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Abstract 
The present paper is devoted to the problem of constructing 
Hamiltonian cycles on a set of line segments. 
Given a set of undirected disjoint line segments we build a 
minimal closed tour including all segments only once. The 
problem is approached by Ant optimization. 
Keywords: Simple circuit, Hamiltonian cycle, Ant colony 
approach,  pheromone. 

1. INTRODUCTION 

Given a set of non-intersecting line undirected segments in the 
plane, we are required to connect the line segments such a way 
that they form a simple circuit. We call simple circuit ‘optimal’ 
(shortest) if it has minimal length among all feasible circuits. In 
other words, we must choose a route that passes through each 
segment and the total length of the route is minimal. The problem 
described is a natural generalization of the problem of finding 
simple circuits (or Hamiltonian cycles) from a set of points 
(Traveling Salesman Problem). In general, a set of line segments 
does not necessarily admit a simple circuit. An example of such a 
set is given in figure 1.  
It was shown that to determine whether a set of segments admits a 
simple circuit is NP-hard as well as constructing such a circuit in 
general case.   
The task of defining circuits from a set of points is a recurring 
theme that appears in variety of applications. The benchmark 
Traveling Salesman Problem can be used in network routing 
problems, in the area of pattern recognition, etc. Surprisingly, the 
problem of constructing circuits from a set of line segments has 
not received much attention. 
The task of finding shortest tours on a set of segments can appear, 
for example, in the collection of sites on a plane, which should be 
visited in a prescribed order. If in addition, edges in the tour that 
cross greatly increase the cost function then we need to find a 
shortest tour with few or no intersections. This is close to the so-
called ‘tube-passing problem’ first stated by Liesegang (1976). 
Similar problems exist in plotter sequencing systems and metal 
cutting motion optimization for NC-programs design [1].  
Liesegang gives a branch and bound algorithm for the exact 
solution, but the execution time in this case depends exponentially 
on the number of segments (tubes). Thus the exact algorithms can 
not be used in real problems, where the number of lines can be 
very large and the time is limited.  
Later a number of variations of basic problem was analyzed by 
Frederickson (1978) and all of them were shown to be NP-hard.  

Leipala and Nevalainen (1978) suggested a system using a nearest 
neighbor rule and k-change rule for local perturbation for a plotter 
sequencing problem [4].  
Several papers were aimed to inquire a possibility of constructing 
circuits from a set of segments. In 1980s David Rappaport [5] 
investigated segment endpoint visibility graphs and stated that a 
set of segments admits a simple circuit if each segment has at 
least one endpoint on the convex hull of the segments. 
In 1990s O’Rourke and Rippel [7] proved that there is a 
Hamiltonian polygon if the supporting line of no line segment 
crosses any other line segment. Earlier Mirzaian [6] conjectured 
that every set of disjoint line segments admits a Hamiltonian 
polygon, that is, there exists a simple closed polygonal paths 
whose vertices are exactly the endpoints of the line segments and 
whose sides correspond to edges of the segment endpoint 
visibility graph. Later this hypothesis was proved. 
We are interested in constructing shortest closed cycles 
(Hamiltonian cycles) on an arbitrary set of line undirected 
segments by using heuristic methods. Heuristic techniques make 
it possible to find suboptimal solution with admissible execution 
time while exact methods in large scale problems perform worse. 
As a basic model we consider Ant Colony approach [2, 3]. The 
similar problem approached by genetic algorithms is presented in 
[1], where segments are formed from insertions on a cutting chart. 
The paper is organized as follows. In section 2 preliminary 
definitions are introduced. The description of Ant colony 
approach is given in section 3. Some results are presented in 
section 4. Conclusions and further research lines are given in 
section 5.  

2. PRELIMINARIES 

A set of non-intersecting line segments S is represented as  
S = (s1, s2, …, sn) (to be referred to from now on as segments). 
The endpoints of S are represented by the set of 2n points,  
P = (p1, p2, …, p2n). For our algorithm we identify each segment i 
by its endpoints (pi, pi+1) or by one point on the segment bi (from 
initial point to end point; in the examples presented segments are 
indicated by middle point if other is not stated). 
Given a set of non-intersecting undirected segments represented 
by S it is sometimes possible to find a simple circuit. 
A simple circuit is a sequence of edges such that for all edges any 
two of them can intersect only at their endpoints. In general case 
segments do not intersect. But we permit segments to intersect at 
their endpoints (then we have polygonal line).  
If such a circuit exists we say that S admits a simple circuit. If a 
circuit is closed we call it a cycle. 
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A simple cycle is Hamiltonian. We are to build Hamiltonian cycle 
with minimal length. The length of a cycle includes lengths of 
segments and distances between segments. The distance between 
two points is Euclidean distance. 
A set of segments can be described in terms of graph theory. 
Segments’ endpoints are the vertices, a line connecting any two 
segments (the endpoint of the first segment and the initial point of 
the second segment) is the edge. A set of undirected line segments 
in terms of our problem is presented by a fully connected 
undirected planar graph. 

