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Abstract

We present a simple, automatic method for extracting featur
curves, called crest lines, from point clouds. Crest limessarface
shape features having a mathematical background. Givem-an u
structured point cloud as input, we pre-process the datariergte
some topological information by creating an undirectiosniatface
graph. The method starts with the approximation of normalau
ture on every point. Utilizing the crest point definitiongthrest
points are identified. Region growth follows to implicitlprnect
the crest points and create crest graphs. Finally, the ctatipn of
minimum spanning trees for every crest graph and the pruoing
short branches create crest lines.
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1 INTRODUCTION

Modern acquisition techniques, i.e. laser scanners, geows with
a great amount of data sets. Their major characteristi@iafility
to produce sample points in the magnitude of millions. Asraseo
quence, point-sampled surfaces have emerged in the las, yesa
an alternative representation to triangulated surfacgzaally for
the purpose of rendering. The surface of a 3D object is repted
by a set of sample points without any other topological imfar
tion. To display such models, various point rendering systhave
been developed [Pfister et al. 2000; Rusinkiewitz and Le@02
Zwicker et al. 2001; Alexa et al. 2001; Fleishman et al. 2008]
addition, processing applications such as simplificatiRau]y et al.
2002a] and editing [Zwicker et al. 2002] have been introduce

In this paper, we introduce a simple, automatic method fer ex
tracting shape features, called crest lines, from poinid$o These
have been used in various applications for over a decadest Cre
lines are useful in many fields because they identify vitatdees
of virtually any surface. Their mathematical definition isngral
enough to include applications from different areas. Theyide
us a satisfactory geometrical representation of imponpaysical
properties such as ridge lines and valleys in the case cdlderi
ages [Monga et al. 1997], or anatomical features in the dased-
ical images [Khaneja et al. 1998; Thirion and Gourdon 1996y
have been used, among others, for object registrationZiéa@nd
Ayache 1992; Stylianou 2004], growth simulation [Andreseial.
1998], automatic retrieval of anatomical structures [Peck et al.
1995].

2 Related Work

There are several methods proposed for extraction of érest or
otherwise defined features from surfaces. Related workdéegn
crest lines includes Lengagne et al. [Lengagne et al. 1986]de-
fine crest points as the zero crossings of the directionatatere of
the largest curvature in its direction along the edges dhagulated
mesh, Guéziec [Guéziec 1993] extracts crest lines frosplBie
surfaces, Khaneja et al. [Khaneja et al. 1998] extract gaodiees
on triangulated surfaces using user-specified start-eimtspthat
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Figure 1: Method pipeline: extracting valley features. Cagst
point classification and region growing, (b) skinning, (ejnoval
of small branches and (d) removal of small lines.

under certain constraints are crest lines. Thirion et alhirfdn
and Gourdon 1996] extract crest lines as the intersectionvof
surfaces. Ohtake and Belyaev [Ohtake and Belyaev 2001] com-
pute ridges and ravines using local differential geomepsrators.
Also, Ohtake et al. [Ohtake et al. 2004] compute ridges atidys
by first fitting an implicit polynomial to the surface. Hubend
Gross [Hubeli and Gross 2001] used a multiresolution aptroa
for feature extraction on triangle meshes. They developmd v
ous classification operators used to identify a set of feataiges.
Stylianou [Stylianou 2003] has described an automatic atkefor
extracting crest lines from triangulated meshes. He usée fiif-
ferences for crest point classification and dilation, enegor cre-
ating crest lines.

The most notable work involved with feature extraction from
point clouds are Pauly et al. [Pauly et al. 2003] and Gumhold e
al. [Gumhold et al. 2001]. Gumhold et al.'s method starts teat
ing the neighbor graph that goes as far as triangulatinguffacse
up to a certain degree. Covariance analysis is used forréeakas-
sification. This method categorizes the features into fivegmies
and computes a separate penalty weight for each featurerethe
sults are not so good because even though they detect feature
rectly they cannot detect all the features. A possible redsthat
the undetected features do not fall in any of the defined featat-
egories.

Pauly et al. describe a multiscale approach towards feature
traction where the main component is principal componealyais
for measuring surface variation and the assignment of cendiel
weights. Their method performs quite well but has the disand
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tage of being semi-automatic; the user has to specify sorastth
olding parameters. Also, their implementation can suffemfin-
cosistencies on the k-closest neighbor computation dusntpkng,
as itis clarified later.

The contribution of this work is:

e Simple. We propose a method that is easy to implement and

use because it does not make use of any arbitrary weights and

thresholds.

e Automatic. The method does not require user intervention to
successfully extract the surface features. User intesehe
desires after the termination of the algorithm, only toriate
tively eliminate features to keep the most important.

Complete. It successfully identifies all of the surface’s-fe
tures. This is shown experimentally.

