Semi-adaptive dictionary based compression of map images

Alexandre Akimov, Pavel Kopylov and Pasi Franti

University of Joensuu

Joensuu, Finland
25.06.02

Abstract

One of the modern fields of application of the image
compression is personal navigation, where the user needs maps
in real time. Usually the mobile communication devices do not
have the same computational power as the workstations (small
memory, narrow communication channel). Thus, the map
images must be compressed before transmitting. At the same
time, decoding of compressed images must be quick. The
existing dictionary based image compression methods (such as
PNG or GIF) allow us to get good compression ratio with fast
compression and decompression. In this article, we propose
semi-adaptive dictionary based compression method, which is
a modification of the well-known LZW method. The method
allows user to divide the whole image into rectangular blocks
and process and transfer coded blocks separately from each
other. Despite the small block size, our method gives similar
compression ratio not any worse than GIF or PNG without
blocking of the image.

Keywords: Dictionary-based, semi-adaptive, compression,
maps, personal navigation.

1. INTRODUCTION

Map images are needed in personal navigation and other
location-based applications. Typical map image contains high
spatial resolution but a limited number of colours as shown in
Fig. 1. The images are usually of huge size, and thus, needs to
be compressed for efficient storage.

Best compression results have been achieved by context-based
statistical modelling with arithmetic coding without any loss in
the image quality [11]. The most recent binary image
compression standards JBIG [9] and JBIG-2 [8] are examples
of such approach. Compression of about 25:1 can be achieved
for a typical good quality noiseless map image [6].

Map image storage system has been proposed in [5] using JBIG
as the basic compression method, and by tiling the image into
blocks and implementing direct access to the compressed file.
The method can be used for dynamic construction of maps from
smaller fragments retrieved real-time on-the-demand basis as
proposed in [7].

Dictionary-based compression is an alternative approach to the
statistical modelling. This approach has been taken in GIF [12]
and in PNG [14], for example. These methods can achieve
compression of about 10:1 for typical map images [6].

Although JBIG is superior in compression performance, the
dictionary-based compression has two advantages: Firstly, the
decompression can be about 10-20 faster than that of the
context-based modelling and arithmetic coding. Secondly, JBIG
can compress only binary images, and thus, the maps must
therefore be divided into binary layers before compression.
When the image contains lots of colours, the layer separation
can be time-consuming and weaken the compression

performance. Because of these reasons, the dictionary-based
methods are useful in some applications.

We study the dictionary-based compression with application to
map images. We consider the case when the image is divided
into smaller blocks, which are compressed separately. The
number of pixels per block can be relatively small and,
therefore, the model has less time to adapt to the input image.
This can weaken the compression performance in methods such
as GIF and PNG, which uses dynamic modelling.

In this paper, we propose semi-adaptive modelling scheme for
the LZW data compression algorithm with application to map
images divided into smaller blocks. The proposed compression
scheme consists of three stages. In the first stage, the image is
analysed and a global dictionary is built for the entire image by
using the LZW algorithm. In the second stage, the dictionary is
pruned so that it will contain only most frequently used pixel
sequences. The dictionary is stored in the compressed file. In
the third stage, the input blocks are compressed separately using
the global dictionary, which is applied in static manner.

We will show by experiments that the proposed method
outperforms the traditional dynamic dictionary construction in
the case of small block sizes. The compression performance
remains relatively constant as a function of the block size,
whereas the dynamic modelling starts to lose its effect for block
size smaller than 50x50.

(left), and a topographic map of scale 1:20 000 (right).

2. PERSONAL NAVIGATION

Personal navigation is a service, which helps people to navigate
on work-related and leisure journeys, to choose the route and
mode of transport necessary to reach a particular destination,
and to find the service or product that they desire. Usually the
guidance supposed to be implemented on the basis of mobile
multimedia and it would be available in both out-door and in-
door environments. It should be possible to access the services
using mobile devices like mobile phones, pocket PCs and
traditional PCs via Internet.

2.1 Map service

One of the main fields of the personal navigation service is the
map service. Digital maps provide visual view on a given
geographic location that can be used for application dealing

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

with spatial data in personal navigation. We can select user-
specific views of the map server for different applications. The
main goal is to have the maps available in real-time and
independent of the location of the user. The map service
processes by the next scheme: the user receives his coordinates
from the GPS, and sends them to the map image server. After
receiving the request the server sends the necessary map.

