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Abstract 

General purpose GPU programming has become a topic of 
intensive research recently. In this context, GPUs are 
typically used as general-purpose stream processors. 
Although is usually suites most of existing algorithms, it is 
far from ideal for ray tracing as it generates extensive 
memory bandwidth. 
We take an alternative approach and instead implement the 
entire algorithm in a single pass, as in classical ray tracing. 
This allows reducing memory bandwidth and increasing the 
performance of the algorithm. The results are demonstrated 
on several test scenes.  
Keywords: Ray Tracing, Interactive Graphics, GPGPU, GPU 
Ray Tracing 

1. INTRODUCTION 
As GPU evolved to support programmable features, general 
purpose GPU programming became a field of intensive 
scientific research. The number of projects using GPU for 
various general purpose computations has been rapidly 
increasing in recent years. A site exists [1] where general 
purpose GPU news are regularly published. GPU 
computations has been applied to different domains, ranging 
from rendering-related to those which exhibit no direct 
connection to rendering problems.  
The first class of problems includes rendering of translucent 
objects [2], classical radiosity [3], rendering caustics [4], [5], 
and, of course, GPU ray tracing. The second class of 
problems includes fluid dynamics simulation [6], [7], matrix 
multiplication [8], image and video processing [9], FFT [10], 
neural networking [11] etc. See [1] for more domains and 
solutions. Most of these solutions use the streaming 
programming approach [12] and envision a GPU as a 
streaming processor.  

In this approach, the algorithm is usually broken into 
small parts – kernels, having no internal state, which take 
streams and also place streams into their output. A stream in 
this approach is a (possibly endless) sequence of uniform 
structures, resembling a file. At each step, a kernel takes a 
chunk from each of the input streams, processes it, and 
(possibly) puts one data chunk in each of its output streams.  

This paradigm can be easily mapped to modern GPU 
architecture. Kernels are easily mapped to pixel shaders. A 
pixel shader is a GPU program that is run for each of the 
display image pixels independently. Independence of pixel 
thus allows executing the shaders for different pixels in 
parallel. Typically, modern graphics processors have from 8 
to 48 pixel pipelines.  

