
Light Field Mapping:A Method  for Progressive Encoding, Compression and 
Interactive Visualization of Surface Light Fields 

 
Alexey Smirnov, Sergey Molinov, Dmitry Simakov, Radek Grzeszczuk 

Intel Corporation 
 

1 OVERVIEW 
 
In this paper we present a new method for progressive 
encoding, efficient compression and interactive rendering 
of surface light fields called Light Field Mapping (LFM). 
The paper is organized as follows. In the first section there 
is an overview of LFM that describes all steps that build up 
this method. The second section describes implementation 
of LFM in VRML language. MPEG4 AFX committee 
accepted this implementation and now LFM is a part of 
MPEG4 AFX draft. Then in Appendix some technical 
details concerning LFM implementation are explained. The 
list of references concludes the paper. 
 
A surface light field is a 4-dimensional function f(r,s,θ,φ)
that completely defines the radiance of every point on the 
surface of an object in every viewing direction. The first 
pair of parameters of this function (r,s) describes the 
surface location and the second pair of parameters 
(θ,φ) describes the viewing direction.  
 
Intuitively, the LFM representation can be thought of as a 
special type of texture map that changes its appearance 
with the viewing angle. Because it is compact and allows 
for hardware-accelerated rendering, this representation is 
ideal for accurate modeling of the appearance of many 
physical and synthetic objects with complex surface 
reflectance properties. The system consists of three main 
components: approximation, compression and rendering 
that are described briefly.  
 
Approximation Step 
 
The first component approximates the 4-dimensional 
surface light field function f as a sum of a small number of 
products of lower-dimensional functions 
 

),(),(),,,(
1

φθϕθ k
K

k
k hsrgsrf ∑

=

≈
Equation 1: Describes the approximation of light field data 
as a sum of a small number of produces of lower-
dimensional functions. 
The discrete functions gk and hk encode the light field data 
and are stored in a sampled form as texture maps, called 
light field maps. The functions gk are called the surface 
maps and functions hk as the view maps based on their 
parameterization. By taking advantage of the existing 

hardware support for texture mapping and composition 
surface light fields are visualized directly from the 
proposed representation at highly interactive frame rates. 
The process of rendering from this representation is called 
light field mapping.

Compression Step 
 
Although it is possible to render surface light fields directly 
from the approximation described in the last section, 
further compression of the surface light field data is 
possible. Since the light field maps are in essence 
collections of images that themselves exhibit redundancy, 
they can be further compressed using standard image 
compression techniques. 
 
Rendering Step  
 
The sequence of rendering operations for each surface 
primitive is always the same. It starts with computing the 
view-dependent texture coordinates for the view maps. 
Subsequently, it proceeds to evaluate each approximation 
term and adds them together. Each approximation term is 
evaluated the same way: 

1. The algorithm texture maps the surface primitive 
using the surface map.  

2. It texture maps the surface primitive using the 
fragment of the view map determined by the 
view-dependent texture coordinates. 

3. It performs pixel-by-pixel multiplication of the 
results of the two texture mapping operations. The 
following sections describe the rendering 
algorithm in more details.  

 
Partitioning of Data 
 
Since the geometry of the models is represented as a 
triangular mesh, an obvious partitioning of the light field 
function is to split it between individual triangles. 
Unfortunately, an approximation of surface light field 
partitioned this way results in visible discontinuities at the 
edges of the triangles. To eliminate the discontinuities 
across triangle boundaries the light field data is partitioned 
around every vertex. The surface light field unit 
corresponding to each vertex is called the vertex light field.
For vertex vj, it is denoted as ],,,[ qqpp

v qrf j φθ .
Partitioning is computed by weighting the surface light 
field function 
 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



],,,[],[],,,[ qqpppp
v

qqpp
v qrfqrqrf jj φθφθ Λ=

where ],[ pp
v qrjΛ is the barycentric weight of each point 

in the ring of triangles around vertex vj.

