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Abstract

The subject described herein is a novel method for model-
ing and visualizing the deformation of a rheological object.
In the method, we propose a dynamic adaptive triangle
mesh of which the vertex link is a rheology element con-
sisting of the group of a viscous element joining to two
viscous and elastic elements associated parallelly. Based
on the physical and geometrical properties of a rheological
object, the mesh conforms dynamically to the deforma-
tion. We apply the dynamic adaptive triangle mesh for
the problems of visualizing force interactions of a deforma-
tion process.
Keywords: rheological object, dynamic adaptive triangle
mesh, deformation model, three-element mode, elastic ele-
ment, viscous element.

1 Introduction

Researches on models for simulating, rendering and visu-
alizing the physical properties and the behaviors of de-
formable objects gives many important applications in
medical imaging, computer graphics and artificial reality.
The modeling of deformable objects have been studied
since late 80’s, starting by the works of Terzopoulous [[1],
[2]]. In recent time, with demands arising from food pro-
cess engineering on the simulations of the physical change
of materials such as starch, meat, dough, tissue, organ in
a manufacturing or handling process, it becomes essential
to study deformable models of rheological objects [3].

Rheological objects are objects having both elasticity
and viscosity properties; their flexible property can be ex-
pressed by a three-element model which is a group of a vis-
cous element connecting two viscous and elastic elements
associated parallelly as a substitute for the elastic element
in the mass spring system. There are two unsolved prob-
lem arising in the researches: (i) what model can be build
so as to efficiently express the behavior of a rheological ob-
jects; (ii) how to visualize the physical change such as: a
strength or a weakness of interaction, the changing pro-
cesses of the distributions of temperature, stiffness, chemi-

cal components, etc., inside a rheological object. The idea
to deal with these problems is to utilize an adaptive mesh
of which topology conforms in accord with the changing
of rheological objects. There were very few research pa-
pers relating to this issue; in [[4], [5]] Lauchaud proposed
a mesh of which topology structure is changed under the
geometrical constraints, and applied the method for ex-
tracting objects from volumetric data with a coarse-to-fine
approach. However, because of using the geometrical con-
straints, this method can not be applied for representing
of the physical processes, generally.

In this article, we propose a dynamic adaptive triangle
mesh of which the vertex link is a rheology element consist-
ing of the group of a viscous element joining to two viscous
and elastic elements associated parallelly. Based on the
physical and geometrical properties of a rheological object,
the mesh conforms dynamically to the deformation. We
apply the dynamic adaptive triangle mesh for the problems
of visualizing force interactions of a deformation process.

The remainder of the article is organized as follows: next
section reviews the three element model in prior works.
Section 3 shows a dynamic adaptive triangular mesh which
conforms to the changing physical properties of a rheologi-
cal object. Section 4 represent the procedure for modeling
the deformation of a rheological object and visualization
the force interactions. Section 5 describes experimental
results and discussions. Finally, Sect. 6 is devoted for con-
clusions and future works.

2 Rheological Object

2.1 Characteristic of Rheological Ob-
jects

Rheological objects deform in response to applied exter-
nal force. Suppose that an object has a natural shape, as
shown in Fig. 1(a). Applying external force, the object
deforms as shown in Fig. 1(b). After external force is re-
moved, rheological objects do not return to the original
shape; however, the deformed shape is partially restored,
as shown in Fig. 1(e). This type of deformation is called



bouncing deformation. And, the remaining deformation is
called residual deformation. Thus, the rheological object
in Fig. 1(e) has three deformation properties follows: (1)
Residual deformation is involved, (2) bouncing displace-
ment is involved, (3) vibrations decrease.

(a) Natural shape (b) Deformed shape

(c) Viscoelastic (d) Plastic (e) Rheological

Figure 1: Rheological objects

2.2 Three-element model for the rheo-
logical object representation

We adopt the three-element model proposed to describe
deformation characteristic of rheological objects [6]. In the
three-element model, an elastic element and a viscous ele-
ment are introduced to describe the time-dependent vis-
cous and elastic deformation of a rheological object, as
shown in Fig. 2. The relationship between deformation
and force applied can be described by either serial or par-
allel combinations of these two fundamental elements, and
these combinations are called rheology elements.