2.2 Computational resources

Let us consider the case when the user uses the map service in
out-door environment. It means that the user has to use
a portable device (like a notebook or a pocket PC) with
appropriate positioning device and wireless internet-connection.
Here arise several problems.

Firstly, it is necessary to say that the storage size of a map is
huge. For example, electronic library of Finnish road maps of
the resolution 1:250 000 takes the space of entire CD (over 600
Mb) in uncompressed form [4]. At the same time, the capacity
of modern communication channels are limited and these limits
depend on the type of communication. The GPRS channel has
capacity of 56 Kbit per second, while GSM channel has
capacity only of 9600 bits per second. In the case when the
device (like a pocket PC) operates by an infrared port, then the
input channel capacity is limited by 19200 bits per second. On
the other hand, the portable viewing device, such as pocket
computer, have about 32 Mb of storage space (for everything,
including operation system, programs and data), which can be
expanded by about 96 Mb through using compact flash memory
cards [4]. The size of the map images can therefore be a
bottleneck. That is the main reason to compress map images
before the data will be transmitted to the user.

2.3 Block-segmentation of the image

The map service makes its own demands to the map image
compression technique. The first place with the compression
ratio divides here the quick and low machine resource
demandable decompression, because the compression can be
processed on powerful servers, but the decompression of the
image will be processed on the devices with comparatively low
computational resources.

The existing compression techniques have a drawback that the
entire image must be decompressed in memory before the image
can be presented to the user [4]. This can be a problem, as the
device may not have sufficient resources for real-time
decompression of the whole image.

One solution to this problem is block segmentation. The image
is divided into b X b non-overlapping rectangular blocks before
the compression, and each block is compressed separately as
proposed in Figure 2 [4]. The compressed blocks are stored in
the same file, and an index table is stored in the header of the
file. When the compressed image is accessed, a block index
table indicating the location of the block in the compressed file,
can be constructed. This provides direct access to the
compressed image file, and therefore, enables efficient and
independent decompression of particular image fragment.

The block size is a compromise between compression ratio and
decoding delay. If very small block size is used the desired part
of the image can be reconstructed more accurately and faster.
The index table itself requires space and the overhead is relative
to the number of blocks.

e

D i i
;

o

L] [i
ot * |Encoder| * * =

Evepdeal

i
b
Bl B et b i
1 ’ c el i
i Bhicks sl E:wmm.-‘

Figure 2: Block-segmentation of the map image.

3. SEMI-ADAPTIVE DICTIONARY BASED
COMPRESSION

The compression theory has two main subsections: statistical
and dictionary based compression algorithms [3]. Let us closer
consider the family of dictionary-based algorithms.

3.1 Dynamic vs. Semi-adaptive

There are three types of dictionary based compression models.
They are: static, semi-adaptive and dynamic. The static
algorithms are the simplest and the oldest members of this
family. They use for encoding a static, predefined dictionary,
which is not adapted to the input file. Unfortunately, their
behaviour is unacceptable, as we can’t create a static dictionary,
which will compress all different map images. So let us
consider more closely the other two modelling schemes:
dynamic and semi-adaptive.

Semi-adaptive dictionary based compression method uses a
two-pass algorithm, where the first pass is used for creating
dictionary according to input stream, and the second performs
the actual compression. The dynamic dictionary based
compression uses the one-pass algorithms, which modifies
operators and/or attributes according to the input stream. The
dictionary in the dynamic case is created on-line during the
compression.

That is the reason why the dynamic algorithm must update the
model according to the input stream. On the other hand, semi-
adaptive dictionary based compression needs to store the
dictionary in the compressed file, whereas the dynamic
modelling reconstructs it during the decompression (see Figure
4). The positive and negative sides of both modelling methods
are summarized as follows:

Semi-adaptive decompression Dynamic decompression

-Side information needed +No side information needed

-Updating of the model during
decompression

+No updating of the model during
decompression

3.2 Semi-adaptive modification of the
LZW algorithm

LZW is a reasonably good compression algorithm, which can
adapt itself to the changes in the input stream [15]. During
LZW compression the input stream is parsed into phrases,
where each phrase is the longest matching phrase seen
previously. Each phrase (without its last character) is encoded
as an index to the dictionary. The main achievement of this
approach is that it is from the family of adaptive coders that let
it not to store the dictionary into the file, but create it during
decompression process. It is very important, because the
dictionary can easily reach very huge size. On the other hand,
the compression ability of the LZW algorithm decreases if we
use it for compression maps with small number of colours

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

(binary images for example), or texts with small number of
different used symbols.

