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Abstract

Within this talk I shall describe some of the work I have been in-
volved with at Microsoft Research Cambridge on Bayesian meth-
ods. In particular I will cover the application of Bayesian meth-
ods to certain problems relating to the field of Computer Graph-
ics. Bayesian methods provide a rational way of making inference
about problems; including learning parameters that are so often set
by hand, and the incorporation of prior knowledge. The particular
problems I shall address are (a) image cut out, (b) new view synthe-
sis, (c) motion capture of articulated objects (e.g. hands) for driving
avatars, (d) general 3D reconstruction.

In all of these problems I hope to demonstrate that the Bayesian
approach leads to new insights and methodologies that improve on
existing methods.

1 Introduction

The approach that follows is unashamedly Bayesian, as set out in
his book [Jaynes 2003] the Bayesian method provides a consistent
way of reasoning about the world that can be viewed as an extension
of the Aristotelian calculus of logic to uncertainty.

The Bayesian approach was probably first proposed for vision (at
least for segmentation) by Besag [Besag 1974] and then elaborated
by Geman and Geman [Geman and Geman 1984]. Joe Mundy, now
professor at Brown, being skeptical of Bayesian methods as “post
hoc dressing up” 1 once asked what use are Bayesian methods in
graphics? This paper is a small attempt to answer that question.
Some will complain that to use Bayesian methods one must intro-
duce arbitrary priors on the parameters. However, far from being
a disadvantage, this a tremendous advantage as it forces open ac-
knowledgment of what assumptions were used in designing the al-
gorithm, which all too often are hidden away beneath the veneer
of equations. Furthermore Bayesian methods provide a consistent
way to learn the parameters of our models. Machine learning and
Bayesian theory are closely intertwined To quote from his abstract
of the talk of David Salesin to NIPS 2003 this year: “Machine learn-
ing has the potential to revolutionize the field of computer graphics.
Until now, so many of the successes in computer graphics from re-
alistic plant models to human animation to cinematographic effects
have been achieved, painstakingly, through the creation of highly
complex models by hand. Unfortunately, the process for creating
these models does not scale: Whether for plants, animation, or cin-
ematography, good models are hard to come by, with each model
having to be crafted, individually, by an expert. Yet good examples
of all of these things are all around us. Thus, for computer graphics
to achieve its full potential, what we really need is for all of these
highly complex models to be constructed automatically from the
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examples themselves in other words, what we really need is ma-
chine learning! ”.

Within this talk I shall outline four areas in which Bayesian
methods have proven useful to graphics applications. The methods
have all been published elsewhere so this paper will simply give an
outline of what each method does together with results and citation
to the appropriate material.

The first application is image cut out, explained in Section 2, this
can be done optimally be a Markov Random Field. Markov random
fields are a powerful statistical model of spatial relationships within
an image, and under certain assumptions, can be solved exactly.
However the segmentation is very sensitive to choice of parameters.
Bayesian learning of the parameters of the Markov Random field
allow for a state of the art segmentation with minimal user inter
actions.

Next in Section 3 the use of a weak prior model is shown to
improve new view synthesis, again the parameters of the prior can
be learned off line; reducing the reliance on human intervention.

Section 4 describes a Bayesian method for tracking, by main-
taining a whole distribution of possibilities Bayesian filtering offers
a way to overcome the ambiguity inherent in many tracking situa-
tions.

Section 5 reviews using high level priors for 3D reconstruction
allowing a natural way to encode our knowledge about the shape
of classes of objects. Bayesians methods provide a natural way
to combine prior information with data to yield optimal estimates.
Bayesian optimization methods such as MCMC furnish ways to
test that our prior distribution is valid.

2 Bayesian Image Cut Out

Within this section we address the problem of interactive segmen-
tation of images, e.g. to allow the user to cut out part of an image
(such as a face) and paste it into another. This has found a variety
of uses in medical imaging, movie special effects and the applica-
tion we consider here: home editing of digital photographs. The
wide variety of content within images and the differing desires of
users precludes a fully autonomous system, so the goal is to make
the interactive segmentation process as painless as possible by min-
imizing the amount of time (mouse clicks) required to achieve the
desired segmentation. Many existing interactive techniques for seg-
mentation require significant user input.

