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Abstract

We propose a simplification algorithm that preserves théasals
shape features. In a pre-processing step, crest lines aeetex
and used together with a quadric error metric to drive thekfiva-
tion. The error metric is utilized locally to ensure thatgvmesh’s
region is simplified in a similar rate. This algorithm attempo
minimize the creation of tiny or very large faces. A compamis
with Garland and Heckbert's simplification algorithm is geated.
The experimental results show a substantial improvemenhef
simplified surface’s quality both visually and numerically
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1 Introduction

Surface simplification is very important for a number of aggpl
tions including scientific visualization, game programgiriast
network transmission and visualization. Surface simgltfan
techniques can be categorized in two major classes, vartegval
and edge contraction.

Vertex removal deletes a vertex of the mesh and retrianggilat

the hole. This technique was first devised and implemented by

Schroder [Schroeder et al. 1992]. Also, Choo [Choo et 299],
Bajaj [Bajaj and Schikore 1996], Soucy [Soucy and Laurendea
1996] use this technique. On the other hand, Edge contractio
(fig. 1) replaces an edg(@’i,vj) with a vertexv. After each con-
traction two faces and a vertex are removed from the triaigur.
This technique is quite simple and more popular than verex r
moval because of the absence of a re-triangulation. Therenar
vital considerations. The sequence of edges contractidmhenpo-
sition of the new vertex:

The first consideration is hard and it is the one most of thekwor
is focused on. Usually a cost metric is developed. Cost (arer
metrics measure somehow the distance of the simplified nesh f
the original mesh. They are used to decide in which sequérece t
edges are to be contracted and which edges are eligibleritrace
tion. The metrics developed are usually computed localtyused
globally.

Garland and Heckbert [Garland and Heckbert 1997] use a

quadric error metric, Gueziec [Guéziec 1999] uses a volpraser-
vation metric, Kim et al. [Kim et al. 2002] combines a quadric
error metric with tangential and curvature errors, Gao efGho
et al. 2000] use a discrete curvature metric using averaayeep)
Jeong et al. [Jeong et al. 2002] use a modified quadric error me
ric for simplifying Loop subdivision surfaces, Hoppe [Hapet al.

Figure 1: Edge contraction.

Cohen etal. [Cohen et al. 1998] use edge contraction withtgoa
maintain the surface’s appearance. Furthermore, Cohdn[€a
hen et al. 1996] focus on appearance preserving simpliicatith
a global error guarantee and Kalvin and Taylor [Kalvin angldia
1996] simplify while maintaining a bounded total cost. T{iflark
1992] re-tiles polygonal surfaces by triangulating a netwo$@er-
tices that replaces the original one and Pojar [Pojar anchalstieg
2003] uses the quadric error metric for user-controlledtimagolu-
tion meshes.

Garland and Heckbert's (G&H) algorithm is the most popular
among the rest because it gives as good or better resultseen
pared with the rest and is also fast and the implementatioslas
tively easy. Watanabe and Belyaev [Watanabe and Belyael] 200
attempted without much success to improve G&H algorithmdby u
ing higher weights on feature triangles and edges. Hoppegelo
1996] uses constraints to maintain feature edges identiady a
threshold on the dihedral angle, G&H do not use any featiesgr
vation constraints. In addition, G&H do not maintain a umnifio
simplification and tend to oversimplify in certain neighboods.

The contribution of this work is:

e Quality. Substantial improvement of the simplified surface’s
quality via explicit shape feature preservation.

e Fairness and Uniformity. The simplification is fair and uni-
form because we tend not to create large and tiny faces and
oversimplified and under-simplified regions.

e Boundary treatment. We suggest to simplify surface bound-
aries separately from the rest of the surface.

This work is compared with G&H'’s simplification algorithm to
show that better results are obtained. Next section, ghesack-
ground of this work, section 3 describes the various pararseif
the proposed algorithm and section 4 shows the results and di
cusses the improvements over G&H’s algorithm.