General. The method is general as it does not make any as-
sumptions regarding the type and geometry of the surfaces.

3

A parametric surface is a mapping fro? to O3, x(u)
(x(u,v),y(u,v),z(u,v))T € 0%, u=(u,v) C O?is the domain. Nor-
mal curvature measures the bending of the surface localgvery
point x(u). Because there are infinitely many directions to com-
pute normal curvature, the standard approach is to compuse o
the largest and smallest (principal) curvatures denoted; bk,
respectively. These have associated directtons, which are or-
thogonal. Principal curvatures can be positive or negativiéh

the sign denoting whether the surface bends outwards orrdswa
Largest curvature, is larger than curvaturk, in absolute value
(|kq| > |ky|). A crest point is a point of the surface where its largest
curvaturek, is maximum in its corresponding direction. The defi-
nition of a crest point is

Crest Line Definition

Dy Ky (u,v) =0 )

whereD, is the directional derivative in directidn < 02, ke

is the Iarbest principal curvature angdis its domain direction on a
point (of the surface) with domain coordinatesv).

Crest points implicitly trace lines on the surface denotedrast
lines. Crest lines are shape features with the main chaistate
of using local information to yield a global description bEtsur-
face. Even though crest lines are local shape features, thiegn
are viewed together they partially describe the surface.

Crest points trace ridges (whé&pis positive) and valleys (when
k, is negative) on the surface. Even though we can trace ridges a
valleys concurrently, it is as useful to trace only ridgewvalieys,
especially because ridges have different characteristécsvalleys,
like theirk; curvature ranges, even though they are features of the
same surface.

Figure 2 shows an example of a crest line. Because a crest poin
has maximum largest curvature in its corresponding divacta
crest line naturally follows the direction of the smallestvature
of its composing crest points.

4 OVERVIEW

The input is a surface represented by an unstructured ploiat
P={pi} € 03. This introduces several "problems” in applying the
crest point definition directly. Normal curvature estimatcannot
directly be achieved because of the lack of structure. Toerave
preprocess the data, with aim to add some topological irdiion,

Normal

Crest line

- principal
direction

Maximal

curvature

Figure 2: A crest line example.

by transforming the point cloud into an undirectional grafhad-
dition, our method assumes that on every point we kagwiori its
normal vector. This is not a problem because there are dégeha
niques in the literature about normal vector estimationdptoet al.
1992; Pauly et al. 2002b]. Furthermore, laser scannerptbaide
us with several data sets, provide the normal vectors, ds wel
After, topological information is created for the point eth the
method for calculating crest lines proceeds as follows:

1.
2.

Approximate normal curvature on every point of the swgfac
Identify all crest points.

. Apply region growing around crest points to create crest
graphs.

. Compute a minimum spanning tree for every crest graph.
. Prune short branches.

. Remove small crest lines, to eliminate artifacts or srieal}
tures (optional).

Figure 1 shows an example of the method pipeline. First, we
identify crest points (red points) and perform region giolue
points). Second, we compute the minimum spanning tree of all
remaining graphs. Third, we prune short branches. Finalty,
remove small lines. This is interactive and the size of thalkest
line to remain is the user’s decision. Usually, small feasuare
considered artifacts.

4.1 Generating topological information

We impose structure by converting the point cloud to an undi-
rectional graph. We use the k-closest neighbors operatmulyP
et al. 2003; Gumhold et al. 2001] to create the local neigoad
graph for every poinp; this connectgp with the 1-ring neighbor-
ing points. ANN library [Arya et al. 1998] is used to approxta
k-closest neighbors in near linear time. This graph caneaided
directly, though, because it suffers from sampling incstesicies.
When the sampling is not uniform with regard to Euclideartedise
between samples, problems emerge. Figure 3a shows an éxampl
All or most of the closest neighbors (outlined circles) ofrpg
(filled circle) are located to one side pfand not around it as they
should. This drawback results in a bad approximation of mbrm
curvature on those points. This is solved by getting morgmei
bors and filtering them to keep neighbors that are locatednaro
the point (figure 3b).