Previous work in this theme has included the Magic Wand of
Adobe [Ado 1999], which computes a region of connected pix-
els similar to a pixel chosen by a mouse click, however it cannot
work well in textured regions. Another class of approaches at-
tempts to segment the image by finding a boundary that coincides
with strong edges in the image, ignoring all other pixel informa-
tion. These include (a) LIVEWIRE [Mortensen and Barrett 1998]
in which the user clicks on two points on the boundary and dy-
namic programming is used to find the minimum cost path between
these two points, on a graph formed on the image pixels with the
arcs having weight inversely proportional to the edge strength be-

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/



tween pixels. (b) JETSTREAM [Perez et al. 2001] following a more
probabilistic approach requires the user to click repeatedly on the
boundary of the object and from this generates putative boundaries,
along high contrast edges, around the object using a particle filter.
(c) SNAKES [Kass et al. 1987] define an active contour around the
object to be segmented and then iteratively minimize the contour’s
energy functional to achieve the optimal boundary, combining ex-
ternal forces such as gradient energy with internal forces like curva-
ture to achieve an ideal segmentation. There are systems that then
allow the user to interactively modify the energy landscape and thus
nudge the snake [Daneels et al. 1993].

All of these method require many mouse clicks as in most typi-
cal images there are so many edges present that the cost surface is
abundant with local minima. In particular they are often confused
by T-junctions or other such edges in the background. In order to
make the algorithm more effective a richer set of observations must
be used. Where might these observations come from? Recently a
new class of INTERACTIVE GRAPH CUT (ICG) methods have been
proposed [Boykov and Jolly 2001] that consider the distribution of
the colour of the foreground and background pixels in addition to
the boundary pixels. Furthermore a key advantage of (ICG) is that
it can also apply to N �D images (volumes) opening it up to be
applied for segmenting many types of medical volumetric images
such as provided by computed tomography (CT), or video. It tran-
spires that the combination of region and boundary information to
assist interactive segmentation leads to far less effort for the user.
The ICG allows for both terms to combined to form a posterior
likelihood by using a Markov Random Field (MRF) formulation.
In [?] we demonstrate a clear improvement to the (ICG) which
has two parts, which we dub EMCUT. The first is that the initial-
ization is in the form of a rectangle whose only constraint is that
it bounds the object of interest (this is the ‘one click’ initializa-
tion). The second is the application of the EM algorithm to learn
a mixture model for the colour of the foreground and background
object. This involves exactly specifying the probabilistic formula-
tion which was left somewhat hazy in [Boykov and Jolly 2001].
The algorithm proceeds by conditional maximization holding sets
of the parameters constant whilst maximizing the posterior over the
remainder. Bayesian methods are also used to automatically learn
the parameters of the model as described in [Blake et al. 2004].

2.1 Image Cut Out Results

Our approach is demonstrated on the ‘starfish’ and ‘donkey’ images
shown in Figure 1 column (a). In each case the user drags and clicks
a rectangle, shown in column (b), over the object of interest (a one
click operation). As can be seen the results, column (d) are close to
the ground truth, column (c), which was obtained by careful hand
labeling of the pixels. The starfish example took seven iterations
to converge (an iteration being one maximization of x via graph
cut followed by one maximization of Θ via EM) starting from a
rectangle with 49159 mislabelled pixels. After the first iteration this
was dramatically reduced to 6161 pixels, and after seven iterations
convergence was achieved with 1190 mislabelled pixels. It should
be noted that most of the mislabelled pixels are on the boundary,
characterized by ‘mixed pixels’ where the ground truth supplied by
hand is somewhat suspect. In each case it was found that three
components for foreground and background distributions was used.

3 Bayesian Novel-view Synthesis

This section addresses the problem of novel-view synthesis from a
pair of rectified images with specific emphasis on gaze correction
for one-to-one teleconferencing. The work is to appear in [Crim-
inisi et al. 2003]. The approach uses a Bayesian Markov Random
Field prior to aid the matching; which has second order properties.

With the rise of instant messenging technologies2, it is envisaged
that the PC will increasingly be used for interactive visual commu-
nication. One pressing problem is that any camera used to capture
images of one of the participants has to be positioned offset to his
or her gaze (cf. fig. 2 and fig. 3). This can lead to lack of eye con-
tact and hence undesirable effects on the interaction [Gemmell et al.
2000].