In the final step of vertex-centered partitioning each vertex 
light field is reparameterized to the local coordinate system 
of the vertex. To this end, the viewing direction angles are 
defined as the azimuth and elevation angles of the viewing 
direction vector in the local reference frame of the vertex. 
The vertex reference frame is defined in such a way that its 
z-axis is parallel to the surface normal at the vertex. The 
same letters are used to denote the local parameters of the 
vertex light field in order to simplify the notation. 
 
Partitioning of light field data into vertex light fields 
ensures that in the resulting approximation each triangle 
shares its view maps with the neighboring triangles. 
Therefore, even though we approximate each vertex light 
field independently, we obtain an approximation that is 
continuous across triangles regardless of the number of 
approximation terms K in Equation 1. Let ],[ pp

v qrg j be 
the surface map and ],[ qq

v jh φθ be the view map 
corresponding to one approximation term of vertex light 
field ],,,[ qqpp

v qrf j φθ , i.e.,  
 

],[],[],,,[ qq
v

pp
v

qqpp
v jjj hqrgqrf φθφθ =

Equation 2: One term approximation of light field for 
vertex vj.

Let ],,,[ qqpp qrf i φθ∆ denote the corresponding 
approximation term of the light field data for triangle i∆ .
The following equality holds 
 

∑
=

∆
∆ =

3

1
],[],[],,,[

j
qq

v
pp

v
qqpp

jj
i

i hqrgqrf φθφθ
Equation 3: One term approximation of light field for 
triangle i∆ expressed as a sum of the triangle’s 3 vertex 
light fields.  
 
In above equation index j runs over the three vertices of 
triangle i∆ and ],[ pp

v qrg j
i∆ denotes the portion of the 

surface map corresponding to the triangle i∆ . This 
equality holds for all approximation terms.  
 
Rendering Algorithm 
 
The rendering algorithm takes advantage of the property of 
vertex-centered partitioning, described by Equation 3, 
which says that the light field for each triangle can be 
expressed independently as a sum of its 3 vertex light 
fields. It enables a very efficient rendering routine that 
repeats the same sequence of operations for each mesh 
triangle. As each light field approximation term is 
evaluated the same way, the description of how to evaluate 
one approximation term of one triangle is sufficient to 
completely describe the rendering algorithm. 
 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



Figure 1: Light field maps for one approximation term of one triangle. Vertex reference frames are shown in the left column.  

Figure 1 shows 6 light field maps used in Equation 3 to 
compute one approximation term of light field for triangle 

i∆ . The middle column shows surface maps 
],[ pp

v qrg j
i∆ . In each image, the pixels covered by the 

shaded triangle correspond to the points inside triangle i∆
where we sampled the light field function. We will describe 
the texture coordinates of these points as (s, t). As a result 
of the weighting applied during the construction of function 

],,,[ qqpp
v qrf j φθ the pixels of the surface maps are 

weighted, as indicated in the figure by gradient shading, but 
this does not alter the rendering algorithm in any way. 
 
The right column shows view maps ],[ qq

v jh φθ . In each 
image, the pixels inside the circle correspond to the 

orthographic projection of the hemisphere of viewing 
directions, expressed in the local coordinate system xyz of 
vertex vj, onto the plane xy shifted and scaled to the range 
(0,1). We will describe the texture coordinates of these 
points as (x,y). This projection allows a simple texture 
coordinate computation 
 

2/)1(2/)1( +⋅=+⋅= ydxd yx
Equation 4: Equations describing parameterization of 

viewing directions. 
In the equation above d represents the normalized local 
viewing direction and vectors x and y correspond to the 
axes of the local reference frame. Other transformations 
from 3D directions to 2D maps are possible but the one 
described here is efficient and accurate. 
 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



Based on where the camera is located, the rendering 
algorithm needs to access a different 2D subset of the 4D 
light field function. This is done by recomputing the view 
map coordinates ),( jj v

i
v
i yx every time the camera moves. 

