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We present a simple, automatic method for extracting feature
curves, called crest lines, from point clouds. Crest lines are surface
shape features having a mathematical background. Given an un-
structured point cloud as input, we pre-process the data to generate
some topological information by creating an undirectionalsurface
graph. The method starts with the approximation of normal curva-
ture on every point. Utilizing the crest point definition, the crest
points are identified. Region growth follows to implicitly connect
the crest points and create crest graphs. Finally, the computation of
minimum spanning trees for every crest graph and the pruningof
short branches create crest lines.
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Modern acquisition techniques, i.e. laser scanners, provide us with
a great amount of data sets. Their major characteristic is the ability
to produce sample points in the magnitude of millions. As a conse-
quence, point-sampled surfaces have emerged in the last years, as
an alternative representation to triangulated surfaces, especially for
the purpose of rendering. The surface of a 3D object is represented
by a set of sample points without any other topological informa-
tion. To display such models, various point rendering systems have
been developed [Pfister et al. 2000; Rusinkiewitz and Levoy 2000;
Zwicker et al. 2001; Alexa et al. 2001; Fleishman et al. 2003]. In
addition, processing applications such as simplification [Pauly et al.
2002a] and editing [Zwicker et al. 2002] have been introduced.

In this paper, we introduce a simple, automatic method for ex-
tracting shape features, called crest lines, from point clouds. These
have been used in various applications for over a decade. Crest
lines are useful in many fields because they identify vital features
of virtually any surface. Their mathematical definition is general
enough to include applications from different areas. They provide
us a satisfactory geometrical representation of importantphysical
properties such as ridge lines and valleys in the case of aerial im-
ages [Monga et al. 1997], or anatomical features in the case of med-
ical images [Khaneja et al. 1998; Thirion and Gourdon 1996].They
have been used, among others, for object registration [Guéziec and
Ayache 1992; Stylianou 2004], growth simulation [Andresenet al.
1998], automatic retrieval of anatomical structures [Declerck et al.
1995].2 Related Work
There are several methods proposed for extraction of crest lines or
otherwise defined features from surfaces. Related work regarding
crest lines includes Lengagne et al. [Lengagne et al. 1996] who de-
fine crest points as the zero crossings of the directional derivative of
the largest curvature in its direction along the edges of a triangulated
mesh, Guéziec [Guéziec 1993] extracts crest lines from B-spline
surfaces, Khaneja et al. [Khaneja et al. 1998] extract geodesic lines
on triangulated surfaces using user-specified start-end points that
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Figure 1: Method pipeline: extracting valley features. (a)Crest
point classification and region growing, (b) skinning, (c) removal
of small branches and (d) removal of small lines.

under certain constraints are crest lines. Thirion et al. [Thirion
and Gourdon 1996] extract crest lines as the intersection oftwo
surfaces. Ohtake and Belyaev [Ohtake and Belyaev 2001] com-
pute ridges and ravines using local differential geometry operators.
Also, Ohtake et al. [Ohtake et al. 2004] compute ridges and valleys
by first fitting an implicit polynomial to the surface. Hubeliand
Gross [Hubeli and Gross 2001] used a multiresolution approach
for feature extraction on triangle meshes. They developed vari-
ous classification operators used to identify a set of feature edges.
Stylianou [Stylianou 2003] has described an automatic method for
extracting crest lines from triangulated meshes. He used finite dif-
ferences for crest point classification and dilation, erosion for cre-
ating crest lines.

The most notable work involved with feature extraction from
point clouds are Pauly et al. [Pauly et al. 2003] and Gumhold et
al. [Gumhold et al. 2001]. Gumhold et al.’s method starts by creat-
ing the neighbor graph that goes as far as triangulating the surface
up to a certain degree. Covariance analysis is used for feature clas-
sification. This method categorizes the features into five categories
and computes a separate penalty weight for each feature. There-
sults are not so good because even though they detect features cor-
rectly they cannot detect all the features. A possible reason is that
the undetected features do not fall in any of the defined feature cat-
egories.