One may think that if it where possible to drill a hole in the
middle of a computer screen and place a camera there, that would
achieve the desired gaze correction. The first problem with this so-
lution is that “porous” screens do not exist; but even if they did they
would not solve our gaze correction problem. In fact, in order to
achieve the correct eye contact the user should always be required
to look at the centre of the monitor (where the extra camera was
inserted). On the contrary, during a messenging session, the user
looks at the communication window (where the other person’s face
appears) which can be displaced and moved around the screen at
will (fig. 3a). Therefore, we would need the camera to be placed al-
ways behind the messenging window on the screen. This cannot be
achieved by existing hardware and, therefore, a software solution
must be sought.

Previously proposed approaches can be broadly categorized as
model-based or image-based. One model-based technique is to use
a detailed 3D head model, texture map it and reproject it into the
required viewpoints; whilst this can be successful [Vetter 1998;
Yang and Zhang 2002], it is limited to imaging heads (with no hair
or neck because of the poor quality of current head models), and
would not, for example, deal with occlusion events such as a hand
in front of the face.

A more general approach (employed in this paper) is to use
image-based rendering techniques (IBR [Chen and Williams 1993])
to synthesize novel views from the analysis of some input images.
This approach would “correct” the entire input images (as opposed
to the head only), thus avoiding the detection and modeling of heads
with all the associated problems.

The basic camera system considered in this paper [Criminisi
et al. 2003] is illustrated in fig. 3. Given two input cameras, the aim
is to generate a view from a virtual camera that is located roughly
where the image of the head will be displayed on the screen for
each participant, thus achieving the desired eye contact.

In IBR a depth map is combined with input images to pro-
duce synthetic views. In order to generate a depth map a dense
stereo algorithm is required, a substantial review of which can
be found in [Scharstein and Szeliski 2002a]. In [Scharstein and
Szeliski 2002a] the authors categorize and evaluate a number of
existing dense-stereo techniques. But this evaluation may not be
valid for our purposes as: (i) the range of disparities considered
in [Scharstein and Szeliski 2002a] is much smaller than in our appli-
cation (0-29 pixels there, whereas we typically consider 0-80 pixel
disparities); (ii) we are primarily interested in new-view synthesis,
thus it does not matter if the disparities are relatively inaccurate in
texture-less image regions, all that matters is that the new view is
well synthesized (as noted in [Scharstein 1999; Szeliski and Gol-
land 1999]); (iii) we consider long video sequences, thus stability
of estimation also plays an important part: a temporally flickery
reconstruction is less desirable than a stable one.

Furthermore, in the past, research on dense stereo reconstruction
has based all its efforts towards the accurate recovery of disparity
maps, and the role of occlusion regions has been somehow under-
estimated. We have found that while incorrect disparities may still
produce sufficiently good synthesized images in the matched re-
gions, inconsistent occlusion maps make the process of synthesis
near foreground objects very unreliable.

2e.g. messenger.msn.co.uk/, messenger.yahoo.com/,
www.aol.co.uk/aim/
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This paper [Criminisi et al. 2003] stresses the importance of ac-
curate occlusion detection in situations where this problem is most
important, i.e. for large disparity-range imaging conditions. It will
be demonstrated that, in that case, inaccurate occlusion estimation
may lead to a number of undesired artifacts in the synthetic virtual
image.

According to the evaluation in [Scharstein and Szeliski 2002a],
two of the most powerful approaches use graph cuts [Kolmogorov
and Zabih 2002; Roy and Cox 1998] and loopy belief propaga-
tion [Sun et al. 2002] but both of these are currently too compu-
tationally intensive for real-time applications. In fact, one of the
goals of this paper [Criminisi et al. 2003] is that of producing high-
quality synthetic sequences as close as possible to frame rate.

One of the most computationally efficient algorithms for stereo
is Epipolar-line Dynamic-Programming [Ohta and Kanade 1985],
commonly referred to as DP.

In [Belhumeur and Mumford 1992] the authors acknowledge the
importance of occlusions (or half-occlusions using their terminol-
ogy) in depth understanding. They employ a Bayesian approach in
a DP framework for recovering occlusions and depth maps. The
use of a simulated annealing step makes the algorithm not-suitable
to deal with real time input video data.

The DP algorithm described in [Cox et al. 1996] has previously
been demonstrated for cyclopean view interpolation [Cox et al.
1993] in video3. In the basic form of the DP algorithm, in order to
obtain computational efficiency observations consist of single-pixel
intensities. This, together with the fact that pairs of corresponding
scanlines are considered independently introduces a number of ar-
tifacts which corrupt the quality of the output reconstruction (espe-
cially for large disparity ranges).