To this end, we apply Equation 4 to vectors jv
id that 

represent the viewing directions to vertex vi expressed in 
the reference frame of vertex vj. This results in 3 texture 
fragments shown in the right column of Figure 1. Note that 
the texture coordinates are different for each fragment 
because we are using a different reference frame to 
compute them. Note also that the surface map texture 
coordinates ),( jj v

i
v
i ts do not depend on the viewing angle 

and they do not need to be recomputed when the camera 
moves. 
 
Evaluating one complete approximation term is equivalent 
to multiplying pixel-by-pixel the image projections of the 
surface map and view map texture fragment pairs for the 3 
vertex light fields of the triangle, each shown in a separate 
row of Figure 1 and adding the results together. The 
multiple term approximation of each triangle light field is 
computed by simply adding the results of each 
approximation term. 
 
Tiling of Light Field Maps 
 
To avoid excessive texture swapping and improve 
rendering efficiency, we tile individual light field maps 
together to create tiled texture maps. Through out this 
document we are going to use term tile to refer to the image 

containing tiled light field maps. To simplify the problem, 
we allow a predefined set of triangle sizes during the 
resampling process, and then tile same-size light field maps 
together, as shown in Figure 2. We will use the term 
surface map tile to refer to the image containing tiled 
surface maps and we will use the term view map tile to 
refer to the image containing tiled view maps.  
 
Since one triangle requires three surface maps per 
approximation term, all these maps are arranged in the 
same texture. The geometry of the model is split into p
segments so that the tiled view maps for each segment do 
not exceed maximum texture size allowed. One view map 
tile is produced per segment: [V1, V2, ...,  Vp]. Let 

],,,[ 21
i
q

ii
i

SSS K be the list of surface map tiles for vertex 
tile Vi. Note that, in general, each triangle represented by a 
given tile will have more than one surface map in this tile. 
For each approximation term, the rendering algorithm is as 
follows 
 
for i=1,...,p do 
 load view map tile  into texture unit 1 
 for j=1,...,qi do 
 load surface map tile i

jS into texture unit 2 
 render all triangles with surface maps in tile i

jS
end for 

end for 

 

Figure 2: The tiled surface maps (left) and view maps 
(right) 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



2 NODE SPECIFICATION 
 
In this section we describe implementation of LFM in 
VRML language. VRML provides a convenient way of 
describing complex 3D scenes. The basic element of this 
language is a node. VRML has a number of predefined 
nodes. The easiest way to describe content of a new type is 
to define new (custom) nodes. 
 
The root node that describes the Light Field is 
LFM_Appearance. This node should be present in the 
appearance field of a Shape node, while its geometry field 
should contain an IndexedFaceSet. 
 
LFM_Appearance  
{

exposedField    MFNode    tileList      [] 
 exposedField    MFNode    lightMapList    [] 
 exposedField SFNode  
 blendList      NULL 
 exposedField LFM_FrameList          
 vertexFrameList     NULL 
}

The field tileList describes the list of images containing the 
tiled light maps. Elements of this list should be nodes of 
type ImageTexture. In general, surface maps will be tiled 
separately from view maps and that not all of them are 
necessarily stored in a single image. 
 

The LFM algorithm requires that each vertex of the mesh 
has a reference frame associated with it. The reference 
frames can be either computed automatically, as described 
in APPENDIX, or they can be specified explicitly through 
LFM_FrameList node. For vertices that do not have the 
reference frame specified through the LFM_FrameList 
node, the reference frames are computed using the 
automatic rules. A node describing the reference frames for 
the vertices is defined as 
 
LFM_FrameList 
{

exposedField  MFInt32    index    [ -1 ] 
 exposedField  MFVec3f   frame  [ 1 0 0, 0 1 0, 0 0 1 ] 
}