The filtering (figure 4) of the closest neighbors of pgiris:

e Compute plan® passing through poirg and having the nor-
mal vector ap as its normal.

e Define an orthonormal coordinate systemPwith p as its
origin and two arbitrary unit vector, y) in P.
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Figure 3: 2D example. The closest Neighbors are in the rectan
gle.(a) k-closest neighbor operator and (b) after filtering
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Figure 4: 2D example. Filtering k-closest neighbors. Thehea
lines show the intervals.

e Project (using orthogonal projection) all neighbors ofrpqi
onto planeP and represent their projections with respect to
the local coordinate system i

e The unit vectors of the local coordinate system divide
the plane into four quadranixt,y*), (x=,y*), (x7,y7),
(x+ay7)'

e Select at least two closest points located in each quadrant.
These are the neighbors pf

The closest points of each quadrant are selected usingotbiair
angles, depending on the quarter they are located, andiib&ince
to pointp. The idea is that the points to be selected must have dif-
ferent angular distance from an axis. If the angular disgtafdwo
points is the same, then the more distant point is not reailyigh-
bor and is useless for normal curvature approximation. &bee,
supposing we want to get two points per quadrant we use alterv
of 45 degrees; then we get the closest point with angulaantist
between(0,45 degrees and the closest point betw¢4b 90 de-
grees. Selection of three points means intervals of 30 degard
so on. In the case where two or more points equidistant inten-in
val we select all of them. In this work, we select about twanp®i
per quadrant. It is reasonable to select in total eight pdietause
the mean vertex star size in triangulations is six.

Figure 4 shows an overview of this algorithm. This algorithm
works well with the assumption that sampling is relativegnsge.
Otherwise, we would have to go far to find neighbors, viokatime
prerequisite that all points of the neighborhood must bglonthe
same connected region of the underlying surface. If it isssec
sary to go far, a simple heuristic to avoid this problem isdok
for jumps in the directions of the normal vectors of the nbiyis
of point p. In addition, when points are on the boundary it is not
possible to locate neighbors in all four regions. This canesas
a criterion for boundary point identification. Finally, wétdi the
neighbors to keep only few neighbors, quite close and ugeful
curvature approximation.

Even though the neighbor graph, after filtering, is goods itot
consistent. Creating an edge from pgiptto pointp, does not nec-
essarily mean that an edge frgmto p, will exist. This is a natural
outcome of the whole process because the closest neighboa-op
tion, that reminds us somewhat the directed Hausdorff niistais
not a metric. We solved this inconsistency by visiting eveojnt
p, getting all its neighborg; and assigning asp;’s neighbor, if it
was not already a neighbor.

Us

Ug

Figure 5: Crest point classification.

4.2 Curvature Approximation

The problem with a point graph is that we cannot explicitljcaa
late derivatives and curvatures on every point. Thereforer to
crest point classification, we locally parameterize théeserby fit-
ting a quadric on the neighborhood of every point and catmda
its principal curvatures and directions [Farin 2001; Ham&f93].
The local neighborhood of a poiptof a point graph contains all
the points (staff)) that share an edge with (1-ring points). The
local domain values of and stanf) are calculated by projecting
pointsp and stang) on the plane defined by the normal vectopof
The normal vector op is either estimated or comes with the data.
Note that the local domain values pfand stanf), which now are
co-planar points, are still a graph.

Note that the local approximations do not guarantee global
smoothness or continuity. But this method is proven expenim
tally that best approximates the principal curvatures.dditéon, a
whole surface fitting method is not a necessity since a cr@st {3
a local surface feature. Also, it is not easy, if possiblditta sur-
face to a point cloud since the exact topology is not reallgvikm
Even triangulation algorithms can fail for certain poinbatis.

4.3 Crest point Classification

The classification of crest points is achieved using finitiedénces

on the domain of every poimt. For every poinp we have already
computed its principal curvatures. We are interested onlyhe

largest principal curvaturk; and its domain directiot,. We also

treat all the domain values of tistar(p) u; as vectors originating
from u, (the domain op).

The curvaturek; should be maximum in its directidn. There-
fore, supposey; is closer tot; andu; is closer to—t;. Then If
(k)2 — (k)2 > M and (k9)2 — (kll)2 > M thenp is a crest point.

K| is the largest principal curvature of point The threshold\
controls the level of maximality. It is used to reduce nurerer-
rors and threshold on the number of crest points to keep thgt mo
important. A good value i = 0.01.

For example using figure 5, we get the largest curvatures on
pointsu,, us. If the largest curvature on vertax, satisfies the
criterion, theru, is a crest point.

4.4 Region Growing

So far we have identified the crest points. If the surfaceéewe-
ally smooth, crest points would implicitly have createdth# crest
lines. But we do not totally achieve this goal. Noise andgutari-
ties of the point cloud play an important role. The approagvards
the solution is to use the crest points identified and perfregion
growth around them. Using region growth we implicitly connall
the crest points and create crest regions. For every crggtpave
classified as 'crest points by growth’ all the points shadngedge
with p and are not crest points.
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4. Mini i h
5 inimum Spanning Grap Table 1: Time Complexity in seconds on a Mobile Intel Pentium

Every subgraph must be skinned to be left with crest linesskife I, 1GHz.

all crest graph® by computing the minimum spanning tree (MST) Model Points Time
of each and every graph. MST is the minimum cost tree, based Bunny 35905 27

on some edge cost, that visits all points of the graph. Poidhé Igea 33587 24

computation of the MST, we have to define a weight for eachef th Dinosaur 28098 21

edges of graph®. There are three types of weights.

