
A Multi-Pass Multi-Stage Multi-GPU Collision Detection Algorithm

Jose M. Juarez-Comboni, Andy M. Day
School of Computing Sciences,

University of East Anglia,
Norwich, United Kingdom

J.Juarez-Comboni@uea.ac.uk

Abstract
We present the work in progress of a collision detection (CD)
algorithm on a multi-threaded environment and based on two
graphics processor units (GPUs); the first GPU is used as a
normal graphics processor, and the second GPU is doubled as a
‘collision detection’ coprocessor. Our approach makes use of the
stream parallel engine provided by modern GPUs together with
their native architecture for handling vector operations; thus we
aim to perform fast and reliable collision detection. Our initial
work involves multi-threading and incorporates a cheap pre-
processing stage for storing essential scene data in a format
suitable for GPUs (i.e. as textures). It also involves multi-pass
rendering in multiple stages. The first stage of collision detection
is based on a simple boundary volume collision query. If the
result is positive, a second stage is then executed, involving
objects pair-wise computations on a per-vertex basis. The
approach is being implemented on a single Processor NVIDIA
Single-Link Interface (SLI) [1] System with two NVIDIA
GeForce 6600GT graphics cards.
Keywords: Real-Time Rendering, Collision Detection, Graphics
Hardware, SLI, Multi-Threading, general-purpose GPU.

1. INTRODUCTION

In a virtual environment, computers have to emulate the
conditions of the real world. This does not only involve using
realistic computer generated models, but also the simulation of
physical laws that allow a proper interaction between the user and
every single object present in the environment. In other words, the
better the approximation of the physics, the higher the fidelity of
the virtual environment. Current graphic- subsystems allow the
use of very detailed models at interactive framerates;
nevertheless, they are always bound to the CPU computing
power, which has to be shared for the calculation of physics and
artificial intelligence (A.I.). The work in progress presented in
this paper is an attempt to use the streaming parallel architecture
of the state of the art GPUs, in combination with the new features
brought forward by the latest generation of peripheral's
interconnect (i.e. PCI-Express and SLI) and the future
introduction of Dual-Core CPUs, to do very fine physics
calculations, more specifically, collision detection computations
for interactive virtual environments. We define as interactive, a
virtual environment that is able to refresh the scene and give
feedback to the user’s inputs at least 30 times per second.
With the introduction of 3D graphics hardware, virtual
environments have benefit with more detailed and complex
models. Nowadays, a single object can easily contain 100K
triangles of complexity; further, a single scene can contain several
of these objects easily increasing the scene complexity to over 1M

triangles. Intersecting surfaces and penetration depth algorithms
have been very well-studied in the last few decades to generate
efficient algorithms that can work in interactive real-time
applications. Some of the commonly used methods involve a pre-
computing stage where all objects in a particular scene are
analysed and stored in special structures known as boundary
volume structures (i.e. OOBB, AABB, distance/field, etc.); they
work well on models undergoing rigid motion.
In the past few years graphics hardware has overcome Moore’s
curves predictions [2]. This and the continuous growth in graphics
hardware requirements have pushed manufacturers to
incorporated programmable units inside their GPUs. This has
given developers the flexibility to create customized effects
through the use of specialized programs known as ‘shaders’;
GPUs can now be seen as a stream parallel computer. Based on
this new computing power offered in desktops and workstations,
several algorithms for tackling the collision detection problem
have been proposed. The remaining of this paper will be
presented as followed:

• Section 2 is a brief review of related collision detection
algorithms;

• Section 3 introduces the basic assumptions to solve the
simplest case with our method, and the stage involved
in our ongoing work;

• Section 4 presents a discussion and future work;