The field lightMapList, used in the definition of the 
LFM_Appearance node, describes how to access 
individual light maps from within the image tiles. The 
number of the elements in the light map list corresponds to 
the number of the decomposition terms used in the surface 
light field approximation. The list lightMapList should 
contain elements of type LFM_LightMap. The format for 
accessing surface maps is slightly different from the format 
for accessing the view maps; therefore, each element in the 
light map list consists of a field describing how to access 
the surface maps and a field describing how to access the 
view maps. Note that each one of those two fields is going 
to be a list as well.  
 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



Figure 3 - This figure shows a diagram of the nodes used to define the shape that uses light field mapping appearance. The 
top of the figure shows the geometry of the object defined as a triangular. The middle of the figure shows the list of images 
containing the light map tiles. Finally, the bottom of the figure shows the light map list that specifies how to access individual 
light maps from within the tiles. Note that the first element of the light map list contains only a surface map list and no view 
map list. This element of the light map list would be used just like a regular texture map. The remaining two elements of the 
light map list each contain the par of surface map and view map list. In this case we would perform a multiplication of the 
corresponding surface maps and view maps. We made certain simplification in this diagram. For example, the diagram shows 
a one-to-one correspondence between the tiles and the surface/view map lists. In practice, this is not always the case, since 
we can have multiple lists for each tile.  

LFM_LightMap 
{

exposedField SFNode   surfaceMapList     NULL 
 exposedField SFNode   viewMapList          NULL 
 exposedField SFVec3f   scaleRGB       1 1 1 
 exposedField SFVec3f   biasRGB       0 0 0 
 exposedField SFInt32   priorityLevel       0 
}

Scale and bias map the default color range [0, 1] of the 
image into the color range required for proper image 
synthesis. Let s be the RGB scale vector, let b be the RGB 
bias vector and let c be the RGB color value. The new 

color range cnew for color vector c can be computed using 
vectors s and b as follows 
 

bcsc +=new  
Equation 5 – Scale and Bias map default color range 

to image synthesis color range.. 
The field priorityLevel is a non-negative integer value 
specifying the level of importance of a given 
LightMapList node. The lower the value associated with 
the node, the more important it is. If the value is 0, the 
node must be rendered. When the renderer is set to a 
given priority value, then all nodes with the priorityLevel 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



below that value must be rendered. For example, if the 
priority value of the render is set to 2, then all nodes with 
priority level 0, 1, and 2 must be rendered.  
 
The lists surfaceMapList and viewMapList containing 
information about the surface maps and the view maps are 
defined as follows 
 
LFM_SurfaceMapList  
{

exposedField  MFInt32    triangleIndex           [] 
 exposedField  MFInt32    tileIndex           [] 
 exposedField  MFInt32    viewMapIndex        [] 
 exposedField  SFNode     triangleCoordinate  NULL 
}

where triangleIndex refers to the index of a given 
triangle as defined by the geometry node, tileIndex refers 
to the index of the tile as defined by the list of tiles, 
viewMapIndex indicates the number of view maps that 
should be used to render a given triangle (it equals –1 if 
there is no viewMapList in the current lightMap) and 
triangleCoord is a list of triples of texture coordinates of 
every triangle that specifies which part of the tile contains 
the surface map for the current triangle.  
 

LFM_ViewMapList  
{

exposedField MFInt32    vertexIndex        [] 
 exposedField  MFInt32    tileIndex        [] 
 exposedField  SFNode      textureOrigin        NULL 
 exposedField  SFNode      textureSize        NULL 
}

where vertexIndex refers to the list of indices of vertices 
as defined by the geometry node, tileIndex refers to the 
list of indices of the tiles as defined by the list of tiles. 
The fields textureOrigin and textureSize are two lists of 
texture coordinates that specify the origin and the size of 
the view map, respectively, they should contain 
TextureCoordinate nodes.

