objects).

If the moving object is neither the source of the β-link, nor its
receiver, we apply the same algorithm than the other links. Of
course, this the most used part of the update process.

5.1.2 All links
The determining parameters of the algorithm are “WAS the
moving object in the current shaft?” and “IS the moving object in
the current shaft?”.
First case, the object was in the shaft. If it is not in the shaft
anymore, we must erase it from the list of potential occluders.
Then we have to see whether the shaft is occluded or not. There
are three possibilities left:

• If the shaft was previously occluded and is not after the
movement, we must develop the hierarchy. If it was
deactivated we only need to reactivate it. Else, we create new
links.

• If the shaft was not but is occluded after the displacement,
we only have to deactivate the whole children hierarchy of
the current link.

• If the shaft was not and is still not occluded, we recursively
update each children of the next level of the hierarchy.

Or, the object was not previously in the shaft. We only need to
know if the shaft is occluded or not. And this is really easy: either
it was already occluded, necessarily not by the moving object, and
it remains unchanged, or the moving object involves a new
occlusion. In the last case we just have to deactivate the children
hierarchy. If the shaft is not occluded, we only need to update the
existing next level of the hierarchy.

5.2 Results
In Table 2, we sum up some results we obtained applying the
mentioned algorithms, for the same scenes. We moved either a
simple object or a composed one (a chair for instance).

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

 OBB AABB with systematic ray casting

Scene Time Parsed
links

Modified
links

Deleted
links

Created
links Time Parsed

links
Modified

links
Deleted

links
Created

links

Cornell 4 s 6125 4430 14545 9246 7 s 18670 13108 13125 14956

Shadow 3 s 6352 4063 1051 1113 3.5 s 6915 4572 964 1478

Four Rooms 4,5 s 5310 3144 2645 1331 5,5 s 7466 4568 4045 2445

Duplex 70 s 50587 32512 3704 1392 78 s 63904 40083 3206 2030

Table 2. Dynamic update after some movements

These are quite early results, but we can anyway conclude some
interesting facts. Of course, the movements are not exactly the
same for both studied method as we moved the objects
interactively, but we tried to obtain very similar “after” positions.
First interesting result is the close relation between the number of
links parsed and the time needed to update the solution. As we
could have expected after the static results, the OBB methods
perform very well compared to the AABB algorithms. We always
get better results with Oriented Bounding Boxes. This confirms
are first will of reducing the hierarchy to reduce the update time.
The algorithm behavior is very sensitive to the scene geometry.
We can see that there is absolutely no rule for the different
numbers of links. For instance, while the number of parsed links
is about the same for Cornell and Shadow scenes, the number of
created (or reactivated) and deleted (deactivated) links vary a lot.
Anyway, this does not seem to have a huge impact on the total
time needed for the full update process.
Though for the first three scenes, the update time match our initial
desire, the Duplex scene clearly shows that there is a lot of work
still to be done.

6. CONCLUSION AND FUTURE WORK
All these results seem very promising. But in order to confirm,
and maybe improve them, there are several ideas that should be
interesting to explore.
First of all, we showed that the better was the accuracy of the
bounding volumes, the smaller was the shaft hierarchy. A shaft is
a quite good approximation of the volume of the possible
interactions between two objects. Anyway, there is a better
approximation, especially when the objects are flat patches. In this
case, it would be much more interesting to use the convex hull of
the two patches, instead of the shaft. By definition, the convex
hull of a set of points is the smallest convex polyhedron
containing these points. So we think the convex hull is a better
approximation because we avoid the loss of accuracy of the
AABB necessary to build the shaft.
In the same way, it would be much better to use biggest convex
volume included in each object instead of convex bounding
volumes; thus, there would be no error at all on occlusion. But the
methods mentioned in [14], seem to complex to be useable in our
case.
Last point on occlusion, it might be very interesting not only to
consider each blocker individually, but group the potential
occluders in order to generate bigger occluding volumes and that
way identify more occlusion. [8] is a nice approach for huge city
scenes, and might be adapted to other scenes.

It also seems promising not to systematically compute a shaft for
each link. When building the link hierarchy we have to link very
small patches together. We think we could use a threshold under
which we would not build a new shaft but use the parent one. This
would also clearly lead to an important saving in memory, as a
shaft is heavy to store (planes and set of occluders).
Finally, it would be interesting to compute an optimal initial
cluster subdivision, in order to easily distinguish the different
rooms. That way we could distinguish the displacement in a room
and in the room next door (or upstairs in a duplex). This should
help to update the links in the room where the user is, or where
the moved object is (and was), and perform the other links with a
background process.

