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Figure 1: A photograph and a model acquired with ImagiCAD

Abstract

Image based approach to modeling has recently emerged as an at-
tractive alternative to the traditional modeling methods. A number
of research and commercial image based modeling systems has ap-
peared, employing novel results in the computer vision field. Most
of these systems are targeted at acquisition of highly-realistic vir-
tual models. Other applications, such as non-intrusive metrology,
are also considered.

The paper is dedicated to an image based modeling system devel-
oped at Moscow State University and RL Labs JSC. We briefly
overview the core computer vision algorithms employed in the sys-
tem. The pecularities of the user interface and the results obtained
with the system are presented in the end of the paper.

Keywords: image based modeling, structure and motion, multi-
view reconstruction, model acquisition, image based metrology

1 Introduction

Image based modeling has recently become one of the most im-
portant computer vision applications. In particular, the problem of
model acquisition from 2D photographs have been investigated in
details (e.g., [Debevec et al. 1996; Dedieu et al. 2001]). Several
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commercial systems capable of such interactive modeling are now
available [Canoma ; Photomodeler ; RealViz ] (for the review and
comparison see [Dedieu et al. 2001]).

These systems share a lot in common. Most of them rely on inten-
sive user input in order to establish correspondences between input
images. These correspondences are processed and the parameters
of the cameras used to take the photographs (motion) and the 3D lo-
cations of scene elements (structure) are estimated. Thus, these sys-
tems employ a class of algorithms, usually calledstructure-from-
motion(or, more precisely,structure-and-motion, since both com-
ponents are estimated simultaneously and neither of both is prior to
another).

Structure-and-motion algoritms and, more generally, multiview ge-
ometry algorithms have been intensively investigated within com-
puter vision community for a long period of time. The results ob-
tained are collected and thoroughly discussed in an excellent text-
book [Hartley and Zisserman 2000]. Besides geometric issues, to
produce good results such systems must perform an efficient opti-
mization of a non-linear functional, corresponding to reprojection
error (so-calledbundle adjustment). For a good review on bundle
adjustment see [Triggs et al. 2000].

When 3D scene structure and motion are estimated, it becomes pos-
sible to use it for various modeling tasks. In particular, it is pos-
sible to reconstruct either with small user intervention (as imple-
mented in most systems) or even without it (the subject of ongoing
research, e.g., [Dyer 2001]) a three-dimensional model of a scene.
Such models are usually textured with the texture maps extracted
directly from the photographs and therefore can be considered truly
photo-realistic. It usually takes much more time for a designer to
create a model of comparable quality using traditional modeling
tools.
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Non-intrusive metrology is another application of great importance.
Basing on reconstructed structure, one can interactively measure
the distances and angles between 3D elements of a scene. This
technology is the most beneficial when direct measurements of the
model are impossible or highly undesired.

In this paper, we present an image based modeling system called
ImagiCAD (Figure 1). It can be regarded as a typical image based
modeling system of a kind. In it, the modeling process starts
with manual correspondence selection. The user uploads the pho-
tographs of the object, and then selects the corresponding projec-
tions of object point features. He/she can also select the projections
of straight lines and impose incidence, coplanarity, and parallism
constraints on the spatial arrangement of the features.

When feature projections are selected, structure and motion recov-
ery process is performed. As a result, the estimates for feature
locations (structure) and for camera parameters (motion) are ob-
tained. The recovered feature locations can be used for interactive
construction of a virtual model or for image-based measurements.

While developing the system, we have investigated and tested a
bunch of structure-and-motion algorithms. We briefly report on
these investigations and present the resulting estimation algorithm
in section 2. Section 3 presents the most interesting details of our
correspondence selection interface as well as the model construc-
tion and metrology processes along with their sample results.

2 Structure and Motion Recovery

In this section we briefly overview the approaches to structure and
motion reconstruction implemented in our system. All the algo-
rithms mentioned below are discussed in details in [Hartley and
Zisserman 2000].

2.1 Projective reconstruction

Projective geometry provides a useful and efficient framework for
the reconstruction process. Furthermore, in the absence of camera
calibration, structure and motion parameters can be estimated only
up to a projective reconstruction of the world 3D space. It is now
realized that even in the presence of camera calibration projective
algorithms are much more stable than those invoking operations
with calibrated cameras in euclidean space. Therefore, projective
calibration is now regarded as a necessary step in any structure-and-
motion reconstruction process with the upgrade to metric geometry
to follow (a matter that we touch in section 2.3). Below we briefly
overview the way how the projective reconstruction is performed in
our system.

We assume that we are given withN 2D imagesI1, I2 . . . IN. The
structure to be recovered consists ofS3D pointsM1,M2 . . .MS rep-
resented with homogeneous 4-vectors. User-selected correspon-
dences are presented as an incomplete set of 2D projectionsmi

j ,

wheremi
j denotes the projection of a pointMi on the imageI j rep-

resented with homogeneous 3-vector(x,y,1), wherex andy are the
projection coordinates in the properly normalized coordinate sys-
tem of the image.

The image formation process for the imageI j is modeled as

m∼= Pj M, (1)

whereM is a homogeneous 4-vector, representing a point in 3D
space,m is a homogeneous 3-vector, representing its 2D projection

on the imageI j , Pj is a 3×4 projection matrix representing internal
and external camera parameters, and∼= denotes equality up to scale.
Equation (1) is a generalization of a well known pinhole camera
model. At the same time, it is not able to model radial distortion,
and the significant presence of this effect requires the lens to be
precalibrated and the images to be prelimenary undistorted.

Thus our problem is formalized as follows. Given a set of projec-
tions {mi

j |(i, j) ∈ Ω ⊂ 1. . .S⊗ 1. . .N} estimateP1,P2 . . .PN and

M1,M2 . . .MS, such that reprojectionsPj Mi lie as close as possi-
ble to given projectionsmi

j . The notion of closeness betweenPj Mi

andmi
j can be formalized in two ways viaalgebraicor geometric

reprojection errors:

ρalg
i
j = ((Pj Mi)[1] ·mi

j [3]− (Pj Mi)[3] ·mi
j [1])2+

((Pj Mi)[2] ·mi
j [3]− (Pj Mi)[3] ·mi

j [2])2 (2)

ρgeom
i
j = (

(Pj Mi)[1]
(Pj Mi)[3]

−mi
j [1])2 +(

(Pj Mi)[2]
(Pj Mi)[3]

−mi
j [2])2 (3)

Being quadratic on the coefficients ofPj andMi , the algebraic error
is more computationally tractable. Thus, the problems

Pj = argmin ∑
i=i1...ik

ρalg
i
j , s.t. ∑

k=1..12
Pj [k]2 = 1 (4)

and
Mi = argmin ∑

j= j1... j l

ρalg
i
j , s.t. ∑

k=1..4
Mi [k]2 = 1 (5)

can be solved via SVD decomposition.

However, the algebraic error is dependent on arbitrary scaling of
homogeneous vectors, and therefore it is the geometric error that
should be chosen as an ultimate measure of reconstruction qual-
ity. Our system therefore acts as follows. Reconstruction process
starts from the estimation of epipolar geometry for an automati-
cally chosen pair of images. Basing on the epipolar geometry one
can recover the projection matrices for each of both images. After
these cameras are estimated, the system sequentially adds points
and cameras to the reconstruction by solving problems (4) or (5).
Each time, the system chooses the next entity to be estimated bas-
ing on the singular values of the linear system corresponding to the
respective minimization problem.

After this augmentation process, the system performs global opti-
mization of total geometric error:

{P,M}= argmin ∑
(i, j)∈Ω

ρgeom
i
j

s.t. (Pj Mi)[3] > ε ∑
k=1..12

Pj [k]2 = 1 ∑
k=1..4

Mi [k]2 = 1 (6)

This process is usually referred as bundle-adjustment [Triggs et al.
2000]. Various optimization methods can be employed for such
minimization, of which Levenberg-Marquardt algorihm is the most
widely used. In our system, we employ a more sophisticated algo-
rithm of constrained optimization [Fletcher and Leyffer ].

2.2 Constrained reconstruction

Our system is capable of recovering the structure comprising not
only points but also lines and planes. Planes in the 3D projective
space are represented with homogeneous 4-vectors, and are eas-
ily tractable. Lines are much more difficult to deal with, since
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the four-dimensional manifold of lines in 3D space has no simple
parametrization. In our system, a line is represented with a pair of
points in two predefined planes and simultaneously with a pair of
planes containing two predefined points.

Our system can reconstruct 3D lines from their user-selected pro-
jections on images. This can be accomplished using two-point rep-
resentation. Each selected projection of a line imposes the con-
straint that the reprojections of both 3D points lie on the line pro-
jection. Algebraically, this is expressed with a pair of simple linear
equations.

Structure constraints that can be imposed in our system include all
possible incidence constraints (i.e. one entity belongs to/contains
another entity, e.g., a line belongs to a plane). Constraints of par-
allelism can also be easily introduced. To do this, the user creates
a logicaldirection and specifies all entities (lines and planes) par-
allel to this direction. On the algorithmical level, each direction is
represented with a point. For lines and planes parallel to the di-
rection, the system adds constraints of incidence to the introduced
point. Finally, all points representing directions are constrained to
lie on a specially introduced plane (so-calledplane at infinity). On
the stage of projective reconstruction, direction points and plane at
infinity are treated like other points and planes. Besides user de-
fined constraints, we impose incidence constraints between points
and planes representing the same line.

All incidence constraints can be expressed with equations linear
on the coefficients of each participating entity. Minimizing the
quadratic error of the equation set corresponding to one entity sub-
ject to normalization constraint lead to the computational problem
similar to (4) and (5)1. Therefore, points and lines can be estimated
in the augmentation process. Lately, lines and planes along with all
constraints are introduced into the bundle adjustment process.

In our experiments, we found that constraints can significantly in-
crease reconstruction quality. For some scenes (e.g. complex
intéreurs), reconstruction without constraints is impossible, since
in the presence of minor selection imprecisions point-based bundle-
adjustment (6) converges to the incorrect state due to the error ac-
cumulated during augmentation stage.

2.3 Metric reconstruction

So far, we discussed the problem of projective structure-and-motion
reconstruction, e.g. reconstruction up to an arbitrary projective
transformation. Such freedom is however totally unacceptable for
most applications. To fix the problem and to obtain metric recon-
struction (i.e. reconstruction up to scale, rotation, and translation),
one must employ additional knowledge about either structure or
motion. In the structure domain, our system is capable to use the

1E.g., for a pointLkM′ from a pair of points representing lineLk we get
the following problem

LkM′ = argmin
M

(ω1((LkΠ′ ·M)2 +(LkΠ′′ ·M)2)+

ω2(LkΠ̂′ ·M)2 +ω3 ∑
r=r1...rk

(Πr ·M)2 +

ω4 ∑
j= j1... j l

(Pj M · lkj )2), s.t. ∑
k=1..4

M[k]2 = 1

whereLkΠ′ andLkΠ′′ are two planes defining the same line,LkΠ̂′ is a plane
constraining the point,Πr are the planes incident to the line,Pj are the
projection matrices for the images containing projections of the line,lkj are
these projections,ωi are predefined weighting coefficients, and( · ) denotes
scalar product of 4- or 3-vectors.

reconstructed plane at infinity to constrain the reconstruction up to
an arbitrary affine transformation. If three points corresponding to
orthogonal directions are known than it is possible to upgrade the
reconstruction to metric state.

In recent years, a great amount of research work has been dedi-
cated to metric upgrade using additional knowledge about internal
parameters of cameras (so-calledauto- or self-calibration). Abil-
ity of such upgrade can be illustrated as follows. LetP1,P2 . . .PN
be a set of reconstructed projection matrices. Since without prior
knowledge our reconstruction is defined up to a projective trans-
foramtion, our set is equivalent to a setP1T,P2T . . .PNT whereT
is an arbitrary non-singular 4×4 matrix. Using the theorem of QR-
decomposition any projection matrix can be decomposed as

Pj = K j (Rj |−Rj t j ), (7)

whereK j is upper-triangular,Rj is a rotation matrix, andt j is a 3-
vector. For a metric camera these three parts have particular mean-
ings,K j being a matrix of internal camera parameters,Rj being a
matrix defining camera orientation, andt j being a position of the
camera viewpoint in metric space. Therefore, when some of the
internal parameter matrices are (partially) known, it is possible to
choose a particular transformationT such that corresponding set of
cameras would yield the most correct set ofK j . This transformation
will bring the system as close to the metric state as possible.

Though several algorithms exist that are able to perform self-
calibration even from the knowledge of pixel rectangularity (cor-
responding to a particular zero coefficient in matricesK j ), robust
self-calibration algorithm even from a reacher knowledge is still an
open problem. Our implementation of some self-calibration algo-
rithms does not always yield correct result for noisy data even when
the whole matrix of internal camera parameters is known for each
camera.

To accomplish metric reconstruction without performing self-
calibration, we can also perform reconstruction using non-
projective algorithms that directly yields metric reconstruction2.
Such algorithms have been being long out of favour due to their
low robustness against noise. To filter out the noise in the user
input, we start with the projective reconstruction and then replace
original user selected projections with reprojections, resulted from
estimated projective reconstruction. We performed multiple ex-
periments with artificial and real data and verified that this sim-
ple scheme is very stable and yields result even when initial data
are plagued by significant noise. In particular, we use motion esti-
mation via essential matrices to estimate motion for different pairs
of images. Such pairwise reconstructions are combined using uni-
fying metric transformations, estimated from relative positions of
common points.

Whatever is the chosen strategy for obtaining metric reconstruction,
the concluding step is always a metric bundle adjustment process:

{P,M} = argmin ∑
(i, j)∈Ω

ρgeom
i
j +λ‖P̂j P̂j

T −K jK
T
j ‖2

s.t. (Pj Mi)[3] > ε ∑
k=1..4

Mi [k]2 = 1, (8)

2These algorithms assume that internal camera parameters are known.
This assumption is not too limiting for many applications. Effective camera
calibration software can be easily assembled using e.g. [OpenCV ]. Indeed,
camera precalibration is often a must even for projective algorithms due to
the presence of radial distortion.
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where P̂j is a left 3× 3 matrix of Pj , K j is a matrix of internal
camera parameters, andλ is a weighting factor. For constrained re-
construction the first term should be augmented with the terms rep-
resenting constraints and line reprojection errors. The second term
measures the difference between the first factor in decomposition
(7) and the given internal camera parameters matrix. If the internal
parameters are only partially known, then the norm in the second
term should comprise squared differences over given coefficients.

3 Interface and Applications

3.1 User interface

As image based modeling systems usually require significant user
interaction, convinient user interface is the crucial part of such sys-
tems. In our system, the main burden is selecting multiple point
correspondences. Therefore, we put many efforts in the creation
of effective point selection tool. Besides convenient zooming and
paning mechanism, we implement an automatic user guiding proce-
dure, based on multiview geometry. This gudance becomes active
when the user have selected the projections of a point on two im-
ages. Starting from the third image the system will show to the user
an approximate position of point projection deduced from multiple
view constraint3.

Another useful tool for point selection is thepoint audit. This rou-
tine is aimed at detection of significant errors in the user input (e.g.,
the situations when the user was occasionally confused with some
repetitive pattern in the scene and selected a projection of analo-
geous point instead of the proper one). Point audit employs the
RANSAC algorithm [Torr et al. 1994] to estimate multiview ge-
ometry 4. The RANSAC algorithm allows to estimate multiview
geometry even in the presence of correspondences selected with
significant errors (outliers). Furthermore, when multiview geome-
try relations are estimated, these erroneous correspondences can be
distinguished and reported to the user.

In our experiments, we found out that the described interface im-
provements can significantly speed up the correspondence selection
process. This makes our system a useful tool for various applica-
tions of image based modeling.

3.2 Model acquisition

The first application to be mentioned is the acquisition of 3D mod-
els. The models produced with our system comprise surface patches
and 3D polylines.

Once structure and motion estimation has been performed, the
model can be composed interactively. To add a patch to the model,
the user selects a set of reconstructed pointsMi1,Mi2, . . .MiK by
clicking on their projections on one of the views. This set of points
is triangulated and the triangles obtained are textured with the cor-
responding image region. The resulting patch is added to the model.

To add a 3D curve to the reconstruction, the user selects its ends
that should be also reconstructed pointsMi1 andMi2. The user also
selects several projections of the curve in a form of 2D polylines.

3We estimate a trifocal tensor (see [Hartley and Zisserman 2000]) for
a corresponding triple of images. A trifocal tensor is a 3× 3× 3 tensor,
allowing for computation of a point projection on a third view given its
projections on the other two views.

4Here we again use trifocal tensors for different triples of views.

After that, the curve is reconstructed as a polyline with a predefined
number of vertices via iterative reprojection energy minimization.

The resulting models (Figure 5) can be rendered with the internal
OpenGL-based viewer [OpenGL ] of the system. Export in VRML
format [Carey and Bell 1997] is also available, making it possible to
use the models in a multitude of virtual reality applications (games,
virtual tourism, virtual heritage). Since, the camera parameters are
recovered along with the scene structure one may consider using
reconstructions in augmented reality tasks.

3.3 Image based metrology

Our system can also be used as a metrology tool. The structure re-
covered after metric reconstruction is visualized, allowing the user
to measure interactively the distances and angles between recon-
structed 3D elements. Very high metrology precision with tenths
of percent order of relative errors can be attained for properly cali-
brated cameras and an accurate user input. This makes our system
usable for various control tasks.

Figure 2: Metrology session in ImagiCAD. The user has measured
one of the angles on the reconstructed pylon.

We are currently investigating the possibility of applying our sys-
tem to the control of deformation of industrial objects (in particu-
lar, electric transmission line pylons). We are planning to develop a
software tool specialized to this particular task on the base of Imag-
iCAD.

4 Conclusion

We have presented an image based modeling system. It exploits the
wide range of the recently emerged algorithms and demonstrates
the broad capabilities of image based modeling in such tasks as
model acquisition and metrology. It also possesses a covenient user
interface, which provides the user an intellectual aid during the cor-
respondence selection process.

The input for our system consists of several photo images, taken
with an off-the-shelves digital still camera. On these images, the
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user select corresponding projections of an object’s feature points.
Line projections can be selected as well. Moreover, the user can
point out the relations of incidence, parallelism or coplanarity for
the points and lines under reconstruction.

Selected feature projections along with imposed constraints are in-
voked into structure and motion recovery process. It starts with the
projective uncalibrated reconstruction and as a second step recovers
the metric structure of the scene. To do the latter step, it requires at
least partial knowledge about internal camera parameters.

In our system, the reconstructed 3D elements can be employed
either for model construction or for metrology. To construct the
model of the object the user interactively selects the set of points
on any image. This set is triangulated and the obtained triangles
textured with the corresponding image regions are added to the
model. The model can also be augmented with the spatial curves,
represented as polylines and reconstructed from user selected pro-
jections.

The second important application is the image based metrology.
The user can interactively measure the distances and the angles be-
tween reconstructed 3D elements. Very high metrology precision
with tenths of percent order of relative errors can be attained.

A lot can be added to our system. In fact, it can be regarded as
a platform for more specific image based modeling applications.
Possible improvements include more sophisticated scene structure
model, specialization of user interface to some particular tasks,
automatization of correspondence selection and model acquisition
processes.
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Figure 3: Reconstructed scenes. Top row – one of the intial photographs. Lower rows – reconstructed models rendered from different
viewpoints.
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