2. RELATED WORK

Collision detection is the heart for simulating interactions between
objects, and it is the main component that gives the user a feeling
of presence. It is also the most difficult aspect of a physical
engine to implement correctly, and invariably, it is the main
consumer of CPU power. The earliest applications of 3D collision
detection are found in robotics and automation [3][4]. In computer
animation, the first uses of collision detection are found in
physics-based simulations, where it is essential to determine
collisions in a physically convincing manner and at interactive
rates. Because of the complex nature of this task the use of
accelerating techniques is required for interactive environments.
Lin and Canny [5] presented one of the first algorithms that
exploit temporal coherence to reduce the cost of collision
detection; their method caches an update the closest features
(vertices, edges, facets) of objects in every new frame. Lin and
Canny realized that if frame coherence is high in a scene it is
faster to update the closest filters of a pair of objects from the
previous frame, than to calculate everything from zero. This
technique is applied in I-COLLIDE [6], the first the public library
of collision detection. The most commonly CD algorithm used are
based on boundary volume hierarchies (BVH). Basically, these
algorithms enclose the model of interest in a ‘watertight’ volume.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Volume structures such as spheres [4], axis-aligned bounding
boxes (AABB) [7], object-oriented bounding boxes (OOBB) [8],
discrete orientation polytopes (k-dops) [9], have been frequently
used. These structures aim to accelerate the CD computations to
allow interactive applications. However, with the increasing
model’s complexity and increased scene detail users expect finer
and more realistic collision detection.
With the advent of computer graphics hardware, various
approaches employing graphics hardware for collision detection
have been introduced. We can divide these approaches into two
different categories; image-based, and object-based. Due to the
nature of computer graphics and the different optimizations
present in graphics hardware (i.e. depth, accumulator and stencil
buffers), image-based collision detection has been of more
interested for researchers. An early attempt of using hardware
depth buffer was presented by Shinya et al [10]. Myszkowski et
al. [11] presented another algorithm that used a combination of
stencil buffer and depth buffer operations to implement collision
queries. These early attempts were only applicable to convex
objects and could not be applied for more than two objects. Baciu
et al. [12] extended the latter to compute the area of overlap
between two interfering solids. Recently, more efficient image-
based collision detection methods have been introduced.
Govindaraju et al. presented an image-based collision detection
approach known as CULLIDE [13] Their methods do not require
a pre-processing stage, making it ideal for handling non-rigid
motion. They perform a set of visibility queries from different
views in a multiple-pass rendering technique to compute what
they call a Potentially Colliding Set (PCS).. Once the PCS is
created, a second stage is carried out at primitive level (i.e.
triangles) to obtain a PCS at sub-object level. Thus the amount of
pair-wise computation needed to perform exact collision tests in
the CPU is reduced. Q-CULLIDE [14] and R-CULLIDE [15]
present optimizations over the original method. They also extend
CULLIDE to perform self-collision detection (self-CD). Although
these methods are suitable for manifold and non-manifold objects,
they cannot compute overlap information and depth of penetration
in a collision.
Heidelberger et al. have also presented image-space based
approaches relying on volumetric collision queries for non-
manifold objects [16], [17], and [18]. Their algorithm proceeds in
three stages: the first stage computes the Volume-of-Interest (VoI)
as an AABB representing the volume where collision queries are
performed (intersection of two objects’ AABB, or for self-CD, the
objects AABB). The second step is to compute a LDI (Layer
Depth Image) for objects inside the VoI. A LDI consists of
images storing the depth values, front-face and back-face
classification of the objects’ primitives. The LDI is used for: self-
collision, collision between objects, and vertex-in-volume tests.
For self-CD, the entry and exit points registered in the LDI are
tested. If the evaluation does not record an entry point followed
by an exit point, self-collision is detected; for collision detection
between objects, their LDIs are combined using Boolean
intersection. Finally, individual vertices are tested against the
volume of the object. The vertex is transformed into the local
coordinate system of the LDI. If a transformed vertex intersects
with an inside region, a collision is detected.
The main drawback of image based methods is that they are
limited to image-space resolution i.e. a resolution of 640x480
pixels may miss more collisions than a 1024x768pixels
resolution. In contrast, Object-based methods do not have this

downside; however they have not been very well studied yet.
Choi et al. [19], rather than offering an interactive collision
detection algorithm for large and complex environment, they offer
a GPU-based approach to detect self-collisions inside a
deformable object. The technique detects pair-wise collisions
among vertices within the object, and renders the results in a