Streams are mapped to textures. Textures also allow random 
access to some kind of data, which can also be used to access 
static data during kernel execution.  
“Conditional” kernels, that is, kernels, which can output to a 
stream depending on a certain condition on input data, are 
also mapped to shaders. However, an additional pass is 
performed after executing such a shader. This pass determines 
whether the input actually exists or whether it doesn’t. This 
can usually be deduced from the output itself. Depending on 
whether the logical output exists, it writes the appropriate 
depth value. During the following shader execution, the 
shader is executed only for pixels which have the correct 
depth value, thus reducing the rendering time considerably 
because of “early depth kill”. This write to the depth buffer 
cannot be performed in the main shader since it is usually also 
executed conditionally, and writing to the depth buffer in a 
shader prevents “early depth kill”. In order to define whether 
or not there are pixels for which to execute the shader (i.e. the 
condition is “true”), occlusion queries are used [13].  
As this framework seemed very natural on first GPUs, which 
were able to execute only short and simple pixel shaders, it 
has been applied to solving many general purpose 
computation tasks on GPU, including ray tracing. The first 
GPU ray tracing solution has been implemented in the context 
of this framework. It was envisioned by Purcell et. al in [14] 
and implemented for the first time in [15] for the photon 
mapping algorithm. The entire algorithm, however, could run 
on GPU only very slowly due to the limitations of graphics 
processors of that days (GeForce FX 5900 was used). Later, 
several more GPU ray tracing works appeared, which were all 
implemented using streaming programming paradigm, which 
compared using different acceleration structures for ray 
tracing. 
Although this implementation seems quite natural and works 
on a wide range of modern graphics processors, it has been 
proved to have significant drawbacks.  
First of all, it creates prohibitively extensive memory 
bandwidth by reading and writing intermediate variables to 
textures at every pass. Being justified for the previous-
generation graphics cards, which had few registers and were 
able to execute only short shaders, it seems unfeasible on 
modern graphics processors, which have 32 registers and can 
run shaders of up to 512 instructions [16].   
Second, it requires a very large number of rendering passes. 
As most of the passes are dependent and require an occlusion 
query operation, this, theoretically, can create a bottleneck. In 
practice, however, this is not a problem since the graphics 
memory bus seems to saturate much faster. 
Extensive memory bandwidth created by reading and writing 
to textures makes developers to use different tricks on order 
to reduce the bandwidth. This, in turn, leads to cutting the 
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number and precision of intermediate variables, which either 
results in computational overhead or leads to loss of 
precision. All this leads to significant underuse of GPU 
computational possibilities in application to ray tracing. As a 
result, the GPU ray tracers perform much slower compared to 
their CPU counterparts. 
On the other hand, modern graphics processors, which 
completely support OpenGL 2.0 feature set [17], provide 
efficient support for complex flow control instructions, such 
branching and looping with early break instruction. In order 
to be efficient, GPU ray tracing has to make use of all these 
features of modern graphics processors. 
In this paper, we take a completely different approach to 
implementing ray tracing on a graphics processor. In contrast 
to streaming programming approach, which splits the 
algorithm into a number of passes, we implement the classical 
ray tracing algorithm in a single pass. Our implementation 
supports reflections and simple Phong shading [18]. It also 
runs faster than any of the existing GPU grid ray tracers and 
has a performance roughly comparable to that of an optimized 
CPU ray tracer. Our approach also supports moving objects, 
which is connected with a number of difficulties in other 
approaches. 
The rest of the paper is organized as follows. Section 2 
provides a brief overview of the classical ray tracing 
algorithm various subdivision structures used in it. Section 3 
describes our approach and its implementation. Section 4 
discusses some algorithmic issues connected with 
implementing classical ray tracing on GPU. The performance 
of our GPU ray tracer is demonstrated in section 5. Section 6 
provides the discussion of the performance and outlines 
possible future work in this field.  

2. CLASSICAL RAY TRACING ALGORITHM 
Although ray tracing has been used for different purposes 
long before emergence of computer graphics and even 
computing, it had not been before 1980 that it was used for 
rendering purposes. 
Whitted et. al [19] was the first to use ray tracing to render 
physically accurate images. Although using ray tracing for 
rendering had been proposed before, those proposals required 
a prohibitively large (especially on that-time computers) 
amount of computations because of the need to intersect 
every ray with every possible object (i.e., triangle) in the 
scene. What Whitted proposed were BSP trees. They allowed 
significantly reducing the amount of computation needed, 
since a ray had to intersect significantly less objects. Research 
has shown that spatial subdivision structures give acceleration 
by more than a factor of 100 on scenes complex enough.  
The classical algorithm is widely known, however, we repeat 
it here. For every screen pixel, a ray is traced, and the first 
ray-object intersection is found. If the object intersected does 
not exhibit reflective or refractive properties, shadow rays are 
cast towards point light sources to define the color of the 
point. If the primary ray encounters a purely reflective 
surface, it is reflected and the entire procedure is repeated. 
For the refractive surface, two rays are spanned: the reflective 
ray and the refractive ray. In order for the algorithm to 
terminate in a finite time, either the maximum ray tracing 
depth is set or there exists a minimum intensity at which no 
further tracing is performed. 
In 1985, Fujimoto et. al [20] proposed to use uniform grid 
subdivision structure for ray tracing. For the uniform grid, an 
efficient traversal algorithm exists. However, due to its 

uniformity, it demonstrates performance decrease on scenes 
with non-uniform object distribution. 
As uniform grid, unlike BSP tree, does not require any kind 
of recursion or stack to be traversed, it is the primary 
candidate for GPU ray tracing implementation. It has been 
used in first GPU ray tracers. Although it has been proved to 
be not the fastest one in subsequent implementations, it is 
used in our approach. 