Viscous elementElastic element Viscous elementElastic element

Figure 2: Fundamental elements

Rheology elements do not have bouncing deformation
property if the residual deformation part has only the vis-
cous element. Rheology elements have bouncing deforma-
tion property if either the non-residual deformation part or
the residual deformation part has an elastic element. And,
simple harmonic motion is generated in the deformation
part if an elastic element exists independently. From the
above discussion, the three-element model is obtained as
a rheology element which consists of minimum number of
fundamental elements, as shown in Fig. 3.

The three-element model is formulated as follows. Let
Pi and Pj be two end points with the same mass m of the
rheological element. Elastic and viscosity coefficients in
the non-residual deformation part are denoted as k1 and c1

respectively. The other viscosity coefficient in the residual
deformation part is denoted as c2. The natural length of
the non-residual deformation part is given by a r0, and its

length in time is denoted by a function rv(t). The length
of the rheological element in time is denote by a function
rij(t). Let xi(t), xj(t) and vi(t), vj(t) be the position
and velocity vectors of the mass Pi and Pj in turn. The
rheological element’s length can be expressed the position
vector as follows:

rij(t) = (xj(t)− xi(t))eij , (1)

here, vector eij is the unit vector in direction from Pi to
Pj , which is given by eij = (xj(t)− xi(t))/|xj(t)− xi(t)|

Let fe(t) be a force acting on the mass point Pi exerted
by the rheological element between Pi and Pj ; this force
equals to force acting on the non-residual deformation part:

fe(t) = −c1ṙv(t)− k1(rv(t)− r0)), (2)

Moreover, fe also coincides with the force caused by the
damper of the residual deformation part:

fe(t) = −c2(ṙij(t)− ṙv(t)). (3)

From the equations (2) and (3), we have:

ṙv(t) =
−k1(rv(t)− r0) + c2ṙij(t)

c1 + c2
(4)

here, the quantity ṙij(t) can be calculated from the expres-
sion of the element’s length rij(t):

ṙij(t) = (vj(t)− vi(t))eij (5)

The equation of Newton’s second law for the mass Pi is
as follows:

mv̇i(t) = fe(t)eij + F ext(t), (6)

here, F ext(t) is the vector of an external force.
The equations (4) and (6) describe the deformation of a

three element model. By solving the equations (4) and (6)
for rij(t) and rv(t), we have the deformation formulation.
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Figure 3: Three-element model

In next section, we show a dynamic adaptive triangular
mesh of which the vertex connection is the three element
model, for modeling the deformation of rheological object.



3 Adaptive Triangular Mesh
Generation
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Figure 4: Dynamic adaptive triangular mesh

In the prior works, one of the authors proposed a method
for generation of a adaptive mesh without cracks, and ap-
plied it for the problem of sampling and reconstructing
range images [[7], [8]]; the method have also been devel-
oped to a 3D adaptive tetrahedral grid for modeling 3D
objects [9]. In the present work, we develop a dynamic
adaptive triangle mesh, abbreviated as DAT mesh, which
conforms to the changing physical properties of a rheolog-
ical object. DAT mesh is a type of discrete model con-
structed from physically-based vertexes, elastic elements
and viscous elements as showed in Fig. 4; mesh elements
are triangles which adapt to physical and geometrical prob-
lem under consideration, and dynamically grow smaller or
bigger depending on the physical status of the vertexes.
We implement the DAT mesh whose vertex links are rhe-
ology elements for modeling the deformation, visualizing
the internal physical interactions, and rendering of cutting
of a rheological object. The modeling of the deformation
composes of two stages: (i) the stage of generating DAT
mesh, (ii) the stage of representing the dynamic property.
At first, we present the stage of DAT mesh generation.

( )a
Quad side Quad mesh element

( )b ( )c

0P

1P 2P

3P

4P

( )d

e

l

p

k

d

b

j

n
o

q

m

f

g
i

a

h

c

0P

1P 2P

3P

1RT
2RT

b

a

d

c

1RT

e

j k ml no qpg h

i

f

2RT

( )e( )a
Quad side Quad mesh element

( )b ( )c

0P

1P 2P

3P

4P

0P

1P 2P

3P

4P

( )d

e

l

p

k

d

b

j

n
o

q

m

f

g
i

a

h

c

e

l

p

k

d

b

j

n
o

q

m

f

g
i

a

h

c

0P

1P 2P

3P

1RT
2RT

0P

1P 2P

3P

1RT
2RT

b

a

d

c

1RT

e

j k ml no qpg h

i

f

2RT

( )e

Figure 5: Adaptive Mesh Generation

To reduce the computation time for modeling the defor-
mation, it is necessary to represent the object shape by a
mesh of which elements are fine for the local area of limit

points being speculated such as boundaries or edges, and
are rough otherwise. The aim of the mesh generation stage
is to express the shape of a rheological object by a DAT
mesh fitting to the shape boundary. For the sake of sim-
plicity of modeling, the rheological object is supposed to
have the shape of a rectangle, which is visualized by an
image as showed in Fig. 5. The image is initially seg-
mented into a set of regularly located square blocks with
size of QuadSize2, where each boundary of each quadrilat-
eral mesh element is bounded and shared by its four adja-
cent mesh elements. Each mesh element is then segmented
into two ”root triangles” (Fig. 5b), so that the image be-
comes defined with a set of triangular blocks (hereon, we
call simply ”triangle” as the block enclosed with an isosce-
les right triangle). Then, the binary division process starts
at all root triangles. According to the local geometry prop-
erties, the root triangles are bisected recursively and inde-
pendently; this splitting process is repeated until all the
resultant blocks satisfy the given criteria in order that fine
meshes element are generated at the boundary (Fig. 5(c),
(d)). As a result of this, the parent triangles are split into
a hierarchical sets of triangles which would be represented
as a binary tree, we call ”split tree”. An example of a split
tree is shown in Fig. 5(e). Figure 6 gives the representation
of an object using adaptive mesh.

Figure 6: Representation of an object (shape of the liver)
using adaptive mesh

4 Simulation Procedure of the
Deformation Process

After the stage of generating the DAT mesh of a rheological
object, the modeling of the deformation process under an
external force is carried out by the procedure as shown in
Fig. 7. The deformation can be modeled via dynamics
equations of masses, viscous elements and elastic elements
of the DAT mesh. Let Sh be a sets of element Eh applying
their forces to a mass Pi, and Let Sj be a sets of elements
Ej applied by the force of the mass Pi. Then, the total
forces acting on Pi from all elements in two sets Sh and
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Figure 7: The simulation procedure flowchart

Sj in union with external forces F ext
i can be described as

follows:

Mv̇i =
∑

h∈Sh

fhehi −
∑
j∈Sj

fjeij + F ext
i . (7)

Note that the equation (7) is the equation (6) applied
for rheological elements in the DAT mesh. By solving the
equations(2), (3) and (7) by use of a numerical method,
such as Euler or Runge-Kutta, we can compute the defor-
mation of a rheological object.
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Figure 8: Subdivision Criterion

For the aim of visualization the behavior of internal
forces acting within a rheological, after each step 4t for
computing the position and the force on vertexes, the sep-
aration or combination of mess elements is performed bas-
ing on the ratio of magnitude of difference force vectors and
length of vertexes as expressed in the following expression:

Tf =
|fi − fj |

rij
, (8)

here, rij is the length of an edge PiPj of a triangular ele-
ment in the DAT mesh. The expression (9) is a criterion
for the separation or combination judgment; Tf stands for
the largeness of forces on a unit length, deforming the rhe-
ological element between two masses at the vertexes (see

Fig. 8); Tf becomes null when the total forces acting on
Pi is identical the total forces acting on Pj (suppose that
Pi and Pj have the same mass), in other words, when the
rheological element is not deformed. In order avoiding the
influence of the mass element in subdivision processes, the
following criterion is utilized instead:

Ta =
|v̇i − v̇j |

rij
, (9)

here, v̇i and v̇j are acceleration vectors of masses Pi and
Pj . If the acceleration of a masses in an edges reaches a
criterion for subdivision T sub

a , the triangle is subdivided by
a procedure similar to the triangle subdivision presented in
the previous section. With the passing time, the acceler-
ation of masses have tendency to decrease to zero; on the
edges of subdivided triangles, when they encounter a cri-
terion for combination T comb

a (< T sub
a ), combination pro-

cesses will happen. Figure 9 gives an illustration of the
separation or combination procedure.

