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Abstract 
A generic approach to describing shape and topography of 
arbitrary objects is presented, using linguistic variables to 
combine different features in one fuzzy descriptor. Although the 
origin of the method lies in molecular visualization and drug 
design, it can be applied in principle to any surface represented by 
a polygon mesh. Two approaches to shape description are 
presented that both lead to linguistic variables that can be used for 
surface segmentation by means of shape: One approach is based 
on the calculation of canonical curvatures, the other describes the 
“embeddedness” of a surface area related to the overall geometry 
of a 3D object.  
Keywords: 3D shape, surface topography, fuzzy logic, linguistic 
variable. 

1. INTRODUCTION 

3-dimensional geometry in Computer Graphics is usually 
described either by polygon meshes or by mathematical 
descriptions like NURBS (non-uniform rational B-splines). The 
latter become quickly  difficult to handle (and time-consuming to 
render) with increasing complexity while the former represent 
only a simplyfied approach with limited resolution to the real 
shape.  

Several applications from Bioinformatics and Medicine demand 
that 3D objects (representing e.g. molecules or tissue scans) shall 
be segmented into parts forming a pattern of distinct relevant 
surface regions. Among several physico-chemical parameters 
shape plays a crucial role in molecular recognition. Therefore, 
computational chemistry has found a variety of approaches to 
shape classification [1]-[5]. 

In Computer Graphics, shape descriptors are often used to 
improve the quality of a polygon mesh related to the analytical 
surface of the original object, for feature detection, or as a first 
step to several geometry processing actions like deformation, 
texturing, storing, etc. Some recent examples use Morse theory to 
find implicit functions for complex surfaces [6],[7]. While these 
methods generally refer to topology (i.e. connectedness), we 
rather focus on topography as a means to describe overall shape 
types of a surface region (even though topography descriptors are 
calculated based on topological functions). Implicit functions for 
surface shape are usually rather complex and therefore expensive 
in terms of computing time. Using simple shape descriptors 
together with a quick yet flexible segmentation algorithm based 
on concepts from fuzzy logic may offer an alternative that is able 
to find characteristic features of polygon surfaces on varying 
scales. 

2. DESCRIBING SHAPE 

The shape of arbitrary objects is difficult to define in a general 
way. Even humans usually describe shape by comparing objects 
or parts of objects to primitives or models of known geometric 
parameters. A generic description of surface shape can be given in 
terms of curvature or – on a more global scale – by means of 
elevation (or embeddedness) related to some reference level, like 
in topographical maps. While the former (curvature) is largely 
dependent of the choice of scale for fitting paraboloids to surface 
regions of a given size (which leads to difficulties with surfaces 
containing shape elements of significantly varying size), the latter 
(embeddedness) defines shape in relation to the overall size of the 
measured object. 

2.1 Shape descriptors based on canonical 
curvatures 
The shape of a region around a single surface point (a mesh node) 
can be adequately measured by a curvature profile based on the 
two canonical curvatures (CC1, CC2), which are originally 
defined as the eigenvalues of the local Hessian matrix. For larger 
surface areas, global curvatures have been introduced, which are 
calculated analogously by fitting paraboloids to a central node 
point and its neighbours bordering a surrounding area at a 
predefined distance following node connectivities [2]. 

For a simple representation of surface shape a Surface Topo-
graphy Index (STI) has been defined [8],[9], assigning a 
characteristical number to every node point of a triangular mesh 
as a regional shape descriptor. The STI combines both canonical 
curvatures in a single scalar value as the continuous transition 
between five characteristical shape types (bag, cleft, saddle, ridge, 
knob), as depicted in Figure 1.  

 
Figure 1: Characteristical shapes from combination of canonical 

curvatures. 
 