texture of dimensions mm× ()Nm 2log2= , where N is the

number of triangles of the object, and . To implement
collision detection on the GPU, they store the position of a
triangle in three different 1D-textures of size m (one per vertex).
These textures are continuously mapped into a quad both,
horizontally and vertically. Thus, a pair-wise comparison of the
object’s primitives is undertaken in the GPU. The Stencil buffer is
used to avoid processing adjacent and distant triangles. Kolb et al.
[20] offer another approach for collision detection fully performed
on a GPU. Although the technique is focused on simulating state-
preserving particle systems, it offers a novel technique to
represent directional data applied to store indexed normal vectors.
The technique consists of a heap structure that stores all available
indices and that it is optimised to always return the smallest
available index. Kolb’s collision detection technique uses depth
maps to store the information relative to a particle (distance to the
collider object, relevant object surface point, transformation
matrix, z-scale factor) in video memory, and compute distance
queries and collision between a particle and the collider object.
Since math operations are executed on the GPU, this approach is
dependent on hardware resolution (amount of bits assigned per
component) rather than image-space resolution. For instance, a
GPU able to handle 128-bit colours (i.e. 32-bits per component)
will give better CD results than a GPU only capable of 96-bits
colours (i.e. 24-bits per component). This approach presents a full
framework for collision detection/collision reaction based
completely on general-purpose GPU computations (GPGPU).

Nm ≥

3. METHOD

This section presents an overview of the system setup followed by
a set of basic assumptions for our approach and a detailed
description of the Multi-pass Multi-stage Multi-GPU Collision
Detection or M3CD algorithm

Figure 1: Environment setup

Figure 1 shows the programming structure we have decided to
follow. The platform selected is WIN321 because it was the first
platform to offer SLI enabled drivers. As of today, neither the

1 Microsoft® Windows® XP Professional Edition

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

OpenGL API nor the graphics hardware drivers offer a direct way
to select a GPU to carry our an arbitrary process; hence, our
approach creates one window per thread, each one with its own
device context and rendering context. This way we can target a
specific GPU for the operations we want it to perform.
Furthermore, the window in thread B is an invisible window,
since it is only the off-screen buffers we are interested to handle
here. The multithreading approach also allows us to perform
collision detection in a virtually independent way. Besides, it will
benefit of the introduction of dual-core CPUs.

3.1 Basic Assumptions
In order to simplify the problem some basic assumptions need to
be made. Although problems may arise from these assumptions,
they help solving the simplest case. Later on the algorithm will be
improved to circumvent any existing problems.

1. The objects that the algorithm is dealing with are convex 3D
objects only (in the near future the algorithm will work for
non-manifold objects)

2. Detection of any pair of bounding volumes and vertices
colliding is a well-defined and solved problem.

3. Both objects have a pre-calculated center point and a
bounding sphere radius (BSR).

4. Object A has N vertices while object B has M vertices.
5. N = M
6. Objects are subject to a rigid motion only and the direction

of this motion is known at any time (in the future the M3CD
algorithm will be extended to handle non-rigid motion).

If assumption 3 is not meet, then a pre-processing stage is
engaged to calculate the geometric centre of the object together
with the radius of the bounding sphere.

3.2 The M3CD Method
Input. Our approach takes the geometric centre of every 3-D
object in the scene, plus the radius of the smallest sphere
surrounding the object.
Output. The algorithm computes collision queries in two
different stages. If queries are positive in both stages, then the
properties of the objects involved in the collision are modified
(i.e. direction and origin) and results are feedback to the rendering
thread.

Figure 2: Algorithm Overview

As shown in Figure 2, our approach proceeds in three stages.

3.2.1 Sphere Intersection
The centre point (a 3D-vector) and BSR (a scalar) of every object
are stored in a 2D RGBA floating point texture, so that one object
corresponds to one texel. The stage is divided in two passes; the
first pass will set the stencil buffer so that only the texels
containing object’s data. This first pass is very fast and helps
minimizing overheads in the fragment shaders. The second pass
will render a full-screen quad into the off-screen buffer and map

the texture to it. Figure 3 shows an example of how the textured
quad should look before and after stencil test is done.

Figure 3: Original Texture without stencil test (right) and Texture

read after stencil buffer test [texels in grey are not considered]
(left).