The mass of vertexes Pi in new triangles is computed
basing on the mass density of the rheological object before
deformation as follows:

mi =
M

S

∑
k

Sik

3
(10)

here, M and S are total mass and area of a rheological
object; Sik is the areas of the triangles which share the
same vertex Pi. For instance, as shown in Fig. 9(a), the
masses of vertexes Pi, Ph are M

S
(S1

3
+ S2

3
), that of vertexes

Pj and Pk are M
S

S1
3

and M
S

S1
3
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Figure 9: Subdivision and combination process

From time to time, the computing the position of ver-
texes at each step gives one of two unexpected results such
as: (1) the mesh element is deformed reflectively, and (2)
the length of rheological element is shorter than the length
of a non-residual part, resulting in failure of the simulation.
We refer [10] to deal with this problem.

For restraining a triangle mesh element 4PiPjPk from
the reflective deformation, we define the artificial force gen-
erated by a virtual Voigt model on the edges; e.g. the force
on PiPj is formulated as follows:



fk
ij =

{
0 (dk

ij > ε)

(−K(dk
ij − Cḋk

ij) (dk
ij ≤ ε)

, (11)

here, dk
ij is a distance from vertex Pk to edge PiPj (re-

fer Fig. 10); K and C are the parameters of the Voigt
model; and ε is a small positive threshold value. When the
distance dk

ij becomes smaller than the threshold value ε,
the artificial force is applied to Pk to increase the signed
distance.
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Figure 10: Reflective deformation and virtual Voigt model

For restraining the lengths of a non-residual part and
a rheological element, we define the ratio a = rv/rij , and
assign it a possible value interval (amin, amax). That is to
say, the ratio a of the length of a Voigt part and that of
a rheological element is required to satisfy the following
constrain:

amin ≤ a ≤ amax. (12)

During the computation process, when the Voigt part
length becomes smaller than aminrij , it is assigned the
minimum value aminrij ; otherwise, when becoming greater
than amaxrij , it is assigned by amaxrij itself.
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Figure 11: Area element

It is true that the volume of a rheological object is closely
unchanged in a deformation process [3]. This means that,
during 2D deformation simulation, the area of a rheological
object must be preserved. For this reason, after each step
of computing vertex positions, we reassign the force acting
on vertexes of the boundary, basing on the area element
defined by the Voigt model for an area, as shown in Fig. 11.
The force acting on area element is formulated as follows:

Fa = −ka(S − Sint)− caṠ (13)

here, Sint is the initial area of the rheological object; ka and
ca are the parameters of the Voigt model. The constrain
forge on each vertex Pi of the boundary can be computed
by the following expression:

fp
i =

rhiFa

2L
+

rijFa

2L
(14)

here, rhi and rij are the lengths of the two rheology ele-
ments on the boundary sharing the vertex Pi; and L is the
boundary length.

After maintaining the area for the subsequent loop of
computing, the next step in the procedure is to move ver-
texes and visualize the deformation (see Fig. 7). In the
experimental results section, we show the effectiveness of
the proposed method.

5 Experimental Results

For evaluating the method, we construct a system for mea-
surement of the displacement height of dough (a rheological
object) under pressure. Figure 12 shows the measurement
system. The result of measuring the deformation of dough
and the result of the simulation on deformation of a rhe-
ological object are plotted in Fig. 13. The deformation
process is divided into three phrase at time Tc of contact,
at time Ts of maximum displacement height reached, and
at Te of contact force released.

Figure 12: System for measurement of the deformation of
dough

The simulation of the deformation of a rheological ob-
ject is performed as presented in Sect.4. The displacement
height of the contact point is plotted in an appropriate
scale for comparison. In Fig. 13, the height and shape
of the simulated rheological object do not restore to their
initial statuses; although in phrase 3, the displacement of
the simulated result is greater than the measured displace-
ment, the forms of the curves are likely the same in general.
Besides, the subdivision and combination of the triangles
in the phrases of the deformation process displays visually
the force interaction. These show the effectiveness of the
proposed method for modeling and visualization.



The experiment is also extended on simulating the defor-
mation of a viscoelastic object (by substituting the damper
parameter in rheology elements of mesh by zeros), on mea-
suring the deformation of a spring (having the viscoelastic
property). Figure 14 shows the result; the perfect restora-
tion of the shape and the coincidence of the simulated re-
sult with the measured result prove the correctness of the
proposed method.

6 Conclusions

We have described a new method for 2D modeling and vi-
sualizing the deformation process of a rheological object.
The experimental results showed the effectiveness of the
proposed method. The future works are addressed on ex-
tending the proposed method for 3D modeling.
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