In particular, DP-based algorithms for novel-view synthesis are
characterized by three kinds of artifacts: (i) artifacts produced by
mismatches (horizontal streaks); (ii) the “halo” in the regions where
the background is visible in only one of the two input views (occlu-
sions); and (iii) flickery synthetic pixels, caused by matching ambi-
guities.

The first kind of artifacts are visible in [Bobick and Intille 1999]
where the authors introduce the Disparity Space Image and employ
a DP algorithm for finding the optimal path through it.

This paper [Criminisi et al. 2003] sets out to address and solve all
three kinds of artifacts while maintaining high computational effi-
ciency. There are two parts to our method: the first one is about gen-
erating accurate disparity and occlusion maps. The second part is
about representing and using the extracted information to efficiently
generate new views. Within this paper [Criminisi et al. 2003] we
present new contributions in both areas: for the generation of dis-
parity and occlusion maps we propose a new type of dynamic-
programming approach, as path finding through a four-plane graph
(as opposed to the traditional single-plane DP), introducing new la-
bels to help the explicit and correct identification of occlusions, and
altering the cost function employed to favour: (a) correct grouping
of occlusions, (b) formation of solid occlusion regions at the bound-
aries of foreground objects, and (c) inter-scanline consistency. Sec-
ond, we introduce the geometry of minimum-cost surface projec-
tion as an efficient technique for generating synthetic views from
arbitrary virtual cameras directly from the minimum-cost surface
obtained during the DP process4. This technique avoids the explicit
construction of a 3D mesh model or depth map and presents a num-
ber of advantages that will be described in [Criminisi et al. 2003].

3We refer to cyclopean view as the image generated from a virtual cam-
era located in the mid-point between the two input cameras.

4The minimum-cost surface is defined to be the collection of all the
minimum-cost paths estimated (independently) by the DP algorithm at each
scanline.

3.1 Novel-view synthesis results

This section presents a number of concluding synthesis results
achieved on real input sequences. In particular, we demonstrate:
gaze correction, cyclopean view generation, three-dimensional
translation of the virtual camera, simple augmented-reality effects
such as object insertion and replacement.

Gaze correction by cyclopean view synthesis for still
stereo images. Figure 4 shows an example where the input left
and right images have been used to generate the cyclopean view
the proposed algorithm. In the output image (fig. 4b) the gaze has
been corrected. Another example of gaze correction is illustrated in
fig. 5.

3D translation of the virtual camera. Figure 6 shows an ex-
ample of translating the virtual camera towards and away from the
visualized scene. Notice that this is different from simple zooming
or cropping of the output image. In fact, parallax effect may be no-
ticed in the boundary between the head and the background, thus
providing the correct three-dimensional feeling.

Figure 7 shows an example of in-plane translation (with Ov on
the X �Y plane) of the virtual camera. Notice the relative displace-
ment of the head with respect to the background.

Cyclopean view generation in long sequences. Figure 8
demonstrates the effectiveness of the proposed algorithm for recon-
structing cyclopean views of extended temporal sequences. Notice
that most of the spatial artefacts (e.g. streaks, halo) and temporal
artefacts (e.g. flickering) are removed.

Background replacement. The proposed algorithm generates
novel, virtual views, but also a 3D representation of the observed
scene. The latter can be advantageous for 3D editing of the visual-
ized scene.

Figure 9 demonstrates the possibility of replacing the original
background with a different one, either taken from real photographs
or artificially generated. This is made possible thanks to the fore-
ground/background segmentation step described in [Criminisi et al.
2003].