We present a modification to the LZW, which is denoted here
as LZWsem (LZW semi-adaptive). The algorithm has two
phases: in the first phase it builds a dictionary, and the actual
output of the indexes is started in the second phase. The
dictionary is built by using the same algorithm as in the LZW.
During the second stage, the LZWsem uses also the same
parsing technique as LZW but it can use all entries in the
dictionary, also those ones that appear later in the image. This
also means that the dictionary must also be coded.

3.3 Implementation of the algorithm

The implementation of the semi-adaptive method can be
divided into several parts as follows:

1. Create an initial dictionary by the LZW algorithm,

2. Prune the dictionary,
3. Store the final dictionary in the compressed file,

4. Encode the input file by using the final dictionary.

The first part is creation of initial dictionary. It means that at
the first time, the algorithm processes the adaptive LZW coding
process, and create dictionary so called as initial dictionary. The
indexes, however, are not yet coded. At the next step, the
algorithm prunes the initial dictionary. The third step is in
storing all necessary side information, as the file header,
dictionary and so on into the compressed file. At the final step,
the algorithm codes the input image by using the final
dictionary.

3.4 Creation of the initial dictionary

For creating the initial dictionary we use the original LZW
algorithm. On this stage we predefine the number of LZW tree
nodes per each block. The direction of the compression is
processed as it is shown in the Figure 3. The number of nodes
per each block is the maximum number of nodes, divided by the
number of blocks. The pseudocode of this process is shown in
the Figure 4. The MaxNodelndex is the upper limit of the LZW
tree node indexes, and MaxBlockNodeNumber is the number of
nodes per block.

A—"

/%
Figure 3: The direction of the image processing in the second
variant

MoveFilePointerToBlockStart
Count«0
MaxBlockNodeNumber = MaxNodeIndex/NumberOfBlocks
String«-ReadSymbol (InputImage)
While (Not end of image block)
{
Symbol<«-ReadSymbol (InputImage)
if (String+SymboleInitialDictionary) {
String«-String+Symbol
}
else(
AddToDictionary (String+Symbol)
Count++

if (Count>=MaxBlockNodeNumber) then break

String«-Symbol
}

Figure 4: The pseudocode of the block-to-block dictionary
creating.

3.5 Pruning of the initial dictionary

Transformation of the initial dictionary into the final dictionary
consists of deleting the most of elements from the initial
dictionary. Let us define a cover of the input image as the
sequence of the dictionary elements, which cover the image
without intersections. So the process consists of two stages:

1. Cover creating.

2. Pruning of the cover.
The algorithm of the first phase is described in Figure 5. All
elements from the initial dictionary are divided into two groups:

symbols sequences included in the cover, and symbols sequences
not in the cover.

Feadl Firstymbol 3

CurentString < FirstSymbol
CumrentstringIndex < 1

While(Mot end of the input stream)

{

Read(Symbal)

iff CumrentString + Symbol € InitialDictionary)
{

Indes{CurrentString) «— CurentStingIndes: ++;
Currentbtring < Symbol

elze
{
CumrentString « CumrentString + Symbol
3

)

Figure 5: Pseudo code for the creation of the cover.

At the second stage of this phase we start to prune the initial
dictionary. For this operation we need a criterion for each
element from the initial dictionary, whether to keep it or to get
rid from it. The main principle of this criterion was that each
element of the final dictionary will be represented in the header
of the compressed file and therefore will require additional
space. Among several variants of the criterion the simplest one
was chosen. During the first stage we collect the cover statistics
of each element from the initial dictionary. The criterion is: if
an element appears in the cover of the input image more than
once it is kept in the dictionary. Otherwise it is deleted.

3.6 The final dictionary structure

We consider two alternative methods to store the final
dictionary elements:

1. To keep the tree structure of the LZW tree; the final
dictionary is stored as pointer to the parent node +
symbol.

2. To get rid of the tree structure and store the final
dictionary as a simple codebook.

In the first case, the element of the dictionary is consisting
from: “parent + symbol”. Size of the parent is calculated from
the predefined number of LZW tree nodes. For example, if
LZW tree consists of 512 nodes, then it is necessary to use 9
bits to encode the index of the nodes (log,512=9). The code bit
length of the symbol depends from the number of colours. So if
the image has 8 colours, it is necessary to use at least 3 bits to
encode the index of colour (log,8=3). The final formula for the
size of the transformed information is:

(log, ColoursNumber + log, NodesNumber)- NodesNumber

bits. In the second variant the formula for the size of transmitted
information is:

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

UseNodesdNumber
Z DepthOfNode; -log, ColoursNumber
i=1
bits, where UsedNodesNumber is the number of nodes from the
initial dictionary that were used in the cover of the input image,
and DepthOfNode is the depth of the node in the LZW tree (or
length of the phrase, which it represents).

Both variants were tested on several map images, and results of
the tests are placed in the Table 1. The advantage of the second
variant is clear when the number of LZW tree nodes is higher.
There is a tendency that the difference between size of
transmitted information increases in favour of the second
variant.

Table 1: Comparison of both variants for storing the dictionary.

Image Nodes Colours Used Nodes Var‘iantl Var‘iantZ
Number Number Number Size Size
vll.pgm 512 4 201 5632 3198
vantaa.pgm 512 4 426 5632 5570
suomi2-q.pgm 512 8 353 6144 5928
hills.pbm 512 2 325 5120 3505

3.7 Storing the final dictionary

The first information, which is necessary to read the final
dictionary, is the number of sequences and the lengths of each
sequence. As the number of sequences is about several
hundreds, they are encoded by using Huffman coding. The
process of storing the final dictionary in the compressed file can
be divided into several stages:

1. Output the length of the dictionary (the number of
dictionary elements after two stages of pruning).

2. Calculate statistics for all lengths of the final
dictionary sequences.

3. Create a Huffman tree for the lengths according to
the statistics.

4. Store the Huffman tree structure in the compressed
file.

5. Output elements of the sequences.

At the first stage, encoder outputs the number of elements in the
dictionary.

The second stage consists of two sub-stages. At the first sub-
stage it is necessary to find the maximum length from all
sentences from the final dictionary. The second is to calculate
how often each length appeared in the final dictionary.

At the third and fourth stages, the encoder codes lengths of the
dictionary elements by using Huffman coding. It creates
Huffman tree and outputs all information that is necessary for
reconstruction of the Huffman tree during decompression.

The last stage outputs the actual dictionary. The dictionary is
represented as a sequence of characters and encoded by the
LZSS algorithm [15]. The general scheme of the header of the
compressed file is placed in the Figure 6.

Final dictionary lengths

v

Hufftnan header for lengths

v

Lengths of dictionary
eletnents encoded by
Hufftnan coder

v

Dictionary eletnents,
encoded by LEZZS

Figure 6: General scheme of storing the dictionary.

3.8 Compression step

When all necessary information of the dictionary is outputted, it
is time to compress the input image. This algorithm is a two-
stage process:

1. Calculate the final dictionary elements statistics.

2. Output the compressed information accordingly to
the calculated statistics.

The idea of the first stage is to find the modified cover of the
input image according to the final dictionary elements. During
the first stage, the first version of the cover is created. But
during the second stage some of the elements from the cover are
deleted. In the compressed file they will be replaced by a new
sequence of codes. The final dictionary does not have tree
structure, but some of the relations are kept. The structure of the
final dictionary can be described in the following manner: each
element has a parent and so-called tail: a sequence of symbols,
which belonged to all initial dictionary elements that were
between the parent and the current node (see Figure 7 and
Figure 8 consequently). The pseudocode of the current stage is
placed in Figure 9.

|
0

|
i

|
2
A c D
4 87 6 9 10 13
.T T A 1|3 D A B
5 12 1
B D A

Figure 7: LZW tree for input string “4A4ABBACDBBAACDA”.

|
i
A
|
7

e — T2 —

|

1

B

1
D BA

Figure 8: LZW tree for input string “44A4ABBACDBBAACDA”
after first stage of pruning.

For (phase = 1; phase <= 2; phase++)
{

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

String«-ReadSymbol (InputImage)
While (Not end of input stream)
{
Symbol<«-ReadSymbol (InputImage)
if (String+SymboleInitialDictionary) {
String«-String+Symbol
}
else(
if (StringeFinalDictionary) {
if (phase=1) then GetStatistics (CodeOf (String))
else Output (CodeOf (String))
}
else{
Output (ParentOf (String))
Output (TailOf (String))

}
String«-Symbol
}
}

The binary images were processed with the block segmentation
of sizes: 50X 50, 100X 100, 200 X 200, 250 X250, 500 X 500
and 1000X 1000 (the whole image compression). For
comparison were taken from one side such widely known
dictionary based algorithms as PNG, GIF, TIFF and JBIG (here
was used the MISS [5] coder, which was processed for binary
images).