3. OUR IMPLEMENTATION 
In our approach, single pass uniform grid ray tracer is used. 
Single pass means that the entire ray tracing is done in a 
single pixel shader.  
In order to provide support for moving objects, two-level 
spatial subdivision is used. At both subdivision levels, the 
uniform grid is used as the subdivision structure. The first 
level subdivision (also further referred to as “scene 
subdivision”) is a uniform grid, which is constructed for the 
bounding boxes of the scene instances. An instance is defined 
as an object pointer and a transformation matrix. The object 
pointer indicates which object is instantiated (hence the name 
instance), and the transformation matrix places the object in 
the scene. As multiple instances can reference a single object, 
memory space required to store geometry can be saved for the 
scene which contain a large number of the same objects.  
Each object has an associated bounding box and its own 
subdivision structure (also referred to as “second-level 
subdivision”). This subdivision structure is a grid which is 
constructed for the triangles of the object. The entire 
approach to handling moving objects is similar to one used in 
some computer games, with uniform grids used instead of 
BSP trees. 
As the number of various scene objects can be high, we are 
unable to hand-tune the size of the uniform grid for each of 
the scene objects. Therefore, we typically use a simple 
formula to compute the size of the grid by default. If hand-
tuned grid size is used in some of the test examples, it is 
stated explicitly.  
Although some traversal overhead is generated by two-level 
subdivision structure, it is completely offset by the quality of 
the grids created even without any manual tuning.  
The ray tracing algorithm proceeds as follows. For each 
screen pixel, a view ray is computed, which is cast into the 
scene. Due to some limitations of modern graphics 
processors, we were able to implement only one procedure 
for ray casting, so the same ray tracing procedure is used for 
both primary and shadow rays.  
The ray is first intersected with the scene bounding box. The 
data of the scene bounding box as well as the scene grid 
coefficients (see below) are stored in the shader uniform 
variables. If the ray does not intersect the scene bounding 
box, it is not traced further and no intersection is reported. If 
this is a primary ray, the pixel is simply colored with 
background color. 
If the ray intersects the bounding box, its segment is clipped 
by the scene bounding box and proceeds to grid traversal. 
Grid traversal is first initialized, and at each traversal step, the 
ray either proceeds to the next voxel or terminates the 
traversal.  When a ray encounters an empty voxel, it simply 
proceeds further. If, on the contrary, it encounters a non-
empty voxel, it is successively intersected with each object of 
the grid. For the scene-level subdivision, these are object 
instances. For each instance intersection, the ray is 
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transformed to the local coordinate system of the object. Then 
it is tested against the object bounding box. In case of 
intersection, the ray segment is again clipped and proceeds to 
second-level grid traversal. This traversal is performed in the 
same way as the first-level subdivision. However, instead of 
instance intersections, the ray is tested against triangles. 
The details of grid traversal are described below, in section 4. 
The triangle intersection test is, in fact, a modified barycentric 
test [21]. First, the intersection point ray parameter is 
calculated. It is tested against the current segment. If it does 
not belong to the current ray segment, no intersection is 
report. Otherwise, the intersection point and barycentric 
coordinates are computed, and the latter are tested against the 
[0, 1] segment. The intersection takes place only if all 
barycentric coordinates are between 0 and 1. 
The details of ray-triangle intersection are elaborated in 
section 4. 
All attributes of the intersection point are computed only after 
the intersection point has been computed. This is performed 
for the sake of efficiency. 

 
Figure 1: A Hind24 scene rendered with our GPU ray tracer. 

At ATI X1800 XL, it renders at 6 fps. 

4. SOME ALGORITHMIC ISSUES 
As modern graphics processors are significantly different 
from CPUs, the algorithm must be designed in a different 
way than for a central processor. Here we discuss some of the 
issues of algorithm design and implementations to achieve 
more effective performance on GPU. 
First of all, general problems, such as addressing and texture 
allocation, are discussed. Then the discussion proceeds to 
some particular problems, such as implementing grid 
traversal and triangle intersection. The results are given in 
section 6. 