4 Bayesian Motion Capture/Tracking

One of the fundamental problems in vision is that of tracking ob-
jects through sequences of images. In [Stenger et al. 2003] we
present a generic Bayesian algorithm for tracking the 3D posi-
tion and orientation of rigid or non-rigid objects (in our applica-
tion hands) in monocular video sequences. Great strides have been
made in the theory and practice of tracking, e.g. the development
of particle filters recognized that a key aspect in tracking was a
better representation of the posterior distribution of model param-
eters [Gordon et al. 1993; Isard and Blake 1996]. Going beyond
the uni-modal Gaussian assumption of the Kalman filter, a set of
random samples is used to approximate arbitrary distributions. The
advantage is that the filter can deal with clutter and ambiguous situ-
ations more effectively, by not placing its bet on just one hypothesis.
However, a major concern is that the number of particles required
increases exponentially with the dimension of the state space [Choo
and Fleet 2001; MacCormick and Isard 2000]. Worse still, even for
low dimensional spaces there is a tendency for particles to become
concentrated in a single mode of the distribution [Doucet 1998].
Within this paper we wish to track a 27 DOF articulated hand (21
DOF for the joint angles and 6 for orientation and location) in clut-
tered images, without the use of markers. In [Wu et al. 2001] it is
suggested that due to the strong correlation of joint angles, the state
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a b c

Figure 4: Example of gaze correction. (a,c) Input left and right views, respectively; (a) looking slightly towards the right; (b) looking slightly towards the left; (b) Gaze-corrected
cyclopean view. Our algorithm does correct the gaze while eliminating the artefacts of previous algorithms.

a b c

Figure 5: Yet another example of gaze correction from still images. The central image, (b) has been generated from the two input views (a,b) and shows correct gaze (the person
is looking at us). The background (e.g. the door frame) has been reconstructed correctly despite its occlusion in the left input view. The “halo” effect and streaky artefacts have been
removed.

space for the joints can be reduced to 7 DOF by applying PCA, with
“loss of only 5 percent of information”. Tracking is demonstrated
for a fixed view with no clutter. However, if the hand is also to
move, the state space has 13 dimensions, which is still considered
high.

There are several possible strategies for estimation in this high
dimensional space. One way is to use a hierarchical search, in
which some parameters are estimated first, and then others, assum-
ing that the initial set of parameters is correctly estimated. This
strategy may seem suitable for articulated objects. For example,
Gavrila [Gavrila and Davis 1996] suggests, in the context of hu-
man body tracking, first locating the torso and then using this in-
formation to search for the limbs. Unfortunately, this approach is
in general not robust to different view points and self-occlusion.
MacCormick and Isard [MacCormick and Isard 2000] propose a
particle filtering framework for this type of method in the context
of hand tracking, factoring the posterior into a product of condition-
ally independent variables. This assumption is essentially the same
as that of Gavrila, and tracking has been demonstrated only for a
single view point with no self-occlusion.

The development of particle filters was primarily motivated by
the need to overcome ambiguous frames in a video sequence so that
the tracker is able to recover. Another way to overcome the problem
of losing lock is to treat tracking as object detection at each frame.
Thus if the target is lost in one frame, this does not affect any sub-
sequent frame. Template based methods have yielded good results
for locating deformable objects in a scene with no prior knowledge,
e.g. for hands or pedestrians [Athitsos and Sclaroff 2002; Gavrila
2000]. These methods are made robust and efficient by the use of
distance transforms such as the chamfer or Hausdorff distance be-
tween template and image [Barrow et al. 1977; Huttenlocher D.P.
et al. 1993]. These methods were developed for matching one tem-
plate modulo projective transformations (e.g. translation, rotation

etc.). A key suggestion was that multiple templates could be dealt
with efficiently by building a tree of templates [Gavrila 2000; Ol-
son and Huttenlocher 1997]. Given the success of these methods,
it is natural to consider whether or not tracking might not be best
effected by template matching using exhaustive or guided search
at each frame. The answer to this question may be yes in some
cases, but it depends strongly on the localizing power of the used
feature set, otherwise a jerky motion will result. One approach to
embed template matching in a probabilistic framework was pro-
posed by Toyama and Blake [Toyama and Blake 2002]. However,
it is acknowledged that “one problem with exemplar sets is that
they can grow exponentially with object complexity. Tree struc-
tures appear to be an effective way to deal with this problem, and
we would like to find effective ways of using them in a probabilis-
tic setting” [Toyama and Blake 2002]. Within [Stenger et al. 2003]
paper we address this problem.

4.1 Tree-Based Detection

When matching many similar templates to an image, a significant
speed up can be achieved by forming a template hierarchy and us-
ing a coarse to fine search [Gavrila 2000; Olson and Huttenlocher
1997]. The idea is to group similar templates together and represent
them with a single prototype template together with an estimate of
the variance of the error within the cluster which is used to define a
matching threshold. The prototype is first compared to the image;
only if the the error is below the threshold are the templates within
the cluster compared to the image. This clustering is done at var-
ious levels, resulting in a hierarchy, with the templates at the leaf
level covering the space of all possible templates. Gavrila [Gavrila
2000] suggests forming the hierarchy by recursive (off-line) cluster-
ing, the goal being efficient on-line evaluation. When the exemplar
templates are clustered using a cost function based on chamfer dis-
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tance, a guarantee can be given that no better match is found in
sub-trees, and objects are not missed when pruning sub-trees dur-
ing the search. However, it is not straightforward how to give such
guarantees when incorporating prior information for each template.

If a parametric object model is available, another option to build
the tree is by partitioning the state space. Let this tree have L
levels, each level l defines a partition Pl of the state space into
Nl distinct sets l � 1� � � � �L, such that P l � �S li : i � 1� � � � �Nl�.
The leaves of the tree define the finest partition of the state space
PL � �S Li : i� 1� � � � �NL�. Such a tree is depicted schematically
in figure 11(a), for a single rotation parameter. This tree representa-
tion has the advantage that prior information is encoded efficiently,
as templates with large distance in parameter space are likely to be
in different tree branches.

The hierarchical detector works well for locating hands in the
images [Thayananthan et al. 2003] , and yet often there are ambigu-
ous situations that could be solved by using temporal information.
The next section describes the Bayesian framework for filtering.
Filtering is the problem of estimating the state (hidden variables) of
a system given a history of observations how to combine tree based
detection and tracking is laid out in [Stenger et al. 2003].

4.2 Tracking Results

In the first sequence we track the global 3D motion of the hand
without finger articulation. The 3D rotations are limited to a hemi-
sphere. At the leaf level, the tree has the following resolutions: 15
degrees in two 3D rotations, 10 degrees in image restoration and
5 different scales. These 12960 templates are then combined with
a search at 2-pixel resolution in the image translation space. Fig-
ures 12 and show results from tracking a pointing hand.

In the second sequence (figure 13) tracking is demonstrated for
global hand motion together with finger articulation. The articula-
tion parameters for the thumb and fingers are approximated by 7
and 5 divisions, respectively. For this sequence the range of global
hand motion is restricted to a smaller region, but it still has 6 DOF.
In total 35000 templates are used at the leaf level.

Note that in all three cases, the hand model was automatically
initialized by searching the complete tree in the first frame of the
sequence.

5 A Bayesian Estimation of Building
Shape Using MCMC

Many algorithms have been developed for inferring 3D structure
from a set of 2D images. A review of the state of the art in this
area can be found at [Scharstein and Szeliski 2002b]. However
there are often cases in which image information is ambiguous or
misleading, such as in areas of homogeneous or repeated texture.
In such cases extra information is required to obtain a model of the
scene.

In the past, dense stereo algorithms have used heuristics favour-
ing “likely” scenarios such as regularization or smoothing in an at-
tempt to resolve these ambiguities, but in general these are unsatis-
factory (for instance, the smooth surface assumption is violated at
occlusion boundaries). It is our belief that maximum likelihood es-
timates (even regularized) of structure have progressed as much as
they are able, and that further research in this area will yield negli-
gible or arguable benefit. Our approach to structure from motion is
to develop generic methods to exploit domain-specific knowledge
to overcome these ambiguities. This has been successfully done for
other 3D reconstruction domains, e.g. heads [Fua 1999; Shan et al.
2001], bodies [Plänkers and Fua 2001].

Within this paper [Dick et al. 2002] we explore the reconstruc-
tion of generic buildings from images, using strong prior knowl-

edge of building form provided by architects, this is most naturally
done in a Bayesian framework. The Bayesian framework provides
a rational method for incorporating prior information into the es-
timation process. However in complicated scenarios such as the
modelling of architecture, there still remains two problems to be
resolved. Whilst Bayes provides the basic laws for manipulating
probabilities, we still need to resolve the problem of parameteriza-
tion, and once the problem is parameterized choose the best algo-
rithm to optimize the parameters.

Structure is represented as a collection of planes (corresponding
to walls) and primitives (representing windows, doors and so on).
Each primitive is defined by several parameters. The advantages of
this model-based approach are that it enables the inference of scene
structure and geometry where evidence from the images is weak,
such as in occluded regions or areas of homogeneous texture, and
that it provides an interpretation of the scene as well as its geome-
try and texture [Dick et al. 2001]. The representation of the scene
as a set of planes and primitives is useful for reasoning about the
scene during reconstruction and for subsequent rendering and ma-
nipulation of the model. The compactness of the representation also
makes recovery of structure and motion more reliable.