The mechanism employed in the fragment shader to perform
sphere intersections is very simple: a) intersections are done pair-
wise, b) intersections are done following a permutation basis i.e.
object B can only be compared with object A once, regardless of
the order. Hence if we have N objects, the number of operations
are reduced to the factorial of (N-1).
If two spheres do not overlap, the corresponding objects cannot
collide. Otherwise, the objects involved are stored pair-wise in a
stack structure, creating a ‘Potentially Colliding Batch’ (PCB) fur
further processing.

3.2.2 Vertex Collision Query
Stage 2 executes a finer collision query between each pair of
objects inside the PCB. Following the basic assumptions earlier
stated, in order to detect a collision between two objects, the most
simple but inefficient method of checking every vertex in object
A against every vertex in object B is performed. For the brute
force method therefore an order magnitude of O(N2) represents
the time complexity of the algorithm. For this stage vertices of
both objects are stored in a single texture or Vertex-Texture Map
(VTM). The texels located in the first half of the texture represent
the vertices belonging to object A; likewise, the second half of the
texture represents object B as shown in Figure 4.

Figure 4: Vertex-Texture Map (VTM)

The collision queries performed in this stage use the Euclidean
distance between vertices. If the distance between any pair of
vertices is less or equal to zero, a collision is detected and both
objects are marked.

3.2.3 Collision Reaction
Stage 3 checks the result from the previous stage. When a pair of
objects inside the PCB is found as marked, their centre point
coordinates and motion’s direction are uploaded into texture
memory (following the multi-pass rendering process mentioned in
stage 1. A fragment program is then executed to calculate the new
centre point coordinates (if necessary), and the new direction.
This data is read back from the graphics hardware, and is used to
update the state of each object. Results are then submitted to the
main thread for updating the scene.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

4. CONCLUSSIONS AND FUTURE WORK

This paper has presented the first stage of this project, which is to
provide the simplest framework for accelerating collision
detection using the streaming parallel computing features of
current graphics hardware. The main disadvantage of the
technique described in the computing intensive task currently
employed for calculating fine collision detection. Nevertheless,
there is a lot of room for this algorithm to be improved. The aim
is to create a novel and robust method for accelerating collision
detection for complex models in large scale. Furthermore, due to
the parallel nature of the algorithm it can also be suitable for
applications such as cloth simulation and medical simulation
among other physically based simulations. Unfortunately, we are
at an early stage of the project and proper results cannot be
presented in this paper yet. However, results will be available
before the presentation of this paper.

4.1 Future work
It is obviously that the brut force approach used to compute the
collision detection at vertex level can overwhelm the processing
capabilities of the latest generation of GPUs; especially when
complex models are involved. Ongoing work is already
concentrating on a set of algorithms to reduce the set of vertices
involved in the vertex collision detection stage. Furthermore, the
algorithm could benefit of the use of multiple-render targets
(MRTs), which allow the graphics hardware to output up to four
4-vector values per processed fragment. Finally, different
methods for storing data in texture memory are being studied and
tested [21], [22].

5. REFERENCES
[1] http://www.slizone.com/content/slizone/learn.html
[2] Moore, G. E., “Cramming more components onto integrated

circuits”, Electronics Magazine, Volume 38, Number 8,
April 1965.

[3] Boyse, J. W., “Interference detection among solids and
surfaces”, Communications of the ACM, vol. 22, pp. 3-9,
1979.

[4] Quinlan, S., “Efficient Distance Computation Between Non-
Convex Objects”, Proc. IEEE Int. Conference on Robotics
and Automation, IEEE, 3324-3329, 1994.

[5] Lin, M. C., and Canny, J. F., “A fast algorithm for
incremental distance computation”, Proc. IEEE International
Conference on Robotics and Automation, pp. 1008-1014,
1991.

[6] Cohen, J., Lin, M., Manocha, D., and Ponamgi, M., “I-
COLLIDE: An interactive and exact collision detection
system for large-scale environments”, Proc. ACM interactive
3D Graphics Conference, pp. 189-196, 1995.