The field blendList, used in the definition of the 
LFM_Appearance node, describes how to combine the 

individual light maps together during rendering. It may 
contain an LFM_blendList node 

LFM_blendList 
{

exposedField  MFInt32   lightMapIndex     
 exposedField MFInt32   blendMode 
}

where lightMapIndex refers to the index of the lightMap 
in lightMapList and tileIndex refers to the index of the 
tile as defined by the list of tiles and the field blendMode 
specifies what type of blending operation to use when 
combining the given LightMapList node with the data in 
the framebuffer. This field can take on the following 
values: 0 or LFM_ADD, 1 or LFM_SUBTRACT. 
 
Note the following implementation facts 
 
1. For each triangle, each approximation term consists 

of 3 surface map/view map pairs.   
2. In general, each element in the LFM_LightMap will 

have a pair of valid pointers, one pointing to a valid 
LFM_SurfaceMapList node and one pointing to a 
valid LFM_ViewMapList node. If this is the case, 
during rendering the corresponding surface maps and 
view maps get multiplied together and blended with 
the earlier rendering results. 

3. In case, when an element of the LFM_LightMap list 
contains a valid pointer to the 
LFM_SurfaceMapList node, but the pointer to the 
LFM_ViewMapList node is NULL, we simply use 
the surface maps as ordinary texture maps.   

4. Let sm1, vm1, ..., smK, vmK be the first K pairs of 
surface map/view map for a given triangle. 
Multitexturing can be supported in the form sm0 + 
sm1*vm1 + sm2*vm2 + sm3*vm3 + ..., where 
addition refers to adding (or subtracting, depending 
on the value of field blendMode) the results of 
rendering through blending, and multiplication refers 
to pixel-by-pixel modulation of rendering results. 
This set of operations is repeated for each mesh 
triangle of the object. 

 

3 APPENDIX 
 
The rule for computing the reference frame of a given triangle consists of two steps: 

1. Compute the following vectors 
iiiii ∆∆∆∆∆ ×=−=−= 213322211 ,, eeevvevve

where v1, v2, v3 are the vectors describing the positions of the 3 vertices of the given triangle.  

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/



2. Construct the change of basis matrix R = [ x y z ], where 

.,,
3

3

1

1 zxye
eze

ex ×=== ∆

∆

∆

∆

i

i

i

i

The rule for computing the reference frame of a vertex consists of the following steps: 
 

1. Compute the direction of the normal of the vertex to be the average of the directions of the ring of triangles for that 
vertex 
where Rj is the set of triangles contained in the ring around vertex vj.∑

∈
∆∆ ×=

j

iij

Ri

v
213 eee

2. Pick the first edge of the first triangle in the ring as the direction of the x-axis of the vertex reference frame 
1

11
∆= ee jv

3. Construct the change of basis matrix R = [ x y z ], where 

.,,,
3

3

1

1 yzxzxy
e
ez

e
ex ×=×′===′

j

j

j

j

v

v

v

v

4 REFERENCES 
 
1. W-C. Chen, R. Grzeszczuk, J-Y. Bouguet. Light Field Mapping: Hardware-Accelerated Visualization of Surface Light 

Fields. Part of “Acquisition and Visualization of Surface Light Fields,'' SIGGRAPH 2001 Course Notes for Course #46.
Available from http://www.intel.com/research/mrl/research/lfm

Authors: 
Alexey Smirnov, Sergey Molinov, Dmitry Simakov, Radek Grzeszczuk 
Intel Corporation 
 
e-mail: {alexeyx.smirnov, sergey.molinov, dmitryx.simakov, radek.grzeszczuk}@intel.com 

International Conference Graphicon 2002, Nizhny Novgorod, Russia, http://www.graphicon.ru/

http://www.intel.com/research/mrl/research/lfm/
http://www.intel.com/research/mrl/research/lfm/course_notes_lfm.pdf
http://www.intel.com/research/mrl/research/lfm/course_notes_lfm.pdf

	1 OVERVIEW
	2 NODE SPECIFICATION
	3 APPENDIX
	4 REFERENCES