4.1. General Issues 
In order to perform ray on a scene using the graphics 
processor, the scene data must be first loaded to the graphics 
memory. The only way to access graphics memory in a pixel 
shader running on a modern graphics processor is to access a 
texture. Fortunately, there are no explicit limitations on a 
number of texture accesses.  
The scene data, therefore, has to be written into the texture. It 
is unfeasible, however, to use a single texture to store scene 
data. First of all, the size of the texture is limited. The 
maximum extent of a 2D texture is 4096. As 1D textures have 
no more than 4096 elements, storing scenes in such textures 

is completely unfeasible. Although it is possible to use a 3D 
texture to store the entire scene, it is again unfeasible due to 
two reasons. First, there will be significant problems with 
addressing, as (at least) 2 floating point coordinates are 
needed. Second, different scene data require different levels 
of precision, and it is unfeasible to store all of them with the 
same precision. For example, geometry data require at least 
32 bit floats to store in order not to exhibit “holes” in 
geometry. 2D addresses, however, can be stored with 16-bit 
precision (halves), as it is shown below. 
2D textures may seem of insufficient capacity. However, as 
modern hardware is optimized for 2D texture access and 2D 
texture addressing has less overhead than 3D texture one, 2D 
textures are used, as their capacity is enough to store scenes 
of moderate complexity. 
Most of existing GPU ray tracing approaches use 2D textures 
as virtual 1D arrays. They store addresses as single-precision 
floating point values and translate them into 2D values for 
actual texture fetches. While that simplifies programming, it 
also creates address translation overhead. As address 
translation may involve operations which cannot be easily 
vectorized, and the number of address translations per ray is 
large enough, this overhead tends to be significant.  
In order to overcome this, we use 3D addressing for grids and 
2D addressing for other data. This eliminates address 
translation overhead. However, it introduces some other 
obstacles. Each address requires now 2 floating point values 
to store, which may require more memory and more 
bandwidth. However, we found out this overhead to be not of 
great importance. Address data are often stored in separate 
textures (as indices of triangle vertices), and they are stored 
with 16-bit precision, which means that no memory or 
bandwidth overhead is created.  
Texture allocation is another problem. As the scene now 
contains multiple objects, and the number of textures 
available is limited, a single texture must be shared between 
similar data from multiple objects. Therefore, texture 
allocation must be performed. However, various types of data 
require various allocation types. For example, 3D grids 
require allocation of contiguous 3D data blocks, while 
triangle data may be allocated in multiple blocks containing a 
certain number of triangles each. Currently allocation is 
performed by using custom allocation code for different types 
of textures; however, we are now switching to performing it 
in a separate library.   

4.2. Grid Traversal 
Using uniform grids is a common approach in GPU ray 
tracing. From the first sight, grids seem to be the most GPU-
friendly subdivision structure. Modern graphics processors 
provide support for 3D textures, which is the natural way to 
store grid data.  
In our approach, we store grid data in a 3D texture. First of 
all, as grid texture must be shared between multiple objects, it 
must be allocated. A simple approach for 3D texture 
allocation is used. The entire 256 x 256 x 256 texture is split 
into blocks of size 16 x 16 x 16. For each block, a flag is 
maintained whether it is currently allocated or not. If a grid 
data block of a specific size needs to be allocated, the number 
of 16x16x16 blocks required to contain is computed.  Then 
the contiguous amount of these blocks is allocated for the grid 
data. 
For the grid traversal itself, we use a variation of 3DDDA 
algorithm [20]. As modern graphics hardware does not 
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provide implementation for fast dynamic indexing of vector 
components, no leading direction is selected. The ray 
direction is used as a leading one instead. Though it results in 
some computational overhead, it can be efficiently 
implemented in GPU using fast vector operations.  
The algorithm is described in detail in the pseudocode 
provided in figure 2.  

vec3 signDir, steps, voxSeg, nextTs, vc; 
float vstart, vend, gridt; 
initTraversal(grid, ray, start, end) { 
  gridt = end; 
  signDir = sign(k) / l; 
  steps = abs(l / k); 
 vc = ceil((r0g + kg * start) / l) * l; 
  nextTs = (vc + step(0, signDir) – r) / k; 
  vstart = start; 
  vend = min(nextTs.x, nextTs.y, nextTs.z); 
} 
 
nextVoxel() { 
  t = vend; 
  mask = step(nextTs, t); 
  vc += mask * signDir; 
  nextTs += steps * mask; 
  vstart = t; 
  vend = min(nextTs.x, nextTs.y, nextTs.z); 
} 
 
bool finished() { 
  return vend >= gridt;   
} 

 
bool traverseGrid(grid, ray, segment) { 
  s = clip(grid.box, ray, segment); 
  if(!empty(s)) { 
    initTraversal(grid, ray, s); 
    do { 
      v = gridVoxelAt(vc); 
      if(v.nObjects != 0) { 
        if(intersectTrigs(ray, vstart, vend, v.addr)) { 
          update t; 
          return true; 
        } 
      }  //end of if() 
    } while(!finished()) 
  } else  
   return false; 
} 

Figure 2: The pseudo code of our grid traversal algorithm. 

Fortunately, we were able to design a grid traversal approach 
which results in encoding the entire grid data in only 2 3D 
vector coefficients. These grid coefficients are computed 
using the following formulae: 

a = NL / Δl, 
b = c0 – g0NL / Δl. 

The coefficients in the formulae have the following meaning: 
   L – the size of the grid in world coordinates. 
   N – the number of voxels along each dimension 
   c0 – the address of the texture portion allocated to the grid 
   Δl – the “size” of a single 3D texel in texture coordinate. 
Since the size of the entire texture in texture coordinates is 1, 
Δl would be usually 1/256, that is, inverted number of 
“voxels” along a single grid texture dimension. 
   g0 – the origin of the grid in the world coordinates. 
These coefficients are applied to ray coordinates in the 
current coordinate system (which is either the world 
coordinate system for the scene grid or the local coordinate 
system for the object grid). The transformed ray data are 
computed using the following formulae: 

r0g = ar0 + b , 
kg = ak . 

Then the algorithm described in the pseudocode in figure 2 is 
applied for ray-grid traversal. Whenever a non-empty voxel 
is encountered, all objects contained in it are successively 
intersected. 
This algorithm is, of course, applied on the 2-level basis. 
First, it is applied for scene grid traversal, and then for the 
object grid traversal. The actual code for grid traversal is a 
bit different for two levels, however. Current graphics 
processor available supports only 4 nesting loops, which is 
not enough to use the same algorithms at both levels (as 1 
loop is required at each level for both grid traversal and 
successive object intersections, and 1 loop is required for a 
high-level ray tracer, totaling to 5 nested loops). For the 
object-level, as the cost of ray-triangle intersection are 
relatively low, a common 2-loop approach is used. For the 
grid traversal, however, another approach is used. Both grid 
traversal and scene object intersection is done in one loop. At 
each iteration, the current action (further traverse or intersect 
an object) is selected and then performed. It requires an 
additional if statement. Although it may result in some 
overhead, we’ve found out that it is very little, and that this 
technique can be applied. 