[7] Van Den Bergen, G., “Efficient Collision Detection of
Complex Deformable Models Using AABB trees”, Journal
of Graphics Tools 2, 4, 1-13, 1997.

[8] Gottschalk, S., Lin, M. C., and Manocha, D., “OBBTree: A
hierarchical structure for rapid interference detection”, Proc.
SIGGRAPH ’96, pp. 171-180, 1996.

[9] Fünfzig, C., and Fellner, D. W., “Easy Realignment of k-Dop
Bounding Volumes”, Institute of Computer Graphics,
Technical University of Braunschweig, Germany 2003.

[10] Shinya, M., and Forgue, M.-C., “Interference Detection
Through Rasterization”, The Journal of Visualization and
Computer Animation, 2(4):131-134, 1991.

[11] Myszkowski, K., Okunev, O. G., and Kunii, T. L., “Fast
collision detection between computer solids using rasterizing
graphics hardware”, The Visual Computer, 11:497-511,
1995.

[12] Baciu, G., Wong, W., and Sun, H., “RECODE: an image
based collision detection algorithm”, The Journal of
Visualization and Computer Animation, pp. 181-192, 1999.

[13] Govindaraju, N. K., Redon, S., Lin, M. C., Manocha, D.,
“CULLIDE: interactive collision detection between complex
models in large environments using graphics hardware”,
ACM SIGGRAPH/Eurographics Graphics Hardware, pp. 25-
32, 2003.

[14] Govindaraju, N.K., Lin, M.C., Manocha, D., “Q-CULLIDE:
Fast self-collision culling in general environments using
graphics processors”, Technical Report TR03-044 of
University of North Carolina at Chapel Hill, 2003.

[15] Govindaraju, N., Lin, M. C., and Manocha, D.,
"RCULLIDE: Fast and Reliable Collision Culling using
Graphics Processors", UNC-CH Technical Report, Jan 2004.

[16] Heidelberger, B., Teschner, M., and Gross, M., “Volumetric
Collision Detection for Deformable Objects”, Technical
Report No. 395, Institute of Scientific Computing, ETH
Zurich, Switzerland, April, 2003.

[17] Heidelberger, B., Teschner, M., and Gross, M., “Detection of
collision and self-collisions using image space techniques”,
Proc. Computer Graphics, Visualization and Computer
Vision WSCG'04, pp. 145-152, 2004.

[18] Heidelberger, B., Teschner, M., and Gross, M., "Real-Time
Volumetric Intersections of Deforming Objects", Proc.
Vision, Modelling, Visualization VMV'03, pp. 461-468,
2003.

[19] Choi, Y.-J., Kim, Y J., Kim, M.-H., “Self-CD: Interactive
self-collision detection for deformable body simulation using
GPUs”, Simulation Conference (LNCS), 2004.

[20] Kolb, A., Latta, L., and Rezk-Salama, C., “Hardware-based
simulation and collision detection for Large particle
systems”, Eurographics/SIGGRAPH Workshop on Graphics
Hardware, 2004.

[21] Lefohn, A., Kniss J., and Owens, J., “Implementing Efficient
Parallel Data Structures on GPUs”, GPU Gems 2:
Programming Techniques for High Performance Graphics
and General-Purpose Computation, 33:521-545.

[22] Harris, M., and Buck, I., “GPU Flow-Control Idioms”, GPU
Gems 2: Programming Techniques for High Performance
Graphics and General-Purpose Computation, 33:547-555.

About the authors

Jose Juarez-Comboni is a PhD student at the School of
Computing Sciences in the University of East Anglia. His contact
email is J.Juarez-Comboni@uea.ac.uk.
Andy M. Day is a lecturer at the School of Computing Sciences in
the University of East Anglia. His contact email is
amd@cmp.uea.ac.uk.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

mailto:J.Juarez-Comboni@uea.ac.uk
mailto:amd@cmp.uea.ac.uk

	INTRODUCTION
	RELATED WORK
	METHOD
	Basic Assumptions
	The M3CD Method
	Sphere Intersection
	Vertex Collision Query
	Collision Reaction

	CONCLUSSIONS AND FUTURE WORK
	Future work

	REFERENCES