1993; Hoppe 1996] minimizes an energy function. Ronfard and 2 Background

Rossignac [Ronfard and Rossignac 1996] use the maximum dis-

tance from the planes thwxitorvj belong.

The second consideration usually is correlated to the cest m
ric [Guéziec 1999; Kim et al. 2002; Garland and Heckbert7:99
Hoppe 1996]. Since every contraction increases the castdht
metric is used to minimize it. In effect, it is usually requdrto
solve a linear system.

The proposed algorithm uses a crest line extraction algo-
rithm [Stylianou and Farin 2004] to constrain and enhaneestim-
plification. For more information about feature extractiaier

to [Stylianou and Farin 2004]. The quadric error metric isdis
for the simplification and the placement of new vertices. sEhare
described in the next sections.
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2.1 Crest Lines

A parametric surface is a mapping from? to 0%, x(u) =
(X(u,v),y(u,v),z(u,v))T € 0%, u= (u,v) C O?is the domain. Nor-
mal curvature measures the bending of the surface localbvery
point x(u). Because there are infinitely many directions to com-
pute normal curvature, the standard approach is to compuye o
the largest and smallest (principal) curvatures denoted; bk,
respectively. These have associated directtons, which are or-
thogonal. Principal curvatures can be positive or negativiéh

the sign denoting whether the surface bends outwards orrdswa
Largest curvature, is larger than curvaturk, in absolute value
(|k;| > |ky|). A crest point is a point of the surface where its largest
curvaturek, is maximum in its corresponding direction. The defi-
nition of a crest point is

Dy Ky (u,v) =0 )

whereD, is the directional derivative in directio 0%,k €0

is the largest principal curvature abgis its domain direction on a
point (of the surface) with domain coordinatesv).

Crest points implicitly trace lines on the surface denotedrast
lines. Crest lines are shape features with the main chaistate
of using local information to yield a global description bEtsur-
face. Even though crest lines are local shape features, thiegn
are viewed together they partially describe the surface.

Crest points trace ridges (whé&pis positive) and valleys (when
k, is negative) on the surface. Even though we can trace ridges a
valleys concurrently, it is as useful to trace only ridgewvalieys,
especially because ridges have different characteristécsvalleys,

like theirk; curvature ranges, even though they are features of the

same surface.

wherep=|a b c d }T represents the plane defined by the

equationax+ by+ cz+ d = 0 wherea? + b2 + ¢2 = 1. The set of
planes at a vertex is initialized to be the planes of the ¢fissthat
meet at that vertex.

The error metric given in (2) can be rewritten as:

(v'p)(p'V)
peplanegv)

v (ppT)v
peplanegv)

VT( zpeplz:1ne$v)Kp )V

Alv) =

whereK, is the matrix:

a2 ab ac ad

1 | ab B bc bd
Kp=PP' =1 ¢ bc @ cd
ad bd cd @&

This fundamental matriK , can be used to find the squared dis-
tance of any point in space to the plameThese fundamental ma-
trices can be summed together to represent an entire seardgl
by a single matrixQ.

They implicitly track sets of planes using a single matrixsiy-
ply adding two matrices. For a given contraction,v,) — vthe
new matrixQ that approximates the error atis Q = Q; + Q,,
where the matriceQ,, Q, are used to approximate the error at ver-
ticesv,, v, respectively.

Observe that this metric over-estimates the real erronisecthe
error obtained from common faces is added twice. Therefore,

Figure 2 shows an example of a crest line. Because a crest poin cannot lead to optimum results as it will be shown in section 4

has maximum largest curvature in its corresponding divacta
crest line naturally follows the direction of the smallestvature
of its composing crest points.

Figure 2: A crest line example.