The greyscale images were processed the block segmentation
sizes: 64X64, 128X128, 256X256, 512X512 and
1024 X 1024 pixels in one block. The results of experiments
were summarised and were taken average from all files of each
type. These results are shown in the Table 2. The average
compression rate for each test image is shown in the Table 3.
The dependencies between the compression ratio and the image
size are shown in the Figure 10 and 13 (for binary images and
for greyscale images consequently).

Table 2: Average sizes of the compressed files from test series.

Binary images

Figure 9: Pseudocode of the encoding in semi-adaptive
algorithm.

This pseudocode is the same in both phases, only the function
“Output” in the first case means calculating statistics of the
dictionary elements, and in the second case it means outputting
the encoded information into the compressed file. After the first
phase, we create the Huffman tree for the final dictionary. The
information about the Huffman tree is placed into the
compressed file. Then we encode the input image. Each index
from the final dictionary is replaced by a corresponding
sequence of bits.

3.9 Decompression

The decompression process consists of three steps:
1. Decode the dictionary
2. Looking for the necessary block
3. Decoding of the found

At the first stage, the decoder reads the number of dictionary
elements, their lengths, allocates memory for them, and then
reads the symbols of each dictionary element. At the next stage,
the decoder calculates the number of bytes that is necessary to
offset from the beginning of the file to the beginning of the
image block. When all necessary procedures are done the
decoder starts the decompression using standard LZW
decompression routine expect that the dictionary is static and,
therefore, not updated during the process.

4. EXPERIMENTS

We compress a set of topographic map images originating from
the NLS topographic database [13]. The first image set consists
of binary images and the second set of greyscale images. The
set of experiments was provided to receive information about
the behaviour of the previously described semi-adaptive
(LZWsem) algorithm and the adaptive LZW algorithm in the
case of block segmentation. As the standard GIF format does
not have such option as image tiling, a modified version with
this option was implemented. For the experiments we had taken
five binary images with size 1000 X 1000 pixels, and four
greyscale images with size 1024 X 1024 pixels. During the
experiments the block segmentation for each image was
performed.

S/A Adaptive GIF PNG TIFF G4 JBIG
50x50 29300 46327 X X X 14143
100x100 29491 38196 X X X 11965
200x200 29579 33747 X X X 10857
250x250 29245 32973 X X X 10305
500x500 29272 31017 X X X 10616
1000x1000 28882 29993 31417 | 29537 17934 10215
Greyscale images
S/A Adaptive GIF PNG TIFF Deflate
64x64 302130 312253 X X X
128x128 296874 299802 X X X
256x256 287727 291508 X X X
512x512 286159 289216 X X X
1024x1024 | 283625 288423 317034 318645 315238

Table 3: Average compression ratios.

S/A GIF PNG TIFF JBIG
Image 1 3.313 3.18 3.46 5.12 8.55
Image 2 6.07 6.15 6.45 11.05 8.55
Image 3 3.97 3.41 3.61 6.53 12.30
Image 4 8.86 9.15 9.9 26.99 38.18
Image 5 2.64 2.54 2.77 4.22 6.84
Image 6 7.94 7.54 6.86 7.61 X
Image 7 3.30 3.14 3.11 3.16 X
Image 8 2.60 2.42 2.47 2.43 X
Image 9 3.11 2.90 291 291 X
Average 4.64 4.49 4.62 7.78 14.88

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

0.38
0.36 - —&—LZWsem

0.34
0.32 +
0.30 + -
0.28
0.26
0.24 +
0.22 ~

0.20 T T T T T 1
0 200 400 600 800 1000 1200

block size

bits per pixel

Figure 10: Dependency between bit rate and block size for
binary images.

2.39 4 —&—LZWsem
2.36 —{—Lzw

2.33 A

2.30 A
2.27 A
2.24

bits per pixel

2.21 4

2.18 +

2.15 T T T T T 1
0 200 400 600 800 1000 1200

block size

Figure 11: Dependency between bit rate and block size for
greyscale images.