4.3. Triangle Intersection 
For the triangle intersection itself, the barycentric test is used 
[21].  Originally, the projection plane (one of the coordinate 
planes) has been chosen for the triangle before the actual ray 
tracing (that is, at the preprocessing stage). During the 
intersection, the ray would have been projected to that plane 
and the coordinates of the ray projection would be used for 
computation of barycentric coordinates.  
This, however, is impossible for graphics hardware, as it 
provides no support for dynamic indexing. Therefore, a full 
set of ray coordinates needs be used for the barycentric test 
computations. As such, the test can benefit from vector 
instructions, such as dot products, available on modern 
graphics hardware.  
Since modern GPUs are designed to work with 4D vectors, it 
is useful to write the entire test in terms of 4D vectors (ATI 
cards have separate units for performing 3D vector / scalar 
instructions; however, implementing the test in 3D vectors 
resulted in a performance lost even on ATI cards). The 3D 
vectors are extended to 4D as follows. A positional vector 
(such as ray origin or an intersection point) gets the 4th 
coordinate (further referred to as w) equal to 1, while the 
directional vector (a normal or a ray direction) gets the 4th 
coordinate equal to 0. The plane with the equation Ax + By + 
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Cz + D = 0 is written in the form of (A, B, C, D). As the 
equation is specified only up to the constant factor, we use 
various normalizations for the plane equation discussed 
below. 
The triangle is actually represented as a set of 4 planes. 
Actually, 3 planes are enough, but the 4th is still stored. Each 
plane is stored in a separate texel of a 4-component 32-bit 
precision floating point texture. The first plane represents the 
triangle plane. It is normalized so that A2 + B2 + C2 = 1. 3 
other  planes are orthogonal to the triangle plane and actually 
form the sides of the triangles in intersection with the triangle 
plane. The normals of these planes are directed inside the 
triangle and they are normalized so that A2 + B2 + C2 = h2, 
where h is the height of the triangle to the respective triangle 
side.  
In this setting, the barycentric coordinate of a specific point 
lying in the triangle plane can be computed by a simple dot 
product of the triangle side 4D vector and the intersection 
point 4D vector. The t-value of the intersection point is 
simply a negated relation of dot products of the triangle plane 
vector and the ray origin and direction, respectively.  
The entire ray-triangle intersection code is presented in 
figure 3. 
float t = planeTime(pl, r); 
  if(s.start <= t && t <= vv.z) { 
    vec4 ttc = vc.xyxy + vec4(TEX_INCR_TRIGS, 0.0, 2.0 * 
TEX_INCR_TRIGS, 0.0); 
  vec4 p = pointAt(r, t); 
  Plane pa = planeAt(ttc.xy);  
  float la = dist(pa, p); 
  Plane pb = planeAt(ttc.zw);  
  float lb = dist(pb, p); 
  float ifl = step(4.0, dot(vec4(float(1.0), float(la >= 0.0), 
float(lb >= 0.0),   float(la + lb <= 1.004)), vec4(1.0, 1.0, 1.0, 
1.0))); 
} 

Figure 3: Ray-triangle intersection pseudocode. 

Note it is provided here with a number of optimizations. The 
entire set of variables updated after each triangle intersection 
is packed in a single 4D vector variable for the sake of 
efficiency. A complicated expression is used to determine 
whether or not the ray intersects the triangle. Originally, we 
used a simple sequential “and” expression. However, we 
replaced it with the one above for the sake of efficiency. For 
the same reason, the entire portion of code after computation 
of the plane intersection t-value and testing it against the 
segment is placed inside a conditional expression. While this 
expression is simply ignored on NVIDIA graphics cards, it 
yields about 10% additional performance on ATI graphics 
boards since the latter provide a special execution unit for 
conditional and loop statements. 
Another question is choosing a data layout for storing 
triangles. One way is to use a common approach and store 
separate triangle data for each voxel. This could bring 
performance benefits; however, it is likely to increase the 
storage requirements greatly as a single triangle may be 
shared between multiple voxels (and it is usually so for a fine 
enough subdivision). We have therefore chosen to store 
triangle data in a separate texture, in which every triangle is 

stored only once. Another texture holds lists of references to 
the triangles. The lists are contiguous for each voxel, and the 
list of references of each voxel occupies only a single line, 
not stranding to the next line. This allows us to switch to the 
next triangle (or the next object) by simply incrementing the x 
coordinate of the texture address. This also allows reducing 
the overhead of additional reference since the addresses are 
stored in a 2-component form. As 16-bit floating point values 
are used to store addresses, only little amount of memory is 
required to store addresses, no more than normally on a PC 
for storing pointers. On the other hand the storage overhead 
for triangle data is greatly reduced. The same approach is 
used for storing pointers to the instances of the scene 
subdivision.  

5. RESULTS 
The GPU ray tracing approach has been implemented in 
Visual C# 2.0 and .NET 2.0 language using Microsoft Visual 
Studio 2005. OpenGL 2.0 [17] has been used as a graphics 
API. The shader has been written in GLSL v. 1.10 [22]. 
GLSL has been preferred to other GPU shader languages 
(HLSL and Cg) due to its more direct support for the features 
available in modern graphics hardware (such as break 
instructions).  
Although C# is typically considered not a fast language for 
scientific programming, it proved to be fast enough for our 
purposes. Moreover, GPU performance is far more critical in 
our applications, so, C# overhead is insignificant. 
The performance of our approach has been measured on a 
number of test scenes. As our ray tracing approach provides 
support for moving objects, moving objects has also been 
tested. Since ray tracing itself is actually a major bottleneck in 
our approach, moving various objects does not affect 
significantly the performance of our application. 
The parameters of our test scenes are summarized in table 1. 
The performance is given in table 2.  

Table 1. Parameters of the scenes used for testing. 

scene #trigs #insts #lights 

Chair_wood 33404 11 1 

PalmPC 13532 7 1 

Balls-1 31200 10 2 

Knife 1676 1 1 

SR71A 4446 1 1 

Palace 33000 36 1 

Table 2. Performance of our ray tracing system on a number 
of test scenes. 

Scene Performance (fps) 

Chair_wood 12.8 

PalmPC 6.3 

Balls-1 5.8 

Knife 16 

SR71A 7.9 

Palace 10.1 
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Figures 4, 5, 6 and 7 present some of the images generated. 
All tests were run on a PCI-E ATI X1800 XL graphics card 
with no clocking. Images were rendered at 512x512 
resolution. 

 

Figure 4: The Balls-1 scene image rendered using our 
approach. Note the interreflections between the two reflecting 
spheres. As the spheres are moved, the interreflections are 
fully recomputed interactively as the scene is rendered with 
ray tracing. 

 

Figure 5: The wooden chair scene rendered using our 
approach. Note the shadow cast from a distant light source by 
the back of the chair. 

6. DISCUSSION AND POSSIBLE FUTURE 
WORK 
We have implemented a GPU ray tracing system which 
outperforms existing GPU ray tracers and demonstrates 
performance which is roughly comparable with highly 
optimized CPU ray tracers. Our system is also able to support 
moving objects, a feature which previous GPU ray tracers 
lack Although it is interactive, it still does not provides real-
time ray tracing on a single computer.  
This case study has shown that modern GPUs are suitable not 
only for streaming programming with short shaders, but also 
for writing much more complex programs which perform 
complex computations, such as entire ray tracing, in a single 
pass. 
 

 
Figure 6: The palace scene. 

Although complex branching can create some overhead, 
single-pass implementation pays off in terms of memory 
bandwidth. Unlike streaming programming, it does not 
generate a large amount of graphics memory bandwidth, but 
is rather computationally-bound. This can be viewed as a 
drawback; however, it can also be viewed as the advantage of 
the approach. Typically, increasing the computational power 
by just adding more pixel shader processors is much simpler 
than increasing memory bandwidth. Therefore, our approach 
is likely to benefit significantly from the ATI X1900 graphics 
board, which provides 3 times more shader processors. Our 
approach is also likely to benefit from the CrossFire solution, 
as adaptive load balancing between 2 graphics cards will most 
likely double the performance.  
There is still room for improvement, however. Approaches 
which perform single ray casting instead of entire ray tracing 
in a single pass needs to be investigated. Although memory 
bandwidth is slightly increased in such approaches, they are 
more flexible since they allow more complicated traversal 
algorithms. They would also allow separate code for tracing 
shadow rays. 
The GPU instruction set resembles that of and SSE processor, 
such as Pentium 4. Therefore, tracing 4 rays simultaneously is 
also worth investigating, which is likely to be performed in 
our future work. 
Finally, for scenes small enough, a hybrid approach can be 
used. It may involve using GPU ray tracing for reflections 
computations and common graphics pipeline for other 
features (shadows). This may prove much faster in scenes 
with not very large number of triangles.  
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