Pauly et al. describe a multiscale approach towards featureex-
traction where the main component is principal component analysis
for measuring surface variation and the assignment of confidence
weights. Their method performs quite well but has the disandvan-
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tage of being semi-automatic; the user has to specify some thresh-
olding parameters. Also, their implementation can suffer from in-
cosistencies on the k-closest neighbor computation due to sampling,
as it is clarified later.

The contribution of this work is:� Simple. We propose a method that is easy to implement and
use because it does not make use of any arbitrary weights and
thresholds.� Automatic. The method does not require user intervention to
successfully extract the surface features. User intervenes, if
desires after the termination of the algorithm, only to interac-
tively eliminate features to keep the most important.� Complete. It successfully identifies all of the surface’s fea-
tures. This is shown experimentally.� General. The method is general as it does not make any as-
sumptions regarding the type and geometry of the surfaces.3 Crest Line De�nition

A parametric surface is a mapping fromℜ2 to ℜ3, x(u) =(x(u;v);y(u;v);z(u;v))T �ℜ3, u = (u;v)�ℜ2 is the domain. Nor-
mal curvature measures the bending of the surface locally onevery
point x(u). Because there are infinitely many directions to com-
pute normal curvature, the standard approach is to compute only
the largest and smallest (principal) curvatures denoted byk1, k2,
respectively. These have associated directionst1, t2 which are or-
thogonal. Principal curvatures can be positive or negative, with
the sign denoting whether the surface bends outwards or inwards.
Largest curvaturek1 is larger than curvaturek2 in absolute value
(jk1j> jk2j). A crest point is a point of the surface where its largest
curvaturek1 is maximum in its corresponding direction. The defi-
nition of a crest point is

Dt1
k1(u;v) = 0 (1)

whereDt1
is the directional derivative in directiont1 2 ℜ2, k1 2 ℜ

is the largest principal curvature andt1 is its domain direction on a
point (of the surface) with domain coordinates(u;v).

Crest points implicitly trace lines on the surface denoted as crest
lines. Crest lines are shape features with the main characteristic
of using local information to yield a global description of the sur-
face. Even though crest lines are local shape features, whenthey
are viewed together they partially describe the surface.

Crest points trace ridges (whenk1 is positive) and valleys (when
k1 is negative) on the surface. Even though we can trace ridges and
valleys concurrently, it is as useful to trace only ridges orvalleys,
especially because ridges have different characteristicsthan valleys,
like their k1 curvature ranges, even though they are features of the
same surface.

Figure 2 shows an example of a crest line. Because a crest point
has maximum largest curvature in its corresponding direction, a
crest line naturally follows the direction of the smallest curvature
of its composing crest points.4 OVERVIEW
The input is a surface represented by an unstructured point cloud
P= fpig 2ℜ3. This introduces several ”problems” in applying the
crest point definition directly. Normal curvature estimation cannot
directly be achieved because of the lack of structure. Therefore we
preprocess the data, with aim to add some topological information,

Figure 2: A crest line example.

by transforming the point cloud into an undirectional graph. In ad-
dition, our method assumes that on every point we knowa priori its
normal vector. This is not a problem because there are several tech-
niques in the literature about normal vector estimation [Hoppe et al.
1992; Pauly et al. 2002b]. Furthermore, laser scanners thatprovide
us with several data sets, provide the normal vectors, as well.

After, topological information is created for the point cloud, the
method for calculating crest lines proceeds as follows:

1. Approximate normal curvature on every point of the surface.

2. Identify all crest points.

3. Apply region growing around crest points to create crest
graphs.

4. Compute a minimum spanning tree for every crest graph.

5. Prune short branches.

6. Remove small crest lines, to eliminate artifacts or smallfea-
tures (optional).

Figure 1 shows an example of the method pipeline. First, we
identify crest points (red points) and perform region growth (blue
points). Second, we compute the minimum spanning tree of all
remaining graphs. Third, we prune short branches. Finally,we
remove small lines. This is interactive and the size of the smallest
line to remain is the user’s decision. Usually, small features are
considered artifacts.4.1 Generating topologial information
We impose structure by converting the point cloud to an undi-
rectional graph. We use the k-closest neighbors operator [Pauly
et al. 2003; Gumhold et al. 2001] to create the local neighborhood
graph for every pointp; this connectsp with the 1-ring neighbor-
ing points. ANN library [Arya et al. 1998] is used to approximate
k-closest neighbors in near linear time. This graph cannot be used
directly, though, because it suffers from sampling inconsistencies.
When the sampling is not uniform with regard to Euclidean distance
between samples, problems emerge. Figure 3a shows an example.
All or most of the closest neighbors (outlined circles) of point p
(filled circle) are located to one side ofp and not around it as they
should. This drawback results in a bad approximation of normal
curvature on those points. This is solved by getting more neigh-
bors and filtering them to keep neighbors that are located around
the point (figure 3b).

The filtering (figure 4) of the closest neighbors of pointp is:� Compute planeP passing through pointp and having the nor-
mal vector atp as its normal.� Define an orthonormal coordinate system onP with p as its
origin and two arbitrary unit vectors(x;y) in P.
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Figure 3: 2D example. The closest Neighbors are in the rectan-
gle.(a) k-closest neighbor operator and (b) after filtering.

y

x

Figure 4: 2D example. Filtering k-closest neighbors. The dashed
lines show the intervals.� Project (using orthogonal projection) all neighbors of point p

onto planeP and represent their projections with respect to
the local coordinate system inP.� The unit vectors of the local coordinate system divide
the plane into four quadrants(x+;y+), (x�;y+), (x�;y�),(x+;y�).� Select at least two closest points located in each quadrant.
These are the neighbors ofp.

The closest points of each quadrant are selected using theirpolar
angles, depending on the quarter they are located, and theirdistance
to pointp. The idea is that the points to be selected must have dif-
ferent angular distance from an axis. If the angular distance of two
points is the same, then the more distant point is not really aneigh-
bor and is useless for normal curvature approximation. Therefore,
supposing we want to get two points per quadrant we use intervals
of 45 degrees; then we get the closest point with angular distance
between(0;45℄ degrees and the closest point between(45;90℄ de-
grees. Selection of three points means intervals of 30 degrees and
so on. In the case where two or more points equidistant in an inter-
val we select all of them. In this work, we select about two points
per quadrant. It is reasonable to select in total eight points because
the mean vertex star size in triangulations is six.

Figure 4 shows an overview of this algorithm. This algorithm
works well with the assumption that sampling is relatively dense.
Otherwise, we would have to go far to find neighbors, violating the
prerequisite that all points of the neighborhood must belong to the
same connected region of the underlying surface. If it is neces-
sary to go far, a simple heuristic to avoid this problem is to look
for jumps in the directions of the normal vectors of the neighbors
of point p. In addition, when points are on the boundary it is not
possible to locate neighbors in all four regions. This can serve as
a criterion for boundary point identification. Finally, we filter the
neighbors to keep only few neighbors, quite close and usefulfor
curvature approximation.

Even though the neighbor graph, after filtering, is good, it is not
consistent. Creating an edge from pointp1 to pointp2 does not nec-
essarily mean that an edge fromp2 to p1 will exist. This is a natural
outcome of the whole process because the closest neighbor opera-
tion, that reminds us somewhat the directed Hausdorff distance, is
not a metric. We solved this inconsistency by visiting everypoint
p, getting all its neighborspi and assigningp aspi ’s neighbor, if it
was not already a neighbor.

u0

u1

u2

u3u4

u5

u6

t1-t1

Figure 5: Crest point classification.4.2 Curvature Approximation
The problem with a point graph is that we cannot explicitly calcu-
late derivatives and curvatures on every point. Therefore,prior to
crest point classification, we locally parameterize the surface by fit-
ting a quadric on the neighborhood of every point and calculating
its principal curvatures and directions [Farin 2001; Hamann 1993].
The local neighborhood of a pointp of a point graph contains all
the points (star(p)) that share an edge withp (1-ring points). The
local domain values ofp and star(p) are calculated by projecting
pointsp and star(p) on the plane defined by the normal vector ofp.
The normal vector ofp is either estimated or comes with the data.
Note that the local domain values ofp and star(p), which now are
co-planar points, are still a graph.