3. ANT COLONY APPROACH 

The idea of Ant colony optimization is presented in [2, 3]. Here 
we remind the basic features of the algorithm and describe some 
parameters that affect the solving process. 
Ant optimization is an approach to stochastic combinatorial 
optimization. The main characteristics of this model are: positive 
feedback, distributed computation and the use of a constructive 
greedy heuristic. Positive feedback accounts for rapid discovery 
of good solutions, distributed computation avoids premature 
convergence, and the greedy heuristic helps find acceptable 
solutions in the early stages of the search process. 
In the approach discussed the search activities is distributed over 
so-called ‘ants’, that is, agents with very simple basic capabilities 
which, to some extent, mimic the behavior of real ants. According 
to the authors of the method [2, 3] the research on the behavior of 
real ants has greatly inspired their work. One of the problems 
studied by ethologists was to understand how almost blind 
animals like ants could manage to establish shortest route paths 
from their colony to feeding sources and back. It was found that 
the medium used to communicate information among individuals 
regarding paths, and used to decide where to go, consists of 
pheromone trails. A moving ant lays some odorous substance – 
pheromone (in varying quantities) on the ground, thus marking 
the path by a trail of this substance. While an isolated ant moves 
essentially at random, an ant encountering a previously laid trail 
can detect it and decide with high probability to follow it, thus 
reinforcing the trail with its own pheromone. The collective 
behavior that emerges is a form of autocatalytic behavior where 
the more the ants following a trail, the more attractive that trail 
becomes for being followed. The process is thus characterized by 
a positive feedback loop, where the probability with which an ant 
chooses a path increases with the number of ants that previously 
chose the same path. In other words, Ant colony is a set of 
cooperating simple agents with collective behavior regulated by 
positive feedback. The ants can communicate (cooperate) through 
pheromone trail.  
As we are not interested in simulation of ant colonies, but in the 
use of artificial ant colonies as an optimization tool, our system 
will have some major differences with a real (natural) one: 
artificial ants will have some memory, they will not be 
completely blind, they will live in an environment where time is 
discrete. An ant stores in its memory the information of traversed 
part of a tour. An ant can ‘see’, that is evaluate how far the point 
it should move to is and it can evaluate how attractive a path is 
(calculate how big the amount of pheromone which was laid by 
preceding ants is). 
The idea is that if at a given point an ant has to choose among 
different paths, those which were heavily chosen by preceding 
ants (that is, those with a high pheromone trail level) are chosen 

with higher probability. Furthermore high trail levels are 
synonymous with short paths.  
The method is bi-criterial, it means that solving process is based 
on two factors: pheromone trail and visibility. A path with high 
trail and big length (if the following segment is far from the 
current one) can be more attractive than the close one with small 
quantity of pheromone and vice versa.  
Ants build closed tours by visiting all segments and returning to 
the initial one. To disable an ant go through a segment twice a 
special taboo list is used. All ants begin moving at the same time. 
Each ant evaluates the possibility of choosing the next step by 
two parameters: how far the next segment is (visibility) and how 
attractive the path is (pheromone trail). The number of ants is 
equal to the number of segments on default, ants are distributed 
randomly. The working memory (taboo list) is emptied at the 
beginning of each new tour and is updated after each time step by 
adding the new visited segment. 
Pheromone (trail). In our model pheromone trail on the edge 
indicates that some ants have already passed on this very edge. 
The more pheromone has been laid on this part of the path the 
more new ants will choose it (positive feedback effect). We use 
positive real numbers to simulate pheromone trail which every ant 
‘lays’ on the path between two segments. Calculating the intensity 
of trail (pheromone), i.e. calculating how attractive this path is, 
the length of the shortest tour found at the current moment is 
taken into account, as well as coefficients of pheromone updating. 
This let the ant manage the probability of choosing the path. 
Pheromone updating rule in most general case can be presented as 
(1).  
τij(t+1) = (1 - g) * τij(t) + g * ∆τi ,  (1) 

where t is time step, g is an evaporation coefficient (global or 
local), ∆τij is the amount of pheromone added (arbitrary constant 
or a variable proportional to the minimal length of the tour found 
by the time t). Global updating rule lays a trail only on the edges 
included in the shortest path. When all the ants have completed a 
tour the ant that made the shortest tour modifies the edges 
belonging to its tour. Global trail updating is similar to a 
reinforcement learning scheme where better solutions get a higher 
reinforcement.  
In local updating we mark edges which are included in a path in 
the process of constructing a tour at each time step. Local 
updating is intended to avoid a very strong edge being chosen by 
all ants. Every time an edge is chosen by ants its amount of 
pheromone is increased and decreased: we not only add 
pheromone but also evaporate it, i.e. increase the possibility to 
find new solutions. Evaporation was also motivated by trail 
evaporation in real ants. 
The amount of pheromone deposited on each visited edge by the 
best ant is inversely proportional to the length of the tour: the 
shorter the tour the greater the amount of pheromone deposited on 
edges. This manner of depositing pheromone is intended to 
emulate the property of differential pheromone trail accumulation, 
which in the case of real ants was due to the interplay between 
length of the path and continuity of time. 
Visibility. This is a parameter which corresponds with the distance 
between segments. We used – as the simplest variant – the value 
inversely proportional to the distance between two segments 
considered. If this parameter is dominating solving process the 
algorithm converges to greedy principle: as the following step the 
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closest segment is chosen (with all other constraints obeyed). The 
segment visibility can be presented as (2).  

( )ijij df=η ,  (2) 

where dij – the Euclidian distance between two segments i and j. 
Each ant in Ant colony algorithm builds a tour which includes all 
segments it has passed along only once. A segment can be 
indicated by one point (any point on the segment: 0 – initial point, 
1 – end point) or two endpoints. In the first case while 
constructing tours ants move from any point on initial segment to 
the corresponding point on the following segment. After the best 
solution found a tour on initial segments is reconstructed. 
In the second model an ant choosing one endpoint of the segment 
automatically moves to another endpoint of this segment. The 
number of vertices in such a graph is twice as many as the number 
of segments; the number of ants is equal to the number of 
segments.   
Identifying a segment by two endpoints shows better results but 
the first approach is more perspective if we consider constructing 
Hamiltonian cycles on a set of closed figures (or if we have both 
figures and line segments).  
An artificial ant k at time t in a segment i chooses a segment j to 
move to among those which do not belong to its taboo list 
(allowedk) applying the following probabilistic formula: 
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where τij(t) is the amount of pheromone trail on the edge between 
segments i and j at the time t; ηij is the visibility between i and j; α 
is a sensibility to trail and β is a sensibility to distance (parameters 
that help regulate the priority of pheromone trail or visibility and 
proportion between these two factors), q is a random variable  
[0, 1], q0 is the knowledge using level (see below); r is a random 
variable selected according to the following probability 
distribution, which favors edges which are shorter and have a 
higher level of pheromone trail:  
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where  is the probability with which ant k chooses to 

move from i  to j.  

)(tp k
ij

Knowledge using level q0. Ant colony optimization is 
distinguished by other methods of ant optimization by this 
parameter that can be interpreted as a reinforcement learning 
system, in which reinforcements modify the strength (i.e. 
pheromone trail) of connections between segments. An ant can 
either, with probability q0, exploit the experience accumulated by 
the ant colony in the form of pheromone trail or, with probability 
(1 – q0), apply a biased exploration (exploration is biased towards 
short and high trail edges) of new paths by choosing the segment 
to move to randomly, with a probability distribution that is a 
function of both the accumulated pheromone trail, the heuristic 
function, and the working memory, where the information about 
visited segments is stored.  

Adjacent coefficient. We use so called ‘adjacent coefficient’ to 
regulate movements between two endpoints identifying a 
segment. This parameter is close to visibility between segments. 
Pheromone updating rule is not applied to a segment but to the 
distance between segments (edges). Increasing an adjacent 
coefficient we force ants move along a segment (polygonal line, 
figure). If the requirement of segment pass-through is removed 
(for example, we can move along a polygonal line, leave it for 
passing a segment and return), then adjacent force is reduced. In 
the experiments described below this constraint is not removed.  
The cost function in general case is the sum of segments’ lengths 
and distances between the segments from the set of feasible 
transitions between the segments (see (5)): 
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where i is a segment, i = 0, 1, …, n,  
if index i = 0 then it is origin of coordinates, i.e. point  (0,0),  
li is  the length of segment i, Lij (i, j = 0, 1,…, n) is the distance 
between segments or between any two points on the segments i 
and j, , K is a set of feasible movements (tours)  

k=(i

KijL ∈

1, i2,…, in), (i1, i2,…, in) is an arbitrary permutation of numbers 
1, 2,…, n,  Nint is the number of intersections in the route found,  φ 
is a penalty coefficient.  
Ant colony algorithm employs an exploration strategy with 
stochastic component (exploration of new paths biased towards 
short and high trail edges) and encourages new exploration since 
each path taken has its pheromone value reduced by the local 
updating rule.  

4. EXPERIMENTAL RESULTS 

An arbitrary set of segments is presented in figure 2. Solutions 
achieved by Ant colony approach are presented in figure.3 – 6. 
The algorithm finds a solution and calculation is stopped after 
given number of iterations or after user’s request. The solution is 
feasible if a tour doesn’t have self-intersections. The solution is 
optimal or close to optimal if the length of the tour is minimal (the 
less it is the better solution is) and the number of iterations 
required to find this solution is acceptable which depends on the 
problem scale (we estimate the execution time through the 
number of iterations; if the number of segments is close to the one 
on the figures presented then admissible number of iterations is 
less than 100). 
The performance of the algorithm strongly depends on the 
parameters α (sensibility to trail) and β (sensibility to distance). 
There were tested several values for each parameters, all the other 
being constant, and the best were chosen.  
If β = 0 the algorithm used only trail information. If α = 0 the 
algorithm behaved as the nearest neighbor heuristic which let us 
compare the method proposed with greedy heuristic.  
The greedy heuristics guide a search process at the early stages of 
computation and then the algorithm starts exploiting the global 
information contained in the values  τij  of trail. 
Results presented in fig.5 – 6 illustrate the statements mentioned 
above. Tours in figures 5-6 are not the best, moreover the first one 
is not admissible since we do not permit self-intersections in the 
route, but the pictures confirm the efficiency of the Ant colony 
approach. 
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The length of the solution l and a number of iterations n required 
to achieve it are presented in Table 1. 
Some other configurations with solutions found are shown in 
figures 7 – 8. In both configurations segments were indicated by 
two endpoints. Hamiltonian cycle on a set of segments with 
polygonal lines was also successfully found using the technique 
proposed (see fig.7).  

 
Figure 1: A set of segments without a simple circuit. 

 

 
Figure 2: A set of segments. 

 

 
Figure 3: Hamiltonian cycle found. Segments identified by one 

middle point. 
 

 
Figure 4: Hamiltonian cycle. Segments identified by two 

endpoints. 

 
Figure 5: A circuit on a set of segments identified by middle 

point. Greedy heuristic, β =1, α =0. 
 

 
Figure 6: A circuit on a set of segments identified by two 

endpoints. Greedy heuristic, β =1, α =0. 
 

 
Figure 7: A circuit on a set of segments with polygonal lines. 

 

 
Figure 8: Hamiltonian cycle on a set of segments. 

 
Table 1: Segments identified by two endpoints and middle points, 
greedy heuristic and standard algorithm 

Segments identified by 
two endpoints 

Segments identified by 
middle points 

Method 

Standard 
algorithm  

(fig.4) 

Greedy 
heuristic 
β =1, α =0 

(fig.6) 

Standard 
algorithm 

(fig.3) 

Greedy 
heuristic 
β =1, α =0 

(fig.5) 
Iterations 

(n) 
14 1 900 30 200 

Length (l) 2 039 2 397 2 158 2 405 

 
The best solution was found by Ant colony method when 
segments were identified by two endpoints (2 039 mm). Greedy 
heuristic took much more computational efforts to find solution 
close to optimal (see table 1). Identifying segments by one point 
decreases the number of iterations but leads to the worst solution 
(a circuit with self-intersections). When the distance between 
segments is comparable with segments’ length or less than it 
identifying segments by one point unacceptable (solutions found 
are far from optimal).   
It is difficult to compare the results obtained with other ones since 
the problem was not well investigated. Experiments with segment 
endpoint visibility graphs (D. Rappaport) or integrally coordinate 

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/



segments (J. O’Rourke) reduce greatly a range of segment 
configurations. Branch and bound method as well greedy 
principle can be applied to any set of segments but the first one 
depends exponentially on the number of segments and the second 
one performs worse as it was shown.  
The Ant Colony method was applied to symmetric and 
asymmetric Traveling Salesman Problems and Quadratic 
Assignment Problem by its author M. Dorigo [3] and the results 
were compared with those found by simulated annealing, elastic 
net, self organizing map and farthest insertion. The technique 
discussed found solutions which were at least as good as, and 
often better, than those found by other methods. Though it was 
not competitive with specialized heuristics (for example, Lