
3D Flow visualization using GPU-driven particle system

Oleg A. Potiy∗

Computer Center
Rostov State University, Rostov-on-Don, Russia

Alexey A. Anikanov†

Computer Center
Rostov State University, Rostov-on-Don, Russia

Abstract

In this paper we would like to present a fast and effective technique
for 3D unsteady flow visualization based on particle system anima-
tion. Particle advancement in flow is performed directly by means
of a graphic processing unit(GPU).

The suggested method derives the advantages of texture visualiza-
tion techniques - continuous cover of displayed domain and the
most intuitive way of flow imagery. On the other hand, this tech-
nique allows to perform 3D flow animation with interactive frame
rate and sufficient quality. Tracking particles injected in the velocity
field do not require expensive, from the computation point of view,
3D volume rendering procedure, in contrast with texture 3D visu-
alization techniques. Employing of GPU hardware capacities and
stream computation approach makes possible to relieve the stress
from a central processing unit.

Keywords: general-purpose computations on GPU, GPU based
visualization, flow visualization, particle visualization, texture flow
visualization

1 Introduction

The development of computational mathematical physics and fluid
dynamics caused by computer power growth lasts three decades,
gives us possibility to simulate complex behaviour of natural phe-
nomenas and industrial effects without running expensive experi-
ments. One of the most commonly used special cases of such mod-
eling in ecology and hydraulic gas dynamics exploration is compu-
tation of 2D or 3D motion of continuum velocity field on equidis-
tant or non-equidistant nodes net. The results of this numerical flow
computation are large 2D or 3D arrays of vector or scalar data. The
successful outcome of experiment depends much on the way of rep-
resenting data and the conclusions the researcher could come to
basing on image obtained. Thereupon, velocity field visualization
becomes an essential part of many computational modeling tasks.
The stage of data visualization should provide exhaustive informa-
tion about flow structure, speed and other characteristics.

With the advent of techniques, employing graphic hardware capac-
ities, it became possible to produce high-quality 2D flow visualiza-
tion on a stadart PC-workstation in real-time mode. IBFV technique
developed by Jack van Vijk [van Wijk 2002] suggested to produce
image advection along streamlines of a velocity field by means of
texture mapping on distorted quad polygonal net with vector field
values assigned to mesh nodes. Further research in this area have

∗e-mail: opotiy@mail.ru
†e-mail:anikanov@rsu.ru

lead to the development of 3D IBFV - visualization technique for
3D steady flow [Telea and van Wijk 2003]. Our contribution to the
field of texture visualisation was the development of method for
texture advection of unsteady flow [Anikanov and Potiy 2003] and
its hardware GPU-based modification [Potiy and Anikanov 2004].

While visualizing planar 2D velocity fields texture techniques ex-
hibit appropriate performance and give us detailed picture of flow,
for 3D case there are several problems. Since 3D texture techniques
deal with texture cube, it is necessary to use volume rendering al-
gorithms [Hadwiger et al. 2002]. This fact makes implementation
of such methods in two phases - texture advection itself, followed
then by texture cube rendering. More over, texture visualization
produces continuous images. In consequence of this generic fea-
ture, 3D texture visualisation cannot resolve small details of flow.
Thus techniques for continuous texture advection of whole texture
cube are not well suited for 3D flow animation in real-time scale.
This fact becomes particularly apparent while visualizing unsteady
velocity vector field.

Better solution, in our opinion, the use of discrete particles placed
in the velocity field. Tracking particles along path lines produce
flow animation [Berger 2000], [Stefan Guthe 2001]. Particles leave
a gradually decaying in time trace, graphically demonstrating their
path in flow. Discrete particle traces visualization allows to de-
crease haziness of the image obtained, while imaging 3D flow field.
As a result this measure increases cognitive power of visualization.

One of the pioneer achievements in hardware-based particle vi-
sualization was Weiskopf’s work [D. Weiskopf and Ertl 2001],
which suggested to inject randomly spreaded particles in 3D tex-
ture cube and calculate their advection using programmable raster-
ization pipeline of a graphic card. The performance of this tech-
nique was about 4 frames per second. Final imaging was produced
by volume rendering procedure, so specialized graphic station was
required. Further development was the GPU-based modification of
this concept [Weiskopf and Ertl 2004] with the performance show-
ing 10 fps.

Latest achievements in graphic industry such as fully pro-
grammable rasterization pipeline, mostly stimulated by game man-
ufacturers, allow to continue work on techniques effectively em-
ploying graphic card hardware capacities. Calculation organization
based on direct GPU exploit gives possibility to relieve a stress from
the central processing unit and, in that way, improve the overall per-
formance of the visualization system.

We suggest a new technique for 3D flow visualization using parti-
cle system tracking, computed by means of graphic processing unit.
The method combines the advantages of texture and particle visual-
ization techniques, inheriting a paradigm of matter advection along
stream lines and employing geometry objects for particle represen-
tation. We chose the following particle behaviour model - moving
in flow a particle decays and eventually passes away. After that the
particle regenerates in randomly chosen location of the visualiz-
ing domain. Such behaviour strategy allows not to track the whole
particle trace, because tracing a streamline at once leads to inaccu-
racy accumulation. Using animation of streamlines short segments
results in more dynamic and intuitive visualization in 3D case. Di-
rect GPU utilization let us produce real-time interactive 3D visu-
alization (from 10 to 50 frames per second, depending on particle

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



amount and live period) in stationary and instationary flow cases
on non-specialized graphic card. Besides that, the algorithm pre-
sented in this paper is a effective example of general-purpose GPU
computauions

In the second section of the paper the detailed method overview -
GPU-driven computation of particle advection, particle distribution
in the visualized domain and the suggested way of particle tracks
rasterization are presented. The third section contains technical de-
tails of technique implementation using OpenGL library. Section
4 comes with obtained results discussion and brief outline of pos-
sible modifications for better performance and cognition. Finally,
section 5 summarizes the whole paper in conclusion.

2 GPU-driven particles visualization

Our method is based on using graphic processor for computation of
2D texture which colour components are treated as particle coor-
dinates. This texture is rasterized into non-screen buffer by means
of fragment program. The following reading of texture data from
this buffer gives us stream lines vertex coordinates of moving par-
ticles along a path lines. The next stage of our technique is parti-
cle trace rasterization. The suggested way of calculations assumes
that the researcher has a standard consumer PC-workstation with a
graphic card installed on it, which supports non-screen rendering
and fragment program execution environment within the bounds of
the programmed rasterization pipeline support.

It should be pointed out, that the mentioned hardware capacities are
available in all modern state-of-the-art graphic cards presented on
the market. The proposed technique implementation uses OpenGL
graphic library and its several extensions. Without losing any com-
monness, we can assume that field for visualization is defined in the
unit cube domain.

2.1 Vertex GPU calculations

The most natural way of organizing general-purpose computations
on a graphic processing unit is using planar texture maps as data
array storage for a fragment program. A fragment program re-
ceives several texture maps as input data and returns its compu-
tation result as a pixel data in frame buffer. As a rule, single texture
value(frequently called texel) is represented as one-,two-,tree- or
four component value. The type and precision of components in
this texture vector can be chosen by user asGlbyte, Glshort, Glint.

Recent development in a graphic hardware industry essentially ex-
tended this concept by adding support of four-component (RGBA)
float point textures. Each texel in such texture objects is repre-
sented as 32-bits four floating point values. We consider RGB float-
ing point texture vector as a particle coordinate storage(px, py, pz)
Forth alpha-component was chosen to represent information about
life time of the corresponding particle.

In our algorithm 3D velocity field is specified by the planar RGB
texture map, which texels are treated as vector field valuesfxyz =
( fx, fy, fz) assigned to nodes of a regular 3D net. It would be
more natural to use 3D texture map with floating point compo-
nents, but hardware support for such texture object exists only in
recent graphic cards. These products are not available for us, so
we should find an alternative solution. In this connection, the de-
composition of a 3D texture map was performed - we splited texure
cube into a number of 2D maps and arrange them on the surface of

a large planar texture with an appropriate size. For example, pack-
ing texture cube with dimension 1283 requires 2D texture map with
size 4096×512 (fig. 1).

Figure 1: Converting 3D texture cube into 2D plane

The fragment program calculates new particle location, taking into
account current coordinatespxyz(i) = (px(i), py(i), pz(i)) and ex-
tracting from packed velocity field vector valueTexf at the location
p. The input data for this fragment program on stepi are tree tex-
ture objects - texture array with current particle coordinatesTexp(i),
packed into 2D texture map velocity fieldTexf and one random tex-

tureTexrnd( j), j = 1,N taken from the set of random locations used
for ”dead” particle coordinate renovation (fig. 2). The output of ras-
terization pipeline is the new texture arrayTexp(i + 1) which will
be treated asTexp(i) in future iteration. At the moment, particle
advection through a flow is calculated with the help of the stan-
dard first-order integration method. However, the suggested way
of computations makes possible an implementation of higher order
integration techniques without adaptive choice of integration step.
In this case, inaccuracy is equilibrated by small step, short particle
life time and consequently small length of a curve, which particle
circumscribes. So, an inaccuracy has no time to become big enough
for having effect on visualization. It should be pointed out, that in
many cases visualization used just for observation and subjective
analysis. So, under these conditions we have no strict requirements
for the numerical integration procedure.

Figure 2: Particle advection pipeline

After texture coordinate array fragment program rasterization,

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



frame buffer content is copied into a main texture memory and
involves in the next algorithm iteration as current particle coordi-
nates. Copying performs with the help ofglCopySubTexture func-
tion call, which replaces a content of texture arrayTexp(i) with new
dataTexp(i +1).

2.2 Particle behaviour and visualizing

It is easy to see, that with continuous particle advancement in a flow,
in the course of time all of them will be carried outside of visualized
domain or accumulated inaccuracy will make the particle trajectory
non-verisimilar. Illustration of this fact is continuous tracking of a
single particle, placed in the rotation velocity field (fig. 3).

Figure 3: Tracing single particle in the rotation field.

To remedy this phenomena, the life time parameterpl (i) is as-
signed to each particle. Alpha-value channel of the texture array
is used for this purpose. This life time parameter is incremented
on each iteration. Whenpl (i) becomes equal to some limit value
L this parameter is set to zero and particle considers as ”dead” and
newly ”regenerated”. Dead particle regenerates at the new location
prnd inside the unit cube domain specified by preset set of random
noise texturesTexrnd( j), j = 1,N. On every method iteration, a
random numberk, 1≤ k≤ N of a noise texture mapTexrnd(k) is
involved with the process of dead particle regeneration in texture
arrayTexp(i). Besides that, a particle is confined in the unit cube
domain. This measure preserves a particle from leaving visualized
domain - if a particle comes out from the unit cube we mark it as
”dead” by settingpl (i) = 0.

In such a way, the fragment program calculatesp(i + 1) using the
next formula (1):

p(i+1)= (pxyz(i+1), pl (i+1))=



(pxyz(i)+ fxyz∆t, pl (i)+1),
i f pxyz(i +1) ∈ R3(0,1)
and pl (i) < L

(prnd,0), prnd ∈ Texrnd(k),
else

(1)

Such particle behaviour strategy allows to gain acceptable random
distribution of dead particles in visualized domain, using pseudo-
random number generators likerand(). Uniform cover of flow
domain by particles makes possible visualization of all parts of a
field. Particle life cycle mechanism, in one’s turn, gives possibility
to manage computer memory effectively without deleting dead par-
ticle. Fragment program just renovates its position inside the unit
cube domain.

We chose the simplest way of the particle trace visualization as a
semitransparent line segment set usingGL LINE primitive. Vertex
texture arrayTexp(i +1) is copied from non-screen buffer and used

for stream lines rasterization. The life time parameterpl is treated
as an element index in a vertex array. Visualization of this array
produce particle tracking as a piecewise polygonal representation.
Using semitransparent line segments allows visually uniform flow
imaging, just as using texture visualization techniques. However, in
case of 3D field the resolving capacity of stream line short segments
as polygonal primitives is much better, in contrast with volume ren-
dering methods. Besides that, imaging stream line as a piecewise
polygonal curve allows application of different techniques such as
dependent texture mapping, colour coding and e.t.c. These mea-
sures will raise cognitive capacity of the visualization.

For purposes of stream line set imaging perspective projection is
used. This gives better feel of 3D space, rather than parallel pro-
jection. In texture visualization techniques a parallel projection is
mostly used, while application of perspective projection is difficult,
because it is necessary to build spherical sections when visualizing
3D texture [Engel and Ertl 2002]. Since in our method flow is de-
picted using geometry objects we are not constrained in applying
different types of projecting.

3 Technique implementation

While working over this technique we have been using NVIDIA
GeForce FX 5900 graphic board on AGP 4.0 bus and OpenGL li-
brary extensions -NV texture rectangle, NV fragment program
andNV float buffer [Kilgard May 19, 2004]. Using of NVIDIA-
oriented OpenGL extensions slightly constricts the variety of
hardware could be used, however our technique can be adopted
to ATI graphic solutions with ease. We used the extension
NV texture rectangle for fragment shader implemenataion, in
view of the fact that this extension is optimized for NVIDIA
platform. But it is possible to rewrite GPU fragment pro-
gram code for running with pixel shading universal extension
ARB Fragment Programm [ATI 2003], [Kilgard May 19, 2004].

As it was mentioned above, vertex texture arrayTexp is rasterized
into non-screen frame buffer (p-buffer) in order to avoid slow screen
rendering operations, so non-screen rendering allows to increase the
performance of visualization system. Using specific p-buffer pixel
format makes possible reading floating point pixel data from it.

Standard OpenGL texturing is limited in size to images with power-
of-two dimensions and an optional 1-texel border. Using rigidly
fixed dimensions in our case is not convenient, because this con-
dition implies strong restrictions on a number of particles vari-
ation - 4096(642), 16384(1282) or 65536(2562). In contrast,
NV texture rectangle extension adds support for a new texture ob-
ject that implements 2D textures without requiring power-of-two
dimensions. This extension make us free in adjusting smoothly the
number of particles in a system, since we are able to choose arbi-
trary size for texture arrayTexp.

When visualizing stream lines, vertex buffer object was used in or-
der to decrease a function call number for geometry objects gener-
ation. The alpha-channel of texture array object used to store life
time of a particle treated as an element index in a stream line vertex
array.

Employing the mentioned hardware capacities gives us possibility
to produce interactive animation of nonstationary flows in a real
time scale. The speed of the visualization is varied from 12 to 50
frames per second, depending upon the number and life time param-
eter of particles. Frame rate degrades as a consequence of growing
particle life time since particle track length and amount of vertex
data passed to a graphic card increase considerably. It should be

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



pointed out, that even in arduous duty ( about 40000 particles and
200 vertexes in the particle trace) our technique has a performance
for about 17-25 frames per second, so we see some performance
advantages in comparison with 3D texture visualization.

4 Results and future work

We have visualized several vector fields and the results are shown
on (fig. 4). These images were obtained using 25600 particles with
lifetime parameter value 100 at about 28-30 fps.

Figure 4: Example datasets visualization.

Further efforts concerning the development of this technique will
be findings of the optimal approach to particles distribution in the
unit cube. At the moment we observe the effect of stream lines
higher concentration at locations where particles pass maximum
length distance, while in other locations particle concentration de-
grades. Perhaps, an elimination of this phenomenon will require an
essential revision of particle behaviour model.

The way of stream line imaging may be considerably improved by
dependent texture mapping on a particle track. Besides that, polyg-
onal particle trace representation allows application of a great num-
ber of techniques (stream lines coloring, dependent lighting and
e.t.c.) for increasing cognitive qualities of visualization. In many
respects this is stimulated by a flexible control of the programmed
rasterization pipeline.

We should point out, that we have just started work on this tech-
nique. Code and algorithm detailed optimization will considerably
increase the method performance.

5 Conclusion

In this paper we have presented a new fast and efficient technique
for unsteady 3D flow visualization, based on vertex data compu-
tations by means of GPU-based texture rasterization. Such an ap-
proach gives us possibility to produce real time flow visualization
using particle trace imaging. The suggested way of particle advec-
tion makes possible nonstationary velocity field interactive render-
ing. In the 3D case, polygonal stream line representation exhibits
better results, from the point of view of performance and cognition,
than continuous texture cube advection followed by volume render-
ing. Geometry objects are not constrained in projection type, so
we used perspective projection. Obtained results encourage us to
continue work on this technique.

References

ANIKANOV, A. A., AND POTIY, O. A. 2003. Texture advection
for 3d flow visualization. InProceedings of GRAPHICON 2003,
MSU.

ATI, 2003. Ati opengl extension support.

BERGER, S. 2000. Color-table animation of fast oriented line inte-
gral convolution for vector field visualization. InProceedings of
WSCG’2000, WSCG.

D. WEISKOPF, M. H., AND ERTL, T. 2001. Hardware-accelerated
visualization of time-varying 2d and 3d vector fields by texture
advection via programmable per-pixel opefations. InProceed-
ings of Vision, Modeling, and Visualization VMV ’01 Confer-
ence, Stuttgart, November 2001.

ENGEL, K., AND ERTL, T., 2002. Interactive high-quality volume
rendering with flexible consumer graphics hardware. EURO-
GRAPHICS 2002.

HADWIGER, M., KNISS, J. M., ENGEL, K., REZK-SALAMA , C.,
AND LANDIS, H., 2002. High-quality volume graphics on con-
sumer pc hardware. ACM SIGGRAPH 2002 Course #42 Notes,
July.

K ILGARD , M. J., May 19, 2004. Nvidia opengl extension specifi-
cations.

POTIY, O. A., AND ANIKANOV, A. A. 2004. Gpu based texture
flow visualization. InProceedings of GRAPHICON 2004, MSU.

STEFAN GUTHE, STEFAN GUMHOLD , W. S. 2001. Hardware-
accelerated visualization of time-varying 3d and 3d vector fields
by vexture advection via programmable per-pixel operations. In
Proceedings of Vision, Modeling, and Visualization VMV ’01
Conference, Stuttgart, November 2001.

TELEA, A., AND VAN WIJK, J. J. 2003. 3d ibfv: Hardware-
accelerated 3d flow visualization. InProceedings of ACM SIG-
GRAPH 2003, ACM.

VAN WIJK, J. J. 2002. Image based flow visualization.ACM
Transactions on Graphics 21, 3, 745–754.

WEISKOPF, D., AND ERTL, T. 2004. Gpu-based 3d texture advec-
tion for the visualization of unsteady flow fields. InProceedings
of WSCG 2004 Short Papers, WSCG.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/