7. REFERENCES
[1] Cyrille Damez and François Sillion. Space-time hierarchical
radiosity. In Dani Lischinski and Greg Ward Larson, editors,
Rendering Techniques’99, Eurographics, pages 235-246,
Springer-Verlag, Wien New York, 1999. Proc. 10th Eurographics
Rendering Workshop, Granada, Spain, June 21-23, 1999.
[2] George Drettakis and François Sillion. Interactive update of
global illumination using a line-space hierarchy. In
TurnerWhitted, editor, SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 57-64. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-7.
[3] Yann B. Dupuy, Mathias Paulin and René Caubet. Occlusion
evaluation in hierarchical radiosity. WSCG’01 Conference
Proceedings, pages (SC)52-59, Plzen, Czech Republic, February
5-9, 2001. ISBN 80-7082-713-0.
[4] Dave Eberly. Testing for intersection of convex objects: the
method of separating axis. http://www.magic-software.com, 2000.
[5] Steven J. Gortler, Peter Schroder, Michael F. Cohen, and Pat
Hanrahan. Wavelet radiosity. In Computer Graphics Proceedings,
Annual Conference Series, 1993, pages 221-230, 1993.
[6] Eric A. Haines and John R. Wallace. Shaft culling for
efficient ray-cast radiosity. In Pere Brunet and Frederik
W.Jansen, editors, Photorealistic Rendering in Computer
Graphics, Eurographics, pages 122-138. Springer-Verlag Berlin
Heidelberg New York, 1991.
[7] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid
hierarchical radiosity algorithm. Computer Graphics
(SIGGRAPH’91 Proceedings), 25(4):197-206, July 1991.
[8] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François
X. Sillion. Conservative volumetric visibility with occluder fusion.
In SIGGRAPH’00 Conference Proceedings (New Orleans), LO,
July 23-28, 2000), July 2000.

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

[9] Franck Schöffel and Andreas Pomi. Reducing memory
requirements for interactive radiosity using movement prediction.
10th Eurographics Workshop on Rendering, Granada, Spain,
June 1999.
[10] Erin Shaw. Hierarchical radiosity for dynamic environ-
ments. Computer Graphics Forum, 16(2):107-118, 1997. ISSN
0167-7055.
[11] Brian Smits, James Arvo and Donald Greenberg. A
clustering algorithm for radiosity in complex environments.
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24--29,
1994), Computer Graphics Proceedings, Annual Conference
Series, pp. 435-442, ACM Press, July 1994.
[12] Brian Smits and Henrik Wann Jensen. Global illumination
test scenes. Technical Report UUCS-0-013, Computer Science
Department, University of Utah, June 2000.
http://www2.cs.utah.edu/~bes/papers/scenes.

[13] John M. Snyder. Interval analysis for computer graphics.
Computer Graphics (SIGGRAPH’92 Proceedings), 26(2):121-
130, July 1992.
[14] M. Szilvasi-Nagy. Two algorithms for decomposing a
polyhedron into convex parts. Computer Graphics Forum,
5(3):197-201, September 1986.

About the authors
Yann Dupuy is a PhD student, Mathias Paulin is an Associate
Professor and René Caubet is the Professor in charge of the Image
Synthesis and Virtual Reality staff of the IRIT Laboratory.
IRIT – Université Paul Sabatier
118, route de Narbonne
31062 Toulouse cedex 04
France

E-mail: ydupuy@irit.fr, paulin@irit.fr, caubet@irit.fr

(a) Cornell Box

(b) Duplex

(c) Duplex: moving a chair

(d) Four Rooms

(e) Shadow [12]

(f) Shadow: moving two blockers

International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/

	INTRODUCTION
	WHAT'S TO BE MODIFIED?
	THE CASE STUDY
	Shaft implementation
	Axis Aligned Bounding Boxes
	Intersection
	To cast, or not to cast?

	Oriented Bounding Boxes
	Intersection
	Occlusion

	STATIC RESULTS
	DYNAMIC MODIFICATION
	Update strategy
	(-links particularity
	All links

	Results

	CONCLUSION AND FUTURE WORK
	REFERENCES