With CC1 > CC2 the STI can be calculated as follows: 
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STI =  (CC1–CC2) / CC1   bag to cleft 
if (CC1>0  and  CC2>0) 

 
STI =  1 + 1– (CC1+CC2) / CC1  cleft to saddle 

if  (CC1>0  and  CC2≤0 
           and  |CC1| > |CC2| ) 

 
STI = 2 + (CC1+CC2) / CC2  saddle to ridge 
   if  (CC1>0  and  CC2≤0 
          and  |CC1| ≤ |CC2| ) 
 
STI =  3 + 1– (CC2-CC1) / CC2  ridge to knob 
   if  (CC1≤ 0  and  CC2<0) 
 
STI =  –1    plane  
   if  (CC1 =  CC2 = 0) 
 
 
The STI (except for the special case of a plane) varies 
continuously from 0 to 4: 
 
0≤ STI ≤4 
 
Duncan and Olson [4],[5] have defined a similar – but analytically 
continuous – Shape Index s with : 
 

s 2 arctan CC1 CC2
CC1 CC2  

 
where –1 ≤ s ≤ +1 
 
It has been shown [10] that s and STI, when mapped on a surface 
as colour code, lead to virtually identical results. 
 
In addition, the Curvedness R of a surface can be calculated as 
well from the canonical curvatures [4],[5]: 
 

R 1
2

CC12 CC22

 
 

2.2 Topography descriptor based on surface 
embeddedness 
In our daily experience there is another, very simple and equally 
intuitive, representation of shape in terms of topography of a 
landscape. Positive or negative elevation with regard to a 
reference level is quantified and can be represented by a colour 
code on a topographical map. Although landscape topography is 
usually considered as planar-based, it is in fact related to a 
globular 3D object, the earth. Analogously to this globe, the local 
variation of topography of any 3D geometry can be understood as 
elevation or embeddedness of a surface region with regard to the 
interior enclosed by the surface of the object. 
A simple method to define such an “embeddedness potential” 
comes from molecular surface visualization. 

2.2.1 Molecular Surfaces 
Molecules are aggregates of atoms, held together by several 
interatomic forces. Although, strictly speaking from the quantum 
physical view, molecules do not really have a surface in the 

macroscopic sense, they often behave as if they did. This 
empirical observation can be explained and (approximately) 
quantified by the Lennard-Jones (12,6) Potential that defines the 
van der Waals radii of atoms [11]. On this basis, Connolly defined 
solvent accessible molecular surfaces by rolling a probe sphere 
over the van der Waals surface of molecules [12]. Molecular 
surfaces can then be represented as triangular meshes [13],[14]. 

2.2.2 Surface Embeddedness Potential 
When looking for a pseudo-potential adequately describing local 
lipophilicity on molecular surfaces, it was found that earlier 
lipophilicity potentials considering distance-dependent atomic 
contributions suffered from massive influence of topography [15]. 
Depriving these potentials from the lipophilicity part lead to a 
distance dependency of 1/(1+di) with di being the distance of 
atom i from the surface node for which the potential shall be 
calculated. Replacing 1/(1+di) by 1/(1+di

2) leads to a sharper cut 
between the contribution of closer and farther located atoms. The 
resulting Surface Embeddedness Potential (SEP) for the surface of 
a molecule built of N atoms is defined as follows:  

SEP
i 1

N 1
1 d i

2
 

 
The SEP is shown in Figure 2.  

 
Figure 2: Surface embeddedness potential functions. 

 
Figure 3 illustrates what the SEP really means in terms of topo-
graphy. The potential value increases with the number of atoms in 
close distance to the regarded surface point, thus giving an 
impression of how close a point on a polygon mesh is to the bulky 
interior of the enclosed volume.  
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Figure 3: Surface embeddedness. The internal space of the object 

is filled with atoms (large circles). Surface points (small 
numbered circles) are increasedly embedded from A to D, 

according to the number and distance of nearby atoms: 
f(A) < f(B) < f(C) < f(D) 

 

2.2.3 Generalizing 3D Surface Topography 
Since the SEP has been defined for molecular surfaces, it carries 
some inherent features that don’t apply to all surfaces in general. 
First, the scale of molecules is always identical. Therefore it 
makes sense to calculate an absolute embeddedness value that can 
be compared to that of other molecules, even if they differ 
considerably in size. For a general embeddedness representation 
of surfaces of arbitrary scale the SEP should be normalized: 