2.2 Error Quadrics

The error quadric metric [Garland and Heckbert 1997], ubkes t
observation that each vertex is the intersection of a setafeg,
the planes of the faces that meet at that vertex. A set of plene
associated with each vertexand the error of the verte&(v) is
defined with respect to this set as the sum of squared disdace
its planes:

oy v 170

- 5 (v @

peplanegv)

2.3 Placing the new vertex

The position for the new vertexis chosen such that it minimizes
the errorA(Y) = V QVv[Garland and Heckbert 1997]. Thusiis
found by solvingdA/ox = dA/dy = dA/dz= 0. This is equivalent
to solving:

O11 Y12 %3 Uig 0
G2 %2 O3 %4 |y_| O
O3 O3 O33 Ui 0

0 0 0 1 1

The linear system does not always have a solution as stated by
G&H and as observed experimentally. Sometimes an altemati
must be used. A good alternative solution is to place the rextex
‘'vsomewhere on the contracted edge. Suppose we contracighe ed
(Vj;Vj). The new vertex will be a linear combination of theve=

(1-t)v; +tv;, witht € [0,1]. t is weighted using the incident edges
of v;,v;. We sett =n;/(n +n;), wheren; =d, — 1, n; =d; -

1 andd;, d; are the valence of;, v;, respectively. Because the
error increases when the distancevdfom the planes that meet on
this vertex increases, this solution attempts to plaes close as
possible to most of the planes. This is achieved by placiolpser
to the initial vertex y; or v]-) that is incident to the most planes.
This solution is more stable than the vertex placement by G&H
yields more error.

3 Proposed Algorithm

The proposed algorithm’s components are given in the fatigw
sections. These are the feature constraints, boundaryimguaad
how fairness and uniformity can be enforced.
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3.1 Feature Constraints G&H algorithm does not lead to as uniform triangulation, fea-
sons such as oversimplification, as the proposed algorigoause

The proposed simplification algorithm uses surface shagtefes, it creates very small and very large triangles.

in this case crest lines, to constrain the simplification.e Titnoti-
vation is that the regions of a surface besides its featunesod

usually hold any important shape information. Hence, thepéi 20
fication efforts must be concentrated in those regions. titiad, .5
feature lines should be preserved and simplified, as wek féh-
ture constraints used to decide valid edges for contraetien 10 W75%
090%
1. an edge can be contractedniéither of its vertices are crest 5
points. ,J] J:| J]
0
2. an edge can be contracted libth of its vertices are crest brainA brainB hygeaA hygeaB bunnyA bunny B

points.

Figure 3: The graph for the standard deviation of triangkador
the simplified objects. Objects A use the proposed algorithioa
The first rule says every edge not belonging partly or totallg jects B use the G&H algorithm.
crest line (feature) is valid for contraction. This progesemi-crest
edges, edges with one crest vertex and one non-crest vauax,
being simplified; this could disconnect the feature lines eventu-
ally distort them. The second rule gives the opportunityingpsfy
edges belonging totally to a crest line (crest edges). Timpldies

3. aboundary edgeannot be contracted.

3.4 Summary

and preserves crest lines because their endpoints aregibteefor The proposed algorithm is iterative as it has to go througthtbap
simplification. The third rule is used because boundariesnat of eligible edges for contraction more than one time, ungirpli-
handled at this point of the algorithm. For more detail onristary fies up to the user-defined level or until it cannot simplifymore.
handling see section 3.2. A property of the proposed method is that the simplificatias h
a limit. G&H's algorithm can simplify a surface indefinitebnd
3.2 Boundary Handling eventually delete most of the features that make the obgert-i

tifiable. The proposed algorithm cannot simplify indefilyitéun-
Boundary edges, edges incident only to one face, must bddthnd less we relax the feature constraint) and it always preseali¢he

differently than the rest of the edges.The reason is thenipbete- important features. The simplification’s limit is depentlen the
ness of their neighborhood. This problem creates less guaator number of features and the density of the triangulation.
when simplifying boundary edges than non-boundary edgesi-| The proposed algorithm keeps the pre-processing procedure

ing to an oversimplification of the boundary edges and badltees  GgH's algorithm essentially the same. We give it here for eom
G&H suggest [Garland and Heckbert 1997] that for each face pleteness. The pre-processing procedure is:

surrounding a particular boundary edge, to generate a peipe
ular plane running through the edge, rewrite those plandaras
damental matrice ,, weight them by a large penalty factor and
add them into the initial matrices for the endpoints of thgeedAf-

e Compute theQ matrices for all initial vertices.