5. CONCLUSION

The article was dedicated to the problems of modern map image
compression and possible ways to solve them. In the article we
proposed semi-adaptive modification of the LZW algorithm for
compressing map images that were divided into smaller blocks.
The proposed method as well as GIF, PNG, TIFF and JBIG (for
binary images only) were applied to the set of test images.

The results show us that the decrease of the block size will
result in a rapid increase of the resulting code size in the case of
the adaptive methods such as the LZW algorithm. These results
also show us that in the case of the semi-adaptive method, the
decrease of the block size has less influence on the resulting
code size. So from the experiments it follows that an increase in
the number of blocks by four times leads to an increase the
compressed file size by 2-9 %, on average.

For the set of binary images, JBIG has the best compression
results, TIFF G4 took the second place, and the semi-adaptive
LZW method has the same compression performance as GIF
and PNG compressors. For the set of greyscale images, it
showed us the comparable performance with GIF, PNG and
TIFF compressors.

7. REFERENCE

1. Ageenko E and Frénti P, "Compression of large binary
images in digital spatial libraries", Computers & Graphics
24 (1): 91-98, February 2000.

2. Akimov A, ‘“Dictionary-based compression of map
images ", M.Sc. thesis, Dept. of Computer Science, Univ.
of Joensuu, Finland: December 2001.

3. Bell T, Cleary J, Witten IH, “Text compression”,
Prenitce-Hall, New Jersey,1990.

10

11.

12.

13.

14.

15.

16

Franti P, “Image Compression”, Lecture Notes,
Department of Computer Science, University of Joensuu,
2000, (http://cs.joensuu.fi/pages/franti/comp/comp.doc)

Fréanti P, Ageenko E, Kopylov P, Grohn S and Berger F,
"Map image compression for real-time applications",
Spatial Data Handling 2002 Symposium (SDH’02),
Ottawa, Canada, July 2002.

Franti P, Kopylov P and Ageenko E, "Evaluation of
compression methods for digital map images", [ASTED
Int. Conf. on Automation, Control and Information
Technology (ACIT 2002), Novosibirsk, Russia, pp. 401-
405, June 2002.

Franti P, Kopylov P and Veis V, "Dynamic use of map
images in mobile environment", /EEE Int. Conf. on Image
Processing (ICIP’02), Rochester, New York, USA,
September 2002. (to appear)

Howard PG, Kossentini F, Martins B, Forchammer S and
Rucklidge WJ, "The emerging JBIG2 standard," [EEE
Trans. Circuits and Systems for Video Technology, 8:
838-848, 1998.

ISO/IEC, Final Committee Draft for
International Standard 14492, 1999.
(http://www.jpeqg.org/public/jbigpt2.htm)

ISO/IEC

Kopylov P and Frinti P, "Context tree compression of
multi-component map images", I[EEE Data Compression
Conference (DCC’02), Snowbird, Utah, USA, pp. 212-
221, April 2002.

Langdon GG, Rissanen J, "Compression of black-white
images with arithmetic coding", I[EEE Trans.
Communications 29: 858-867, 1981.

Miano J, “Compressed Image File Formats: JPEG, PNG,
GIF, XBM, BMP”, ACM Press, Addison-Wesley, Boston,
1999.

National Land Survey of Finland, Opastinsilta 12 C,
P.O.Box 84, 00521 Helsinki, Finland.
(http://www.nls.fi/index e.html)

Roelofs G, “PNG: The Definitive Guide”, O'Reilly &
Associates, Cambirdge, MA: 1999.

Salomon D, “Data compression: complete reference”,
Maple-Vail Manufacturing Group, York, 2000.

Storer JA and Szymansky TG, “Data compression via
textual substitution”, Journal of the ACM 29:928-951,
1982.

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

http://www.nls.fi/index_e.html
http://www.jpeg.org/public/jbigpt2.htm
http://cs.joensuu.fi/pages/franti/comp/comp.doc

	1. INTRODUCTION
	2. PERSONAL NAVIGATION
	2.1 Map service
	2.2 Computational resources
	2.3 Block-segmentation of the image

	3. SEMI-ADAPTIVE DICTIONARY BASED COMPRESSION
	3.2 Semi-adaptive modification of the LZW algorithm
	3.3 Implementation of the algorithm
	3.4 Creation of the initial dictionary
	3.5 Pruning of the initial dictionary
	3.6 The final dictionary structure
	3.7 Storing the final dictionary
	3.8 Compression step
	3.9 Decompression

	4. EXPERIMENTS
	5. CONCLUSION
	7. REFERENCE