SEPn
i 1

N 1
1 di

2

N  
Second, the SEP is defined by a distance-dependent contribution 
of atoms which are always in defined spatial relationship to 
molecular surfaces but not to macroscopic geometries. However, 
polygon meshes resembling molecular surfaces can be generated 
by blobby-type models, where the blob centers replace the atom 
coordinates [16]. Unfortunately, in this case we would again face 
the problem of finding an implicit function for the surface which 
could reconstruct the blob centers.  
A less accurate but much simpler solution may be found by filling 
the interior of the object with a regular grid of artificial pseudo-
atoms. Close to the surface, however, in this case the results will 
not be clearly defined, as there is no general surface-related for 
positioning the grid. This effect should be reduced with an 
increasing number of grid points. 
Another approach is to use the surface polygons themselves 
instead of atoms, scaled with their area as some kind of “mass” 
measure: 

SEP ' n
i 1

N 1
1 ai d i

2

i 1

N

ai
 

with ai = area of polygon i and di = distance to (reference point 
of) polygon i. In this case the resulting value would, however, 
represent depth or height as an absolute value rather than 
embeddedness or elevation, since the contribution of bulk surface 
polygons of a large object to embedded surface regions (where 
the distance of most of these polygons might well be beyond the 
cutoff) would often be negligible. Still, together with a shape 
descriptor (like STI or Shape index s) that gives information of 
the direction related to the reference surface, also the SEP’n value 
could help to better distinguish the shape of different surface 
regions.  
Overall the SEP may not be ideal for quantitative comparison of 
surfaces, but it is well suited for segmentation of a surface by 
means of topography. 

3. FUZZY SURFACE SEGMENTATION 

When analyzing molecular surfaces one usually looks for 
locations of intermolecular interaction. The lock-and-key model 
postulates that (together with physical properties) local shape 
complementarity is a prerequisite for interaction, in particular 
regarding the initial contact referred to as docking. There are 
several approaches to molecular docking simulations based on 
shape descriptors [3],[17]. As an initial step to modular docking 
simulation surfaces can be segmented into domains by means of 
local surface potentials including shape. As a flexible method for 
this segmentation a region growth algorithm based on the 
dissimilarity of linguistic variables has been introduced [3]. Based 
on this method docking simulations could be successfully 
conducted [17].  

3.1 Fuzzy Set Theory 
The theory of fuzzy sets [18],[19] can be regarded as a 
generalization of the classical set theory, with each element of a 
fuzzy set Ã consisting of a pair of values, where each value of a 
basic variable x (comparable to an element of a classical – „crisp“ 
– set) in the definition area X is assigned a membership function 
value µÃ(x) that gives the grade of membership of that element  to 
the set Ã:  
 

( )( ){ }~ , ~A x x x XA= ∈µ  |   with  (usually):  ( )0 1≤ ≤µ ~A x  

 

3.2 Linguistic Variables 
A core feature of fuzzy logic is the use of Linguistic Variables 
(LV) [20] instead of the crisp variables of classical mathematics. 
These are groups of fuzzy sets with more or less overlapping 
membership functions (usually – but not necessarily) over an 
identical basic variable. The fuzzy sets of a LV are semantically 
related and can be interpreted as classes or categories within the 
LV. A linguistic variable L with n classifying fuzzy sets Ã can 
generally be defined as follows: 
 

{ }L A An= ~ , ... , ~
1    or 

 ( )( ) ( )( ){ }L x x x xA A= , , ... , ,~ ~µ µ  
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After numerical values have been transformed to linguistic 
variables (fuzzification), rules defined in a fuzzy way can easily 
be applied. This is usually done by combination of different 
linguistic variables with various operators which produce new 
linguistic variables from old ones. However, for segmentation of 
molecular surfaces we chose another method by calculating the 
dissimilarity of two linguistic variables. 
 

3.3 Fuzzy Dissimilarity 
Similarity and dissimilarity play a crucial role in pattern 
recognition. The terms themselves are inherently fuzzy. The 
dissimilarity DLV of two linguistic variables A, B of identical type 
has been defined as follows [8]: 

( )
( ) ( )

( ) ( )( )
D A B

w x x

w x x
LV

i A Bi
n

ii
n

A B

i i

i i

,
~ ~

~ ~
=

−

+

=

=

∑

∑

µ µ

µ µ

1

1

 

with 

  A x , Ã1
x , ... x , Ãn

x  
B x , B

1
x , ... x , Bn

x  
0 Ã , B 1  

 0 ≤ wi  ≤ 1 
 wi = weighting factor for category i  
 n = number of categories in A, B  

where 

 0 ≤ DLV(A,B) ≤ 1 
Weighting factors allow for fine-tuning of the dissimilarity 
function based on the importance of different categories for the 
overall comparison. 
The similarity SLV of these linguistic variables can easily be 
drived from DLV: 
SLV =  1 – DLV  
 

3.4 Surface Segmentation 
Segementation of a surface based on linguistic variables can be 
performed with a region growth method where domains are 
started at a prominent node point, growing along the polygon 
mesh until the dissimilarity between the regarded LV at the next 
node and the average LV of the domain so far exceeds a given 
limit or until the border of an already defined domain is reached 
[8].  
Before segmentation can be performed, fuzzification is required, 
i.e. the transformation of a scalar into a linguistic variable. Since 
STI is defined by continuous deformation over 5 characteristic 
shapes (plus the special case of a plane), fuzzification as depicted 
in Figure 4 seems reasonable. For SEP a more simple 
fuzzification is sufficient (see Figure 5). 

1

0
STI0 1 2 3 4

bag cleft saddle ridge knobµ~(STI)

µ~(STI)
1

0
0

max (|CC1|,|CC2|)
∆

plane

 
Figure 4: STI fuzzification. 5 categories are derived directly from 
STI, the 6th (plane) from the maximum absolute of both canonical 

curvatures (CC1, CC2). 
 

µ~(SEP)
1

0 0 SEP

embedded

mmin mmax
 

Figure 5: SEP fuzzification.  
 
Fuzzy segmentation is tolerant towards sub-optimal choice of the 
starting point (see Figure 6), which makes it very well suited for 
the segmentation of complex surfaces. 
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Figure 6: Fuzzy segmentation of a complex surface by a LV 

representation of STI. Starting a domain at an elevation top (a) 
leads to almost identical results als starting at any point within the 

domain (b). Only a starting point close to the domain edge (c) 
results in considerably different segmentation. 

 

4. EXAMPLE 

For a better understanding of the procedure a schematical 
example shall illustrate what happens to a simple polygon surface 
in the shape analysis and segmentation process. 
Consider a sample polygon (triangle) surface (see fig. 7) 
consisting of a somehow globular bulk, a protrusion with almost 
circular cross-section (a), an equally circular but less deep hole 
(b), and a long and deep cleft (c).  

 
Figure 7: Sample surface  

with protrusion (a), intrusion (b), and cleft (c). 
 

4.1 Curvature calculation 
In a first step two global canonical curvatures are calculated for 
every triangle node point of the surface by fitting two 
perpendicular paraboloids (with the tip at the respective surface 
node) to a region of pre-defined size according to the (shortest) 
distance from the node point following the mesh edges [2]. The 
pre-defined distance is a measure of globality for detecting 
curvatures on the surface. This procedure would generate a set of 
two values for each node point. These two values would both be 
of similar size for regions (a) and (b), both with equal negative or 
positive sign, respectively. In region (c) the curvature calculation 
would yield two positive (i.e. concave) values of different size for 
the long and cross section of the cleft. 

4.2 STI calculation 
Once the regional canonical curvatures are known for each node, 
the STI can be calculated (see 2.1). At the tip of region (a) the 
value would be close to 4 (“knob”), at the tip of region (b) close 
to 0 (“bag”), along the inner line of region (c) close to 1 (“cleft”), 
and on the bulky rest somewhere between 3 and 4 (“ridge” to 
“knob”) because of the global convex shape of the sample object. 
Between the extreme positions the STI would vary continuously 
with the changing relationship of the canonical curvatures to each 
other. 

4.3 SEP calculation 
As an alternative shape definition to STI or as a supplement 
which yields information about depth relative to the global object 
bulk, the SEP (see 2.2.2) can be calculated if “pseudo-atom” 
objects are placed within the sample surface (see fig. 8). 

 
Figure 8: Sample surface (transparent) 

with a pseudo-atom grid inside. 
 
The SEP value of each surface node depends on the number and 
vicinity of nearby “atoms”. High SEP values are achieved if many 
atoms are close (which is the case for the tip of region (b) – the 
“bag” – and deep inside region (c) – the “cleft”). Low SEP values 
stand for regions far extruded from the surface bulk, e.g. the tip of 
region (a) – the “knob”. The highest values would be found at the 
low edges of region (c) as they are enclosed at three sides and 
deeper engraved in the bulk than the “bag” region (b). 
 

4.4 Fuzzy segmentation 
Segmentation of the polygon surface is possible based on either 
STI or SEP (or a combination of both). First, fuzzification of the 
basis variable(s) leads to a vector filled with scalar values 
(representing the membership function values of the according 
linguistic variable – LV) for every surface node.  
Segmentation starts at a node where the basis variable is extreme, 
e.g. at the tip of the “nob” region (a). The LV of this node 
(currently representing the segment) is then compared to the LV 
of its nearest neighbor node which is not yet assigned to a 
segment, using the Dissimilarity function given in 3.3. As long as 
the dissimilarity value does not exceed a given limit, the new 
node is added to the current segment and a new average segment 
LV is calculated before continuing with the nearest neighbor of 
this new node. Else the region growth stops here, going back to 
the last segment node which still has free neighbors. A sgement is 
finished when no new nodes can be added either because all node 
neighbors are already assigned to a segment (including the current 
one) or excluded because of dissimilarity. Then the procedure 
starts anew with an extreme surface node not yet assigned to any 
segment, until no free node is left. 
In case of our sample surface fuzzy segmentation by STI would 
lead to a set of surfaces like shown in fig. 9. 
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Figure 9: Sample surface segmented by shape with segments: (a) 

nob, (b) bag, (c) cleft plus the (darker) bulky rest. 
 

5. APPLICATIONS 

The method (or rather: combination of methods) can be used to 
help find significant differences in the shape of similar complex 
surfaces, when these differences are expected to be important 
though they are far from being obvious. Examples can be seen in 
fig. 10-11. 
Figure 10 shows the result of a segmentation of the surfaces of 
three digestive proteins by SEP, where the specificity pocket of 
each protein was extracted automatically, obviously showing their 
different shape which is responsible for variations in specificity of 
these closely related enzymes (catalytic proteins). 

 
Figure 10: Specificity pockets of three digestive enzymes, 
extracted automatically from the protein surfaces by fuzzy 

segmentation via SEP. 
 
Figure 11 shows the surfaces of two proteins, the digestically 
active trypsin and its inactive predecessor trypsinogen. Both 
surfaces are not obviously different. Yet when comparing only the 
concave segments it can be easily seen that there is only one 
significant difference (which is in fact responsible for the 
activation of the enzyme). The figure illustrates the ability of the 
described procedure to identify similarly shaped regions of 
different complex surfaces.  
Parts of the features described here are integrated in the molecular 
modeling and visualization software MOLCAD [21]. 

 
Figure 11: Specificity pockets of the digestive enzyme trypsin 

(left) and its inactive predecessor trypsinogen (right). 
Segmentation by STI yields a convex bulk (a) and a number of 
practically identical concave domains (b) plus one significantly 

different concave domain (c). A single additional apparently 
different convex domain is obviously not significant but rather 

due to the different origin of the surface models together with the 
fuzzy segmentation procedure. 

 

6. CONCLUSION AND OUTLOOK  

Exner et al. combined Shape Index and Curvedness, together with 
physico-chemical parameters in fuzzy docking simulations [17]. 
In molecular classification (e.g. for categorization of 
pharmaceutical compounds) a similar approach could prove 
helpful, integrating STI and SEP in a linguistic variable that may 
contain categories like “deep cleft” or “rather flat nob”.  
It has been shown that STI (or Shape Index) and SEP give a 
consistent representation of shape and topography of polygon 
surfaces, respectively. Although there is much redundancy, both 
values contain information not present in each other. SEP, for 
example, gives an impression of the depth of a particular shape 
element (e.g. a bag-type domain). 

A combined fuzzy representation of generic surface shape 
descriptors may also open the door to other applications like  
automatic shape feature recognition of 3D objects.  
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