In previous work [Dick et al. 2001] a framework was defined for
model based structure from motion for buildings. In this frame-
work an algorithm for estimating a maximum a posteriori (MAP)
estimate of the model based on priors and image likelihood mea-
sures was proposed. However the spatial prior used in this work
applied only to the parameters of each individual primitive, thus
ignoring information about their spatial juxtaposition (for instance,
that windows are likely to occur in rows and columns). In this paper
the spatial prior is expanded to include this sort of information.

The form which the spatial prior should take is far from obvious.
Ideally it should admit all plausible buildings while excluding those
which are for practical or aesthetic reasons implausible. However
the plausibility of a structure can in general only be verified by man-
ual inspection. Thus a crucial step in the formulation of the prior
is to test it by drawing sample buildings from it and checking that
they appear reasonable. However even with expert knowledge, it is
very difficult to explicitly represent the probability density function
(pdf) of a suitable prior. What is somewhat easier to do is to express
the prior as a scoring function that favours particular configurations,
such as windows in rows. One approach is to use a scoring function
suggested by an expert and then draw samples from the implicitly
defined pdf using an MCMC algorithm. If the samples drawn look
like reasonable buildings then the prior must be close to the true
prior.

This raises the question of just how close to the true prior our
estimate must be to generate reasonable looking models. To an-
swer this empirically the scoring function is varied both on a small
scale and a large scale, and the effect on models generated from
the prior, and reconstructions obtained using the prior and an image
sequence, is observed.

5.1 Building Results

When jump types involving wall plane parameters are included in
the MCMC algorithm, closure of the building is enforced and the
reconstruction converges to a symmetric model such as that shown
in Figure 14. The texture for this model is cut and pasted from ar-
eas of the image identified as a wall, window, columns and so on,
and the same texture sample is used for every instance of a type of
primitive. Another feature of using an MCMC algorithm to sample
the posterior is that as well as having a MAP model estimate, other
probable samples can also be examined. This is useful for identi-
fying ambiguities in the reconstruction. Four of the more marked
ambiguities present in this model are shown in Figure 14 (i)-(l).

The operation of this algorithm is shown in Figure 15 for the
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Figure 11: Tree-based estimation of the posterior density. (a) Associated with the nodes at each level is a non-overlapping set in the state
space, defining a partition of the state space (here rotation angle). The posterior pdf for each node is evaluated using the center of each set,
depicted by a hand rotated by a specific angle. Sub-trees of nodes with low posterior probability are not further evaluated. (b) Corresponding
posterior density (continuous) and the piece-wise constant approximation using tree-based estimation. The modes of the distribution are
approximated with higher precision at each level.

Figure 12: Tracking a pointing hand in front of clutter. The images are shown with projected contours superimposed (top) and corre-
sponding 3D model (bottom).

Trinity Chapel sequence. Note that the entire model is obtained
from only 3 images. Although the model is not completely accu-
rate in areas which are not visible in the images, it is a plausible
structure, and is obtained automatically except for the prior speci-
fication of the structure as being Gothic, and the restriction of the
variety and shape of primitives this entails. The width of each part
of the building is obtained from the average size of the window
or door primitives on visible walls—each segment of the building
is made wide enough to accommodate one window of height and
width equal to the average height and width of the visible windows,
with spacing to either side equal to half the window width. In the
absence of image information, this seems a reasonable assumption
to make and produces generally plausible architectural models.

6 Conclusion

Within this paper several Bayesian approaches to solve some prob-
lems in Graphics have been outlined. Due to lack of space the de-
tails have been omitted and only a problem description together
with result shown, in that the hope that, if the reader is interested

he will contact me or seek the references. However in general the
results should help convince the reader that their is more benefit to
a Bayesian analysis than a post hoc dressing up in many problem
areas.

The power in these approaches is that they provide a systematic
way to perform estimation of parameters, to encode high level prior
information and to encode uncertainty in the estimates. Automatic
estimation of parameters is particularly important in the case of im-
age cut out and dense stereo for new view synthesis as the results
can be very sensitive to the wrong choice of parameters. Encoding
of uncertainty can help a tracker recover from ambiguous situations.
Indeed the case of articulated hand tracking is often highly ambigu-
ous with many interpretations for the hand pose at any given time
instances. The use of high level prior information turns out to be
very useful in the reconstruction of architectural scenes, and again
the Bayesian method yields a consistent way to use learn and use
this prior information to make an estimate of 3D structure.