Note that the local approximations do not guarantee global
smoothness or continuity. But this method is proven experimen-
tally that best approximates the principal curvatures. In addition, a
whole surface fitting method is not a necessity since a crest point is
a local surface feature. Also, it is not easy, if possible, tofit a sur-
face to a point cloud since the exact topology is not really known.
Even triangulation algorithms can fail for certain point clouds.4.3 Crest point Classi�ation
The classification of crest points is achieved using finite differences
on the domain of every pointp. For every pointp we have already
computed its principal curvatures. We are interested only on the
largest principal curvaturek1 and its domain directiont1. We also
treat all the domain values of thestar(p) ui as vectors originating
from u0 (the domain ofp).

The curvaturek1 should be maximum in its directiont1. There-
fore, supposeui is closer tot1 and u j is closer to�t1. Then If(k0

1)2� (ki
1)2 > M and (k0

1)2� (k j
1
)2 > M thenp is a crest point.

ki
1 is the largest principal curvature of pointi. The thresholdM

controls the level of maximality. It is used to reduce numerical er-
rors and threshold on the number of crest points to keep the most
important. A good value isM = 0:01.

For example using figure 5, we get the largest curvatures on
points u2, u5. If the largest curvature on vertexu0 satisfies the
criterion, thenu0 is a crest point.4.4 Region Growing
So far we have identified the crest points. If the surface(s) were re-
ally smooth, crest points would implicitly have created allthe crest
lines. But we do not totally achieve this goal. Noise and irregulari-
ties of the point cloud play an important role. The approach towards
the solution is to use the crest points identified and performa region
growth around them. Using region growth we implicitly connect all
the crest points and create crest regions. For every crest point p, we
classified as ’crest points by growth’ all the points sharingan edge
with p and are not crest points.
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4.5 Minimum Spanning Graph
Every subgraph must be skinned to be left with crest lines. Weskin
all crest graphsQ by computing the minimum spanning tree (MST)
of each and every graph. MST is the minimum cost tree, based
on some edge cost, that visits all points of the graph. Prior to the
computation of the MST, we have to define a weight for each of the
edges of graphsQ. There are three types of weights.

Type A: when an edge is composed of two crest points, the weight
is one.

Type B: when an edge is composed of one crest point and a ’crest
point by growth’ the weight is set to five.

Type C: the rest of the edges have weight ten. These are composed
of two ’crest points by growth’.

The weights force the spanning tree to use all type A edges. If
necessary it uses type B edges. Type B edges connect type A edges.
Type C edges connect type B edges.

The computation of the minimum spanning tree uses the Kruskal
algorithm [Cormen et al. 1993]. After the computation of theMST
we initially prune all edges of the tree of length one.4.6 Branh Pruning
This step simplifies the features by iteratively pruning several small
branches. Experimentally pruning all branches of size up toten,
produces good results very fast. Pauly et al. [Pauly et al. 2003]
suggest to count the size of all possible paths of a each tree (feature)
and keep the longest. This is quite slow and there is no quarantee
that the longest path is the best path. In addition, it is quite normal
for a feature to be composed of various equally important branches.4.7 Removing Small Lines
At this point the proposed method has terminated. Now, the user
if he/she wishes has the opportunity to remove small crest lines;
these can be either artifacts or just insignificant features. Crest line
removal is interactive and to assist the user a crest line size distri-
bution chart is provided. We name the threshold for maximum line
size to removeS.5 Results
We have implemented the method as described and have tested it
on various point sampled models 6. Table 1 summarizes the time
complexity that demonstrates the speed of the algorithm. Note that
we did not do any optimizations. We have experimented on the
Stanford Bunny (35905 points), a statue Igea (33587 points)and a
Dinosaur model (28098 points). Since we have point clouds, we
used a simple implementation of QSplat [Rusinkiewitz and Levoy
2000], a point cloud renderer, to render the results. On figure 1
we have rendered the outcome of the first image color coded. Ren-
dering crest lines color coded did not produce nice images because
every point is rendered as a rectangle. Therefore, even though the
feature lines are part of the surface, they are rendered as lines over
the point cloud surface.

Pauly et al. [Pauly et al. 2003] and Gumhold et al. [Gumhold
et al. 2001] suggested to smooth the feature lines, using B-splines,
prior to visualization because this will produce nicer images.
Smoothing produces better feature lines, especially for rendering,
but these lines are no longer a part of the surface. They are located
very closely around the point cloud surface. This can complicate
tasks like simplification that can potentially make use of the recon-
structed features because the features cannot be used directly.

Table 1: Time Complexity in seconds on a Mobile Intel Pentium
III, 1GHz.

Model Points Time
Bunny 35905 27
Igea 33587 24

Dinosaur 28098 21

Figure 7 shows the crest lines of the Bunny, Igea and Dinosaur.
Red color is used for valleys and blue color for ridges. For the
Bunny’s valleys, we have setM = 1 andS= 15. For Bunny’s ridges,
we have setM = 2 andS= 20. For Igea’s and Dinosaur’s ridges and
valleys we have setM = 0:01 andS= 10, which were the defaults.
Note, that most of the features, if not all, of both surfaces are iden-
tified and they have many important branches. Largest curvature
distribution is usually different, depending on the surface, on val-
leys and ridges giving different good thresholdsM. For instance,
Bunny’s valleys are much more pronounced than its ridges. This
explains why differentM’s are used.

Figure 8 shows how changing threshold M, that controls the level
of maximality, affects the results. Sliding M from 0:01 to 6 can
delete many features keeping the most important but on the way it
can remove other important features like the crest line on the ear.

This method compares very well with Pauly’s and Gumhold’s
because it is more accurate as it extracts shape features using a
mathematical formula and not ad hoc methods;thus it can identify
easier, without user interaction the features. Also, the implementa-
tion itself is easier and direct as we do not make any assumptions
and especially the edge weights used for the spanning tree are much
simpler and intuitive.

(a) (b)

(c)

Figure 6: The models. (a) Stanford bunny, (b) Hygea and (c) Di-
nosaur.
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Figure 7: Results on Crest lines. Ridges are blue and valleysare
red. (a) Stanford Bunny, (b) Igea and (c) Dinosaur.6 CONCLUSIONS AND FUTURE WORK
We have presented a complete, simple and automatic method for ex-
tracting crest lines from surfaces represented by point clouds. Ini-
tially, we convert the point cloud to an undirectional graphusing
the k-closest neighbor operation. This method approximates nor-
mal curvature on every point, identifies every crest point and then
joins them using region growing. Minimum spanning tree is used
for thinning the crest graphs. It is quite general and can be used on
any type of point cloud surfaces.

We plan to utilize crest lines over point clouds to achieve feature
preserving point cloud simplification and to assist in the develop-
ment of new adaptive triangulation techniques, among others.Referenes
ALEXA , M., BEHR, J., COHEN-OR, D., FLEISHMAN , S., LEVIN ,

D., AND SILVA , C. T. 2001. Point set surfaces.IEEE Visual-
ization 2001, 21–28.

ANDRESEN, P., NIELSEN, M., AND KREIBORG, S. 1998. 4D
shape-preserving modelling of bone growth. MICCAI.

ARYA , S., MOUNT, D. M., NETANYAHU , N. S., SILVERMAN ,
R., AND WU, A. 1998. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions.JACM: Journal of
the ACM 45(6), 891–923.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1993.
Introduction to Algorithms. MIT Press.

DECLERCK, J., SUBSOL, G., THIRION, J. P.,AND AYACHE, N.
1995. Automatic retrieval of anatomical structures in 3d medi-
cal images. InCVRMed’95 Lecture Notes in Computer Science,
N. Ayache, Ed., vol. 905. Springer-Verlag, 153–162.

(a) (b)

(c)

Figure 8: Sliding threshold M. (a) M=0:01, (b) M=3, (c) M=6.

FARIN , G. 2001. Curves and Surfaces for Computer Aided Geo-
metric Design, 5th. Morgan-Kaufmann.

FLEISHMAN , S., COHEN-OR, D., ALEXA , M., AND SILVA , C. T.
2003. Progressive point set surfaces.ACM Trans. Graph. 22, 4,
997–1011.
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