Type A: when an edge is composed of two crest points, the weight

is one. Figure 7 shows the crest lines of the Bunny, Igea and Dinosaur

Red color is used for valleys and blue color for ridges. Fear th
Bunny’s valleys, we have sbt = 1 andS= 15. For Bunny's ridges,
we have sel = 2 andS= 20. For Igea’s and Dinosaur’s ridges and
TypeC: the rest of the edges have weight ten. These are composedvalleys we have sé¥l = 0.01 andS= 10, which were the defaults.
of two 'crest points by growth’. Note, that most of the features, if not all, of both surfacesiden-
tified and they have many important branches. Largest aunevat
The weights force the spanning tree to use all type A edges. If distribution is usually different, depending on the suefacn val-
necessary it uses type B edges. Type B edges connect typeed.edg leys and ridges giving different good thresholds For instance,
Type C edges connect type B edges. Bunny’s valleys are much more pronounced than its ridgess Th
The computation of the minimum spanning tree uses the Ktuska explains why differenM'’s are used.
algorithm [Cormen et al. 1993]. After the computation of M8T
we initially prune all edges of the tree of length one.

TypeB: when an edge is composed of one crest point and a 'crest
point by growth’ the weight is set to five.

Figure 8 shows how changing threshold M, that controls thel le
of maximality, affects the results. Sliding M fromQl to 6 can
delete many features keeping the most important but on tlyatwa

4.6 Branch Pruning can remove other important features like the crest line eretlr.

This step simplifies the features by iteratively pruningesa/small This method compares very well with Pauly’s and Gumhold's
branches. Experimentally pruning all branches of size uteto because it is more accurate as it extracts shape featumes asi
produces good results very fast. Pauly et al. [Pauly et 3P0 mathematical formula and not ad hoc methods;thus it cartifgien
suggest to count the size of all possible paths of a eachfeateite) ~ ©asier, without user interaction the features. Also, thelémenta-
and keep the longest. This is quite slow and there is no qtean tion itself is easier and direct as we do not make any assomgpti
that the longest path is the best path. In addition, it iseqnéirmal and especially the edge weights used for the spanning teeaiach

for a feature to be composed of various equally importamdires. simpler and intuitive.

4.7 Removing Small Lines

At this point the proposed method has terminated. Now, tlee us
if he/she wishes has the opportunity to remove small crassli
these can be either artifacts or just insignificant featutzsst line
removal is interactive and to assist the user a crest lireedigtri-
bution chart is provided. We name the threshold for maximiae |
size to removes.

5 Results

We have implemented the method as described and have tested i
on various point sampled models 6. Table 1 summarizes the tim
complexity that demonstrates the speed of the algorithnte Nt
we did not do any optimizations. We have experimented on the
Stanford Bunny (35905 points), a statue Igea (33587 poamtd)a
Dinosaur model (28098 points). Since we have point clouds, w
used a simple implementation of QSplat [Rusinkiewitz andaye
2000], a point cloud renderer, to render the results. On didgur
we have rendered the outcome of the first image color codeak Re
dering crest lines color coded did not produce nice imageause
every point is rendered as a rectangle. Therefore, everyiththe
feature lines are part of the surface, they are renderetes diver
the point cloud surface.

Pauly et al. [Pauly et al. 2003] and Gumhold et al. [Gumhold
et al. 2001] suggested to smooth the feature lines, usingliBes,
prior to visualization because this will produce nicer iresg ©)
Smoothing produces better feature lines, especially fodegng,
but these lines are no longer a part of the surface. They aatdd
very closely around the point cloud surface. This can corafi
tasks like simplification that can potentially make use @ftécon-
structed features because the features cannot be usettydirec

Figure 6: The models. (a) Stanford bunny, (b) Hygea and (€) Di
nosaur.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



(©

Figure 7: Results on Crest lines. Ridges are blue and vaileys
red. (a) Stanford Bunny, (b) Igea and (c) Dinosaur.

6 CONCLUSIONS AND FUTURE WORK

We have presented a complete, simple and automatic metheg-fo
tracting crest lines from surfaces represented by pointdso Ini-
tially, we convert the point cloud to an undirectional graming
the k-closest neighbor operation. This method approxisnate-
mal curvature on every point, identifies every crest poirt #ren
joins them using region growing. Minimum spanning tree isdus
for thinning the crest graphs. It is quite general and candeel wn
any type of point cloud surfaces.

We plan to utilize crest lines over point clouds to achieaes
preserving point cloud simplification and to assist in theedtep-
ment of new adaptive triangulation techniques, among sther
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