Bayesian methods are not appropriate for all classes of problems,
however problems involving uncertainty or learning will certainly
benefit from a Bayesian analysis and it is certain that a understand-
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Figure 13: Tracking a hand opening and closing with rigid body motion in front of clutter. In this sequence 6 DOF for rigid body motion
plus 2 DOF for finger flexion and extension are tracked successfully.

ing of these methods will benefit many Graphics researchers.
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Figure 1: (a) The ‘starfish’ and ‘donkey’ image. (b) shows the rect-
angle selected by the user, drawn so as to loosely bound the ob-
ject of interest. (c) The ground truth, generated by hand, there are
49159 mislabelled pixels in the starfish case, 6455 in the donkey.
(d) The resulting cut out obtained after iterating to convergence,
with 1190 and 357 mislabelled pixels respectively. In each case it
was found that three components for foreground and background
distributions was used.

a b

Figure 2: During one-to-one video-conferencing, cameras located on the frame of
the computer monitor fail to capture the correct gaze. In this example the person is
looking at the centre of the screen and does not appear to be looking at us. The aim
of the proposed algorithm is that of correcting the distorted gaze and make the person
appear as if he/she was naturally looking at us.
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Figure 3: Camera-computer configuration. The basic setup considers two cam-
eras placed on the frame of the computer monitor. The window for the one-to-one
teleconferencing application is marked in blue on the computer screen. The goal of
this work is that of achieving the correct eye contact by efficient processing of the
two input images to generate high-quality views for virtual cameras placed behind the
messenging application window. the technique described in this work achieves gaze
correction in an efficient and compelling way.
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Input left view Input right view

Figure 6: Forward/backward translation of virtual camera. The bottom row
shows the synthesized cyclopean views with (left) forward virtual camera translation,
(centre) no virtual camera translation, (right) backward virtual camera translation. No-
tice the parallax effect around the head.
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Figure 7: In-plane translation of virtual camera. The left and right input images
are the same as in fig. 6. This table shows the synthesized images corresponding to
translation of the virtual camera along the x and y axes. Notice the parallax effect
around the head. Also, the door frame is reconstructed nicely despite it being partially
occluded in the right input view.

Figure 8: Cyclopean image synthesis for long sequences. Frames extracted from a
reconstructed cyclopean sequence (over 10 sec long). The input images are not shown
here.

Figure 9: Background replacement. The techniques developed in this paper allow,
amongst other things, for the foreground to be segmented from the background. This,
in turn, allows the real background to be replaced by more interesting and prettier
images, or video-textures as shown in this case.
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Figure 10: Basic camera configuration and notation. Ol and Or are the optical
centres of left and right cameras respectively, f is the focal length of the cameras
(identical for both cameras) and B is the baseline between the two optical centres. The
origin of the reference coordinate system X �Y�Z is denoted O.
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Figure 14: (a) MAP model of side wall of Downing library, after
2000 MCMC iterations using the Classical prior. (b) Front wall.
Both front and back faces of primitives are drawn, hence the pair
of triangles and rectangles for the pediment and entablature. (c)-
(d) 3D rendering of MAP Downing model, obtained without using
add/remove/delete wall jumps. The textures shown on the model are
automatically extracted from the images which are most front-on to
each plane. (e)-(h) Four views of the completed model of Downing
library, with extra walls added. Even though only two walls are vis-
ible, a complete building has been modelled using symmetry. Wall,
window, roof and column textures are sampled from the images and
applied to the appropriate primitives. (i)-(l) Some ambiguities in
the Downing model, chosen from the 20 most probable models vis-
ited by the MCMC process. (i) Window sills are included in the
window primitives. (j) Windows are represented using two primi-
tives each. (k) The door is omitted. (l) Extra columns are added in
between the existing ones.
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Figure 15: (a)-(c) 3 original images of Trinity college courtyard.
(d) MAP model primitives, superimposed on image. (e) Wireframe
MAP model. (f)-(g) 3D model with texture taken from images. (i)-
(m) Five views of the completed model of the north-east corner of
Great Court, Trinity College. Only two of the walls are visible in
the images.
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