ter this transformation, these edges will be contracteti@swere e Select all valid point pairs.

non-boundary edges. Even though, it is stated this workk thel

penalty factor is quite arbitrary. e Compute the optimal contraction targefor each valid pair
Instead, we suggest to do something simpler and more intu- (Vi’vj)' The errorT}r(Qi+Qj)T/of this target vertex becomes

itive. When the algorithm terminates, we re-execute it lmw only the cost of contracting that pair.

boundary edges are considered for contraction. Sinceaabdges
to be contracted are boundary edges, then the error produbéd

contracting, will be fair for all edges. e Place all the pairs in a heap keyed on cost with the minimum

cost pair at the top.

3.3 Enforcing Fairness and Uniformity The only change is the criteria for selecting valid edgestor-
traction. The contraction procedure changes as follows:
Setcur_iter = 1. For every vertex; setv;.iter = 0.
Repeat

Remove the pai(vi,v]-) of least cost from the heap such
thatv, .iter < cur_iter andvj.iter < cur_ter.

In other methods, an edge with minimum cost among all theedge
is contracted. Here we contract an edge with minimum costlypc
When an edg(avi,vj) is simplified and replaced by vertag we do

not allow an edge incident to vertéxto be simplified in the same
iteration. The effect of this constraint is that every néigthood is

simplified in the same rate. This tends to keep the trianiguiats Increase the value of the propeitgr for all vertices inci-
uniform as possible. Figure 3 shows the standard deviafitheo ~ dent tov; andv; includingyv; by one and contract this pair.

triangle area for brain, bunny and hygea after 75% and 90% con Update the costs of all valid pairs involving

traction for the proposed and G&H algorithms. Standardatewn Setcur_iter = cur_iter + 1.

shows the compactness of triangle mean area. If standaiatioev Until the termination criterion is not reached.

is large, then there are very large and very small triangiethe The variablecur_iter is used to count the algorithm’s iterations.
mesh, with respect to their area. Observe that there is antimit Variableiter is used to decide if an edge is eligible for contraction
difference on standard deviation for the two algorithmse Bhnea during the current algorithm’s iteration. The contractocedure

of the triangles generated by the proposed algorithm is rologer terminates when a user-defined number of vertices remaire Th

to the mean area than the G&H algorithm. This means that the algorithm terminates by doing at most one pass on the heap.
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4 Results

We have experimented on different surfaces. The first twiases
are bivariate test functiongx, y) defined ovef—1,1] x [-1,1] and
evaluated on a 5@ 50 grid with equidistant spacing. These are
x3 — 3xy? (monkey saddle) and cmx) + cog rty) (trig. function).
The other surfaces are the Stanford bunny, Hygea (a didiGzeek
statue) and a part of a brain (cortical) surface. Tables B, 2,
show the mean vertex quadric error (cost), the max valence of
vertex and the mean valence of the vertices for the G&H algari
and the proposed algorithm, respectively. The mean vertagrir
error is the average quadric error produced by each of thaliiea
edges. The number does not reflect the object’'s complexisyzer
because the quadric error's magnitude depends on the ‘styize.

Table 1: G&H'’s algorithm. Mean vertex quadric error, max and
mean valence are recorded for 75% simplification.

surface cost | max | mean
monkey saddle] .287 | 16 6.28
trig. function | .565| 14 | 6.23
bunny 1.11| 28 5.24
hygea 0.12| 23 5.95
brain part 0.01| 27 6.11

Table 2: Proposed algorithm. Mean vertex quadric error, arak
mean valence are recorded for 75% simplification.

dataset cost | max | mean
monkey saddle] 0.212| 15 | 6.27
trig. function | 0.176 | 13 | 6.29
bunny 0.175| 18 | 5.25
hygea 0.05 | 15 | 5.95
brain part 0.002| 19 | 6.12

Table 3: G&H's algorithm. Mean vertex quadric error, max and
mean valence are recorded for 90% simplification.

dataset | cost | max | mean

bunny 515 | 35 | 4.05

hygea 0.67 | 22 | 5.88
brain part| 0.064 | 32 | 6.52

The proposed algorithm shows much better results on the cost
for all the surfaces. The proposed algorithm has strictlalen
max valence and equal or slightly greater mean valence. |&mal
max valence means that the surface is simplified uniforngyead
of concentrating a lot of effort in certain neighborhoods.

