
Robin Hood’s Algorithm for Time-Critical Level of Detail

Eduardo Herńandez∗* and Beďrich Beněs†

Department of Computer Science
ITESM CCM, Mexico City, Mexico

Abstract

We describe a novel method for time-critical rendering of complex
scenes populated by numerous distinct objects having an intricate
geometry. During the preprocessing step the time consumed by
logic and rendering processes is measured. For each frame we es-
timate the rendering time and distribute it between each potentially
visible object which chooses its best representation within the time
restrictions. Finally we take advantage of the unused time to im-
prove the rendering process of the remaining objects. This method
adjusts image quality adaptively and aims to maintain a constant
bounded frame rate even for scenes which complexity may change
drastically between frames. In contrast to previous solutions our
algorithm can be used in combination with discrete and continuous
LOD techniques and it does not impose limitations on the scene
conditions. We demonstrate the benefits of our method in a virtual
ecosystem composed by trees.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality, Animation; I.3.4 [Computer
Graphics]: Picture/Image Generation—Display algorithms.

Keywords: time critical, constant time, level of detail

1 Introduction

One of the most important goals of real-time 3D programming is
to provide interactivity with the virtual world. To gain credibility,
these virtual worlds are usually made of a large number of complex
objects, the scenes simply cannot be displayed in the desired frame-
rate because the bus bandwidth is incapable of transferring such
huge amounts of data, and at the same time the GPU is unable to
process it. Both the interactivity and credibility of real-time 3D
programs depend on acceptable frame-rates to preserve the illusion
of real-time exploration of the virtual world.

A suggested approach to solve this problem has been the use of
level of detail (LOD). We do not have enough space to make an
overview of existing techniques, we refer the reader to relevant liter-
ature on the topic [Luebke et al. 2002]. These techniques are highly
valuable because they allow us to increase the speed of rendering
or significantly save the used memory to display the entire environ-
ment. However it is important to note that most of these techniques
focus on the quality of display and do not solve the problem, in
other words they do not offer a constant bounded frame-rate but
only shifts the problem to a larger scale.

∗e-mail: A00716539@itesm.mx
†e-mail: bedrich.benes@itesm.mx

Another group of techniques is called time-critical level of detail
(TCLOD). These techniques adjust the image quality adaptively to
maintain a uniform, user-specified target frame rate. Funkhouser
and Śequin formulated a solution for the TCLOD [Funkhouser and
Séquin 1993] in terms of a problem called “multiple choice knap-
sack problem” (MCKP) [Armstrong et al. 1983], which belongs to
the NP-hard category. From this solution there have been many
other proposals trying to find closer results to the optimum for this
NP-hard problem but most of them impose some type of restriction
or limit their applicability to certain types of scenes.

Instead of trying to adjust the time budget to the available repre-
sentations of each object in the scene using the MCKP, our method
adjusts the representation of each object to its allocated time which
is proportional to the visual importance of the object in the result-
ing image. Therefore our method does not try to solve the NP-hard
problem and turns the focus to adjust objects representations which
is a field that has been broadly researched in CG with techniques
like LOD. The algorithm presented in this paper overcomes many
restrictions encountered in the current approaches and improves in
the following areas:

• It ensures that each potentially visible object receives time for
its rendering. The object is rendered if this time is at least big
enough for its simplest acceptable representation.

• It does not impose restriction on the type of scene. It can
be used in outdoor or indoor environments, with static or dy-
namic objects.

• Its predictive ability makes it useful in any environment re-
gardless of its amount of coherence, which refers to the vari-
ation in the scene’s complexity from frame to frame.

• It is fast and does not require iterative optimizations.

• It can be combined with existing acceleration techniques such
as LOD or visibility determination [Teller and Séquin 1991].

• It takes into account the time consumed not only by rendering,
but also by logic processes, such as simulations, CPU delays,
AI, etc.

Our testing application is a virtual ecosystem. Most of the current
solutions show numeric results from scenes composed by only one
type of objects. We opt to present results from scenes composed by
different types of trees with different degrees of complexity.

2 Previous Work

2.1 Time-Critical Rendering

A first approach was feedback algorithms that adjust LOD selection
based on the time required to render previous frames [Schachter
1983]. However these algorithms are inappropriate for discontinu-
ous environments. In contrast, [Funkhouser and Séquin 1993] pro-
posed a predictive algorithm that estimates the time required to ren-
der the current frame. Their approach is formulated in terms of the

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

MCKP and approximates the optimum solution with a greedy algo-
rithm. Unfortunately their result only guarantees to be half as good
as the optimum solution and there is the risk that low valued visible
objects may not be displayed.

[Maciel and Shirley 1995] used a single hierarchy of impostors that
ensures that each visible object is displayed in each frame. This
method is only appropriate for outdoor environments with static
objects and it can exhaust the texture memory if the hierarchy is
big.

[Mason and Blake 1997] proposed a hybrid method of [Funkhouser
and Śequin 1993] and [Maciel and Shirley 1995]. LOD is orga-
nized in a hierarchal order in which nodes represent impostors of
one or more objects in the scene. For each frame a top down
greedy algorithm traverses the hierarchy and finds the set of nodes
that represents the visible portion of the scene. However, like
with [Funkhouser and Śequin 1993] this solution guarantees to be
only half as good as the optimum solution and like [Maciel and
Shirley 1995] is useless in scenes with moving objects.

[Wimmer and Schmalstieg 1998] used Lagrange multipliers and de-
scribed a non iterative solution for cases where the maximum trian-
gles count of each object in the scene is at least equal to the max-
imum triangles that can be rendered with the time budget, other
cases may require iterations. However this solution assumes all
triangles have the same cost without considering rendering config-
uration or projected area.

In the case of continuous LOD, discrete variables from the MCKP
can be replaced by continuous ones. [Gobbetti and Bouvier 1999]
proposed a solution that transforms the original problem into an
unconstrained problem which can be solved with iterative optimiza-
tions until it produces a result with an acceptable error, otherwise
the optimization time is consumed and the last result is used. This
method offers several advantages over previous techniques but the
optimization can be expensive when the scene has multiple objects
and the time budget is tight.

[Zach et al. 2002] combined the discrete LOD hierarchy of [Mason
and Blake 1997] with gradient ascent methods that points a search
direction for selecting continuous LOD. This method also uses it-
erative optimizations until the entire time budget is distributed be-
tween the visible objects or the optimization time is exhausted.

2.2 LOD for Trees and Plants

[Marshall et al. 1997] used hierarchical tetrahedron impostors for
virtual plant ecosystems simplification. The hierarchical scene rep-
resentation is traversed and, if the cluster is sufficiently far, the cor-
responding impostor or impostors are displayed.

[Deussen et al. 1998] faced out-of-core rendering of huge plant
ecosystems. They used instancing and clustering of plants. Each
cluster has a single representative when rendered. This does not
increase the speed of rendering but it significantly saves the used
memory allowing to display the entire ecosystem.

[Stamminger and Drettakis 2001] described a point-based model-
ing and rendering technique. Choosing the appropriate point den-
sity they are able to produce several view dependent LODs and to
reduce the complexity of trees.

[Deussen et al. 2002] extended the point-based rendering to point-
based and line-based rendering. Plant foliage is simplified by dif-
ferent LODs, starting with the exact representation and simplifying
to more and more coarse point representation. Branches are simpli-
fied from the generalized cylinders to poly-lines in the same way.

An automatic LOD generation for an individual plant was described
by [Lluch et al. 2003]. Formal plant representation by means of the
Lindenmayer’s systems is enriched by multi-resolution information
that allows extraction of different LODs.

3 Overview of our Approach

The idea behind the algorithm is to adjust the image quality adap-
tively to maintain a constant desired frame rate. Two benchmarks
take place during a preprocessing step: a) the first one measures the
time consumed by the rendering of different primitives in various
configurations; and b) the second one measures the time consumed
by the logic of the program.

The scene is composed by several instances which belong to differ-
ent types of objects. When the scene is loaded, all types of objects
are ordered according to their degree of complexity from simple-
to-complex.

For each frame we determine all the potentially visible instances.
A first cycle traverses each visible instance which receives a value
based on its projected area and importance factor. When the first
cycle is done we obtain the total value of the frame which is the sum
of all the visible instances values. At this time it is also possible to
estimate the time consumed by the logic of the program. Using the
estimated time for the logic and the target time for the frame we
compute the total time for the rendering.

A second cycle traverses all the potentially visible instances in the
preprocessed simple-to-complex order. Each instance receives a
rendering time proportional to its value, both the value and the time
of the instance are subtracted form the total value of the frame and
the total time for the rendering respectively. The instance searches
the best representation that can be displayed within the received
time. Any remaining time is added to the total time for the render-
ing thus following instances take advantage of it.

4 Benchmarks

4.1 Rendering

The rendering benchmark takes place during a preprocessing step
and measures thetime(P,A,R) consumed by the rendering of each
primitive, denoted byP, projecting an areaA and using a rendering
configurationR. To measure each tuple we displayn numbers of
primitives and the resulting time is calculated as the average time.

For each primitiveP in a certain rendering configurationR we take
several samples changing the projected areaA in constant inter-
vals. In contrast with other type of benchmarks like those presented
in [Funkhouser and Śequin 1993] and [Gobbetti and Bouvier 1999]
we opt to use this kind of benchmark because several test showed
that the change of the projected area affects the rendering time in a
non-linear way.

4.2 Logic

The logic benchmark takes place during a preprocessing step and
measures the required time by those processes distinct to the ren-
dering. In contrast to the rendering benchmark the measures are
done over the same scene used in the interactive application. This
benchmark modifies the camera position and orientation to measure

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

those cases when the frustum encloses the maximum and minimum
number of visible instances and it also takes samples changing the
number of visible instances in constant intervals. Those samples
include the time required for visibility determination, searching of
the proper representation of each visible instance and computations
related to the time-critical like value assignation, time estimation
and time distribution.

This benchmark also includes some constant rendering tasks which
are the initial setup, buffer clearing and swapping, and the setup
time for each visible instance (rendering configuration, position,
orientation and scale). Other types of processes (physics simula-
tion, character movement, AI, etc.) that may affect the time con-
sumed by the frame generation should be also included in this
benchmark.

5 Robin Hood’s Algorithm for TCLOD

In this section we present the main idea of this paper. Robin Hood’s
algorithm for TCLOD distributes the rendering time between all the
visible instances and its name comes from its objective:Take the re-
mainder from those instances that received resources in excess and
distribute it among the poor ones. This algorithm has two stages:
initialization and display.

5.1 Initialization Stage

It takes place just after the scene is loaded into the memory. It is
described by the following tasks:

• Find the complexity of each type of object in the scene.

• Organize the types of objects based on their complexity in a
simple-to-complex order.

Thecomplexity(O) heuristic is equal to thetime(O, l0,A) required
by the rendering of a type of objectO using its best representation
l0 and projecting an areaA. The area projected by each type of
object can vary since each of its instances has a different position
and scale, for this reasonA is a constant during this stage and we
assume that all types of objects project the same area.

Each type of object has its representations ordered in a setL =
{l0, l1, . . . , ln−1} where l0 is the best representation without LOD
and ln−1 is the simplest acceptable representation. The time re-
quired by the representations decreases monotonically as their LOD
increases. Each representation has its own rendering configura-
tion. Time is estimated from the number of primitives composing
l0, their rendering configuration, and the hypothetical areaA using
the data form the rendering benchmark. Once we have computed
the complexity of each type of object we organize them in a simple-
to-complex order.

5.2 Display Stage

It takes place each time the interactive application generates a new
frame and it is described by the following algorithm:

1 Allocate a value to each visible instance.
2 Compute the total value of the frame.
3 Estimate the total time for the logic.
4 Estimate the total time for the rendering.

5
Traverse the visible instances in simple-to-
complex order.

6 For each visible instance:

7
Allocate a rendering time proportional to
its value.

8
Subtract the value of the instance from the
total value of the frame.

9
Subtract the time of the instance from the
total time for rendering.

10
Select the best LOD within the allocated
time.

11
Add the remaining time if any to the total
time for rendering.

The algorithm traverses the visible instances during two cycles. The
first cycle (step 1) allocates a valuevi to each of the visible instances
by processing the area projected by the instance with a value func-
tion described in section 5.4. When the first cycle is finished we can
compute the total value of the framevf by accumulating the value
of then visible instances using equation 1.

vf =
n−1

∑
i=0

vi (1)

The first cycle is also used to estimate the total time required by the
logic tl using the data from the benchmark of logic. The benchmark
takes those processes which are different to the rendering required
by each instance and the number of visible instances as parameters
and returns the estimated value fortl . Usingtl and the target time
t f that the frame should spend, we estimate the total time for the
renderingtr , this estimation is described in section 5.3.

The second cycle starts in step 5, in this case instances are tra-
versed based on the complexity of their object type in the simple-
to-complex order. The rendering time allocated to each instanceti
can be computed with the equation 2.

ti =
vi ∗ tr

vf
(2)

Finally we subtract the allocated resources from the total values in
the way described by equations 3 and 4.

t ′r = tr − ti (3)

v′f = vf −vi (4)

The values oft ′r andv′f are always positive and they reach zero after
resources have been allocated to the last visible instance. The in-
stance selects one representation which rendering time does not sur-
passti and minimizes the remaining time, this pre-ordered selection
is O(logn) but can use the coherence between successive frames to
reduce the number of iterations. The rendering time of each repre-
sentation is estimated considering the actual projected area by the
instance, the rendering configuration and number of primitives in
the representation. Any remaining time is added tot ′r and therefore
can be useful for the following instances.

The second cycle starts with instances from the simplest objects be-
cause the algorithm tries to make use of the remaining time of each

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

instance. The probability that instances from simple objects pro-
duce remaining time is greater than for complex objects. Instances
from complex objects usually require more time to obtain a good
appearance. The purpose of this algorithm is exemplified by two
extreme cases:

1) Simple objects project an area bigger than the one projected by
complex objects. Instances from simple objects receive a big value
and rendering time, since they are simple they will probably choose
representationl0 and will generate a big amount of remaining time
which will be used by instances from complex objects.

2) Complex objects project an area bigger than the one projected
by simple objects. Instances from simple objects receive a small
value and rendering time; probably they will have to use some kind
of LOD and will generate a small or null remaining time. Instances
from complex objects receive a big value and rendering time, since
they are complex they will use most of their rendering time and
minimize the remaining time.

5.3 Estimation of Rendering Time

Today’s computers have a hardware configuration in which the CPU
and the GPU carry out the requested tasks in parallel. Most logic
processes are done by the CPU while rendering ones are done by
the GPU, during several test we observed the following behavior:
a) when the time required by one type of process (tl or tr) is much
more bigger than the other, the total time of the framet f is equal to
the biggest time; and b) when both times are equal,t f is approxi-
mately 2

3(tl + tr) with certain variations depending on the machine.

To simulate this behavior we formulate the following equations.
The variable` in equation 5 can be thought as the percent oft f
occupied bytl . Our method restricts the minimum value oft f to be
tl , for this reason the maximum value of` is 1. The square mini-
mizes the result when the percent is close to zero, when the percents
are close to 1 it has less effect. The variableρ in equation 6 is the
percent oft f occupied bytr . Finally tr is estimated using equation 7
whereC is a constant coefficient for a certain machine andρ is also
squared to reduce its value when it is smaller than 1.

` =
(

tl
t f

)2

(5)

ρ = 1− ` (6)

tr =
ρ2t f

C
(7)

These equations are particularly useful for imposing tight restric-
tions to the target timet f . Most available solutions ignore the time
consumed by the logic and avoid results with tight time restrictions
or tests in single-processor computers.

5.4 Value Function, Remaining Time and Impor-
tance

The value function allocates a value to each visible instance. This
function is flexible and can be changed depending on the applica-
tion’s objective. Equations 8, 9 and 10 are functions for computing
the valuevi wherezi is the depth from the camera to the instance,ai
is the un-projected area of the instance andI is the importance fac-
tor for the type of object to which the instance belongs. The impact
that these functions have over the scene is exemplified by figure 1

using the implementation of time-critical without LOD from sec-
tion 7.1. Images in the upper row show a top view of the scene,
although the target timet f is the same for the three images, the
resources distribution is different. Note how this distribution also
affects the final image in the middle row.

vi =
ai√
zi

I (8)

vi =
ai

zi
I (9)

vi =
ai

z2
i

I (10)

Functions 8, 9 and 10 assign more value to instances closer to the
camera but the difference between the value of closer and distant
instances is bigger in function 10 than in function 8. In practice,
function 8 distributes the resources very well and minimizes the re-
maining unused time, it can be useful for application where distant
objects are visually important (golf, shooting, etc.). On the other
hand, function 10 assures high quality to close objects even when
the distant objects are visually affected. Function 10 generates big
amounts of remaining time, examples of this situation and possible
solutions are described in section 7.2.

The importance factor adjusts the value to agree with certain con-
text restrictions or geometry characteristics. For example, our test-
ing application uses an important factor to reduce the value of
leaves for two reasons: a) leaves are visually less important than
the trunk to recognize the object as a tree; and b) leaves in the front
usually cover leaves located behind them, this occlusion reduces the
covered screen area.

6 Level of Detail

The technique described in this section is an extension of the work
presented by [Deussen et al. 2002]. We use points and lines to sim-
plify the leaves and the trunk respectively. For each element of the
tree, leaves and trunk, there is a preprocessing step and a render-
ing step. We provide a continuous, non-recursive, view dependent
LOD and our algorithm improves the previously published methods
in the following aspects:

• Different line widths can be used simultaneously.

• Preprocessing steps are done automatically based on the trunk
hierarchy. This provides an automatic partition of the tree and
generation of bounding volumes.

• Each part of the tree has its own transition resulting into a
global smooth transition.

6.1 Trunk

During a preprocessing step the trunk is treated as a hierarchy of
generalized cylinders. For each cylinder we identify its triangles
and the centers of its two circumferences. We assume thediameter
of the cylinderto be the largest diameter of its two circumferences.
Cylinders are organized based on their diameter length in ascending
order. Their diameters, centers of their two circumferences and tri-
angles indices are stored in parallel arrays. The number of triangles
that compose each cylinder must be the same for all cylinders in the
hierarchy.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

vi = ai√
zi

I vi = ai
zi

I vi = ai
z2i

I

Figure 1: Impact of the different value functionsvi on the scene.

In the rendering step we define a range of available lines widths
[wmin,wmax]. The rendering starts traversing lines widths in thin-to-
thick order. For each cylinder we compute its projected diameter,
if this value is in the range(1

2wi ,
3
2wi) wherewi is the actual line

width, it is possible to render the cylinder as a line joining the cen-
ters of its two circumferences, in other case we try with the next line
width. The rendering using lines finish when: a) all cylinders were
rendered; or b) when we found a cylinder which projected diameter
is bigger than3

2wmax, this is also true for the rest of the cylinders
because they were organized in thin-to-thick order. In case (b) the
remaining cylinders are drawn using triangles, since diameters, cen-
ters and triangles indices were stored in parallel arrays it is easy to
find the first triangle to render.

6.2 Leaves

In a preprocessing step groups of leaves are formed based on their
distances to the terminal cylinders which are the ones that are far-
thest from the root cylinder. Each group organizes its leaves ac-
cording to the distance of each leaf to the center of the group in a
close-to-far order. We compute the center of each triangle forming
the leaves. Triangles indices and centers are stored in arrays parallel
to the leaves order inside the groups.

During the rendering step we define the point size. The projected
area of each group of leaves is approximated by using the average
area of its leaves divided by a constant factor. This factor represents
the angle between the normal vector of the leaves and the viewing
direction. The number of required points, denoted byp, is the area
projected by the group divided by the area projected by the point
size. If p is smaller than the number of leavesn we renderp points.
These points correspond to the centers of the leaves’ triangles far-
thest to the center of the group.

In other case, ifp≤ 2n we render 2n− p points corresponding to
the centers of the leaves’ triangles closest to the center of the group,
the rest of the leaves are rendered with triangles. This second case
enables a smooth transition between points and triangles. Note that
in the first case we use the farthest leaves because they preserve
the outline of the group while in the second case we use the clos-

est leaves because they are usually covered by the leaves rendered
with triangles. Both cases try to reduce the visual impact of the
transition. Finally ifp > 2n all leaves are rendered with triangles.

7 Results and Discussion

We present two versions of our testing application. The first one
implements time critical without using LOD, this simplification
clearly illustrates the effect of Robin Hood’s algorithm on the scene.
The second one implements TCLOD with the Robin Hood’s al-
gorithm. We tested a scene composed by 600 instances of trees.
There are three types of trees with different degree of complexity
as showed in table 1. The trunk and the leaves are considered to be
two independent objects. Visibility is determined with a hierarchy
of bounding boxes, which encloses the entire scene. Instances in-
side a box of the hierarchy which is partially visible require some
extra tests to cull visible parts of the tree. Figure 2 shows the cam-
era paths through the scene during the tests.

Linear path Zigzag path

Figure 2: Camera paths through the scene. The square represents
the scene dimensions, gray area represents the viewing frustum and
frame number has been written at key positions.

7.1 Time-Critical Test without LOD

In this implementation there is no LOD, each instance simply ren-
ders the maximum number of triangles allowed by its allocated time

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Tree Trunk 4 Leaves4
Type 1 620 480
Type 2 890 720
Type 3 1740 1800

Table 1: Number of triangles composing each part of the trees.

ti . Figures 3 and 4 show the results of linear and zigzag camera
paths respectively using equation 7 and value function 8. The time
consumed by each frame without restriction is represented with the
solid bold line. Stripped lines crossing the graph represent the target
time t f for each test. Finally solid thin lines show the real time con-
sumed by each frame during the test. Due to its predictive property
our method presents an acceptable behavior in all tests even when
the scene complexity changes drastically in frames 560 and 1120
from zigzag camera path.

 0.2

 0.1

 0.05

 0.025
 0.0125

 0 250 500 750 1000

Se
co

nd
s

Frames

without TC
tf = 0.0125sec

tf = 0.025sec
tf = 0.05sec

tf = 0.1sec
tf = 0.2sec

Figure 3: Time consumed by the frame during the linear camera
path in the time critical test without LOD.

 0.2

 0.1

 0.05

 0.025
 0.0125

 0 280 560 840 1120 1400

Se
co

nd
s

Frames

without TC
tf = 0.0125sec

tf = 0.025sec
tf = 0.05sec

tf = 0.1sec
tf = 0.2sec

Figure 4: Time consumed by the frame during the zigzag camera
path in the time critical test without LOD.

Table 2 shows the numeric results for these tests. Notice that the
mean time closely matches the target timet f and the average error
is less than 10% for all tests. Figure 5 shows the appearance of the
scene during the tests at the frame 500 of the linear camera path.
We also tested different scenes populated by 1000 and 2000 trees,

Path t f Mean StdDev AvgErr

Linear

0.0125 0.011791 0.000606 0.065083
0.025 0.023228 0.000830 0.073824
0.05 0.047253 0.001121 0.055051
0.1 0.097081 0.001478 0.029591
0.2 0.198541 0.001742 0.009370

Zigzag

0.0125 0.011606 0.000391 0.073498
0.025 0.023329 0.000545 0.067375
0.05 0.047577 0.001012 0.048548
0.1 0.097725 0.001561 0.024280
0.2 0.198201 0.001725 0.010892

Table 2: Numeric results of the time critical tests without LOD. An
average error equal to 1 means that the real time is 100% different
from the target time.

results were almost identical and in some cases better. Tests on
different machines produced similar results.

7.2 Time-Critical Test with LOD

Ranges of available line widths and point sizes for the LOD were
defined to be[1,20]. Each instance (trunk or leaves) verifies if its
allocated timeti is big enough to support the representationl0, if
the condition fails the instance replaces triangles by lines or points
starting with the smaller widths or sizes until it finds a represen-
tation that fulfills the time restriction. While increasing the line
width or point size produces a faster representation it also reduces
the visual quality. If no line width or point size produces a valid
representation, the fastest representation found is rendered in time-
critical mode, i.e., with some details missing.

Figure 6 shows the number of primitives rendered to meet a target
time constrain oft f = 0.04segduring the linear camera path. The
time consumed by the frame without restriction and using TCLOD
is presented in figure 7. Notice that the use of points and lines
is incremented when the complexity of scene increases around the
frame 500. Figure 8 compares the appearance of the scene at
frame 500 with TCLOD (top image) and without restriction (bot-
tom image). Although the use of LOD is evident, top image shows
complete trunks and leafy leaves projecting an area similar to the
one in the bottom image. For this test we used the value func-
tion 11 which substitutes depth by distance to increment the value
of objects appearing near the middle of the screen (focus). This
function produces a visual result similar to the one of function 10
but the square root reduces the remaining time.

vi =
√

ai

d2
i

I (11)

This test produces a mean time of 0.036754 sec, standard deviation
of 0.002260 and average error of 0.088692. Event though results
are pretty acceptable they are not as accurate as the ones presented
in section 7.1, some reasons are: a) the simultaneous use of differ-
ent primitives; b) the approximation of the trunk projected length;
and c) the assumption that the time required to search a proper rep-
resentation is constant. These reasons contribute to hinder the time
estimation but the main reason of the error increment is that func-
tion 11 allocates big amount of time to instances closer to the cam-
era which sometimes produces a big remaining of time, if these
instances belong to a complex type of object Robin Hood’s algo-
rithm is unable to completely consume the remaining time with the
following instances if any. These cases can be easily detected by
comparing the time required byl0 with ti , sinceti is proportional

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 5: Snapshots of the frame 500 at different target times. The linear camera path and the time critical test without LOD were used.

 0

 40000

 80000

 120000

 160000

 0 250 500 750 1000

Pr
im

iti
ve

s

Frames

Triangles
Lines

Points

Figure 6: Rendered primitives during the linear camera path using
TCLOD implementation with a target timet f = 0.04sec.

to the visual importance of the instance a proper solution is to re-
duce the remaining time up to a value by improving the quality of
the instance with techniques such as tessellation [Turk 1992], anti-
aliasing, shadows, etc. This solution not only provides a more sta-
ble frame-rate but also improves the image quality. In conclusion
the algorithm can offer better results when combined with tech-
niques that diminish objects quality and techniques that improve it.

8 Conclusion and Future Work

We have described a method for time-critical rendering of complex
scenes populated by numerous distinct objects having a complex
geometry. We measured the time consumed by logic and render-
ing processes and for each frame we estimated the rendering time
and distribute it between each potentially visible object choosing
its best representation within the time restrictions. Finally we took
advantage of the unused time to improve the rendering process of
the remaining objects. Our test proved the ability of the method

 0.04

 0 250 500 750 1000

Se
co

nd
s

Frames

without TC
tf = 0.04sec

Figure 7: Time consumed by the frame during the linear camera
path using TCLOD implementation with a target timet f = 0.04sec.

to adjusts image quality adaptively and maintain a fairly constant
bounded frame rate. In contrast to the current solutions our algo-
rithm is not restricted to one type of LOD technique or to specific
scene conditions. We also described an extension of a current LOD
technique for trees.

Future research will include better techniques to estimate times and
projected areas. Also mechanisms to improve and diminish the vi-
sual quality of objects in complex environments including physics
simulations, character movement, AI, etc.

Acknowledgments

I would like to thank to my sister Andrea Hernández for proof read-
ing the paper.

References

ARMSTRONG, R. D., KUNG, D. S., SINHA , P.,AND ZOLTNERS,
A. A. 1983. A computational study of a multiple-choice knap-
sack algorithm.ACM Trans. Math. Softw. 9, 2, 184–198.

DEUSSEN, O., HANRAHAN , P., LINTERMANN , B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic mod-
eling and rendering of plant ecosystems. InProceedings of the

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 8: Snapshots of the scene using TCLOD and without TC.

25th annual conference on Computer graphics and interactive
techniques, ACM Press, 275–286.

DEUSSEN, O., COLDITZ , C., STAMMINGER , M., AND DRET-
TAKIS , G. 2002. Interactive visualization of complex plant
ecosystems. InProceedings of the conference on Visualization
’02, IEEE Computer Society, 219–226.

FUNKHOUSER, T. A., AND SÉQUIN, C. H. 1993. Adaptive dis-
play algorithm for interactive frame rates during visualization
of complex virtual environments. InProceedings of the 20th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 247–254.

GOBBETTI, E., AND BOUVIER, E. 1999. Time-critical multires-
olution scene rendering. InProceedings of the conference on
Visualization ’99, IEEE Computer Society Press, 123–130.

LLUCH, J., CAMAHORT, E., AND V IV Ó, R. 2003. Procedural
multiresolution for plant and tree rendering. InProceedings of
the 2nd international conference on Computer graphics, virtual
Reality, visualisation and interaction in Africa, ACM Press, 31–
38.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND
VARSHNEY, A. 2002.Level of Detail for 3D Graphics. Elsevier
Science Inc.

MACIEL , P. W. C.,AND SHIRLEY, P. 1995. Visual navigation of
large environments using textured clusters. InProceedings of the
1995 symposium on Interactive 3D graphics, ACM Press, 95–ff.

MARSHALL , D., FUSSELL, D., AND CAMPBELL III, A. T.
1997. Multiresolution rendering of complex botanical scenes. In
Graphics Interface ’97, Canadian Human-Computer Communi-
cations Society, W. A. Davis, M. Mantei, and R. V. Klassen, Eds.,
97–104.

MASON, A. E. W., AND BLAKE , E. H. 1997. Automatic hierar-
chical level of detail optimization in computer animation.Com-
puter Graphics Forum 16, 3 (September), 191–199.

SCHACHTER, B. J. 1983.Computer Image Generation. Krieger
Publishing Co., Inc.

STAMMINGER , M., AND DRETTAKIS, G. 2001. Interactive sam-
pling and rendering for complex and procedural geometry. In
Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, Springer-Verlag, 151–162.

TELLER, S. J.,AND SÉQUIN, C. H. 1991. Visibility preprocessing
for interactive walkthroughs.Computer Graphics 25, 4, 61–68.

TURK, G. 1992. Re-tiling polygonal surfaces. InProceedings of
the 19th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 55–64.

WIMMER , M., AND SCHMALSTIEG, D., 1998. Load balancing for
smooth lods. Technical report, Vienna University of Technology.

ZACH, C., MANTLER, S.,AND KARNER, K. 2002. Time-critical
rendering of discrete and continuous levels of detail. InPro-
ceedings of the ACM symposium on Virtual reality software and
technology, ACM Press, 1–8.

About the authors

Eduardo Herńandez has just graduated from the Masters in Com-
puter Science. He has worked as a game developer in Japan. His
interests include: virtual and mixed reality, real-time rendering and
game design. He is currently looking for a position in the game
industry. You can contact him at A00716539@itesm.mx

Beďrich Beněs has his Ph.D. in Computer Graphics from the Czech
Technical University. He works in the area of artificial life, pro-
cedural modeling, and real-time rendering. He is author of three
books about Computer Graphics and more than twenty papers. You
can contact him at bedrich.benes@itesm.mx

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