While numbers say a lot about the two algorithms, figures can
say even more. Figures 4, 5 show the simplified trianguladioth
the alteration of the crest lines after 75% reduction on tmalver
of vertices for both algorithms. G&H clearly distorts a lbetfea-
tures of the monkey saddle but less the features of the wigetric
function. The reason for the difference in feature distortis that
the features of the trigonometric function are more prowednin
contrast to monkey saddle’s features. In addition, it Isavany
neighborhoods untouched while other neighborhoods areilea
simplified. The proposed algorithm simplifies more uniforrahd
preserves all the features while simplifying them, as well.

Furthermore, we have experimented with the Stanford bunny
(fig. 6a), hygea and a brain part (fig. 6b). Initially the burmygea
and the brain part had 35905, 33587 and 19902 vertices, aespe
tively. Figures 7, 9 and 11 show the modification of the fesgur
by G&H and their preservation by the proposed algorithmeraft

Table 4: Proposed algorithm. Mean vertex quadric error, arak
mean valence are recorded for 90% simplification.

dataset | cost | max | mean

bunny 139 | 18 | 4.06

hygea 0.36 | 17 | 5.88
brain part| 0.038| 30 | 6.54

2SI
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Figure 4. Monkey saddle after 75% simplification. Left colum
shows the triangulation, right column show the domain withst
lines. Top is G&H algorithm. Bottom is the proposed algarith

75% reduction on the number of vertices. After 75% reductibe
bunny, hygea and the brain part have 8976, 8396 and 4978e®rti
respectively. Again, figures 8, 10 and 12 show the modificatib
the features by G&H and their preservation by the proposgo-al
rithm, after 90% reduction on the number of vertices. Aft@¥®
reduction, the bunny, hygea and the brain part have 3594 838
1995 vertices, respectively. The surface qualitativeedifiice can
be easily identified. The proposed algorithm simplifies tHarh
their smoothness and their features remain significanthanged,
even after 90% reduction. In contrast, G&H’s algorithm ¢esa
much rougher surfaces and also distorts or deletes somadsat

G&H'’s algorithm is very good but it does not give the best re-
sults. It usually contracts feature edges unless they ayestarp.
Also, it tends to create long thin faces which is not necdysade-
sirable effect. In addition, it does not preserve the seffsemooth-
ness because some vertices have high valence while othmeger
have low valence. By introducing crest lines as a constraat
modifying the contraction criterion, this algorithm is emted sig-
nificantly as the results show.

5 Conclusion and Future Work

A simplification algorithm has been presented which impsougb-
stantially a simplified surface’s quality. This is achieveetause
surface shape features are used to constrain the algorittirfas-

ness and uniformity were enforced by applying the cost médri

cally instead of globally. In addition, we proposed a simigleh-

nigue for simplifying boundaries. A complete comparisors\par-

formed with Garland and Heckbert's simplification algomith

Future work includes extending this algorithm to handldaxes

with texture and the development of a real-time featureiseas
multiresolution algorithm.
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Figure 5: Trigonometric function after 75% simplificatiot.eft
column shows the triangulation, right column show the dermath
crest lines. Top is G&H algorithm. Bottom is the proposedoalg
rithm.

References

BAJAJ, C.,AND SCHIKORE, D. 1996. Error-bounded reduction of
triangle meshes with multivariate dat@PIE 2656 34—45.

CHooO, K., YUN, I., AND LEE, S. 1999. Edge-based approach to
mesh simplification. IProc. of the IEEE Second Int. Conf. on
3-D Digital Imaging and Modeling368-377.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER,
H., AGARWAL, P., BROOKS, F.,AND WRIGHT, W. 1996. Sim-
plification envelopesComputer Graphics119-128.

COHEN, J., Q.ANO, M., AND MANOCHA, D. 1998. Appearance-
preserving simplificationACM Siggraph 115-122.

GAO, J., ZHou, M., AND WANG, H. 2000. Mesh simplifica-
tion with average planes for 3-D image. IIBEE Int. Conf. on
Systems, Man and Cybernetiosl. 2, 1412-1417.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplification
using quadric error metrictACM Siggraph209-216.

GUEZIEC, A. 1999. Locally toleranced surface simplification.
IEEE Trans. on Visualization and Computer Graphics 5{B8—
189.

HopPPE H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1993. Mesh optimizationACM Siggraph 19—
26.

HoppPE H. 1996. Progressive meshesCM Siggraph99-108.

JEONG, W.-K., KAHLER, K., AND SEIDEL, H.-P. 2002. Subdivi-
sion surface simplification. IRroc. of the 10th Pacific Conf. on
Computer Graphics and Applications

KALVIN, A. D., AND TAYLOR, R. H. 1996. Superfaces:polygonal
mesh simplification with bounded errdEEE Computer Graph-
ics and Applications 16(364—77.

Kim, S.-J., KM, S.-K.,AND KiM, C.-H. 2002. Discrete differ-
ential error metric for surface simplification. Rroc. of the 10th
Pacific Conf. on Computer Graphics and Applications

(©

Figure 6: Original models. (a) Stanford bunny, (b) Braint@ard
(c) Hygea.

POJAR, E., AND SCHMALSTIEG, D. 2003. User-controlled cre-
ation of multiresolution meshes. Froc. of the Symposium on
Interactive Computer Graphics

RONFARD, R.,AND ROSSIGNAG J. 1996. Full-range approxima-
tion of triangulated polyhedra. IRroc. of Eurographics, Com-
puter Graphics ForumBlackwell, J. Rossignac and F. Sillon,
Eds., vol. 15(3), Eurographics, C67—-C76.

SCHROEDER, W., ZARGE, J.,AND LORENSEN W. 1992. Deci-
mation of triangle meshe#\CM Siggraph 65-70.

Soucy, M., AND LAURENDEAU, D. 1996. Multi-resolution sur-
face modeling based on hierarchical triangulatiGomputer Vi-
sion and Image Understanding 6B-14.

STYLIANOU, G.,AND FARIN, G. 2004. Crest lines for segmenta-
tion and flatteninglEEE Trans. on Visualization and Computer
Graphics

TURK, G. 1992. Re-tiling polygonal surfaceSomputer Graphics
26(2), 55-64.

WATANABE, K., AND BELYAEV, A. 2001. Detection of salient cur-
vature features on polygonal surfacesPhoc. of Eurographics
A. Chalmers and I.-M. Rhyne, Eds., vol. 20(3).

About the author

Georgios Stylianou is a lecturer in the Department of Comp8ti-
ence at Cyprus College, Cyprus. He received his PhD in Cagnput
Science from Arizona State University, USA, in 2003 and h&cB
in Computer Science from the University of Cyprus in 1998s i
search interests lie in the area of geometric modelling anfide
parametrization and multi-resolution methods, featureaetion,
deformation and registration.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



i

Figure 7: Stanford bunny after 75% simplification. Top: G&H a

gorithm. Bottom: proposed algorithm. Figure 9: Hygea after 75% simplification. Top: G&H algorithm

Bottom: proposed algorithm.

Figure 8: Stanford bunny after 90% simplification. Top: G&H a ) o .
gorithm. Bottom: proposed algorithm. Figure 10: Hygea after 90% simplification. Top: G&H algorith

Bottom: proposed algorithm.
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Figure 11: Brain part after 75% simplification. Top: G&H algo
rithm. Bottom: proposed algorithm.

Figure 12: Brain part after 90% simplification. Top: G&H algo
rithm. Bottom: proposed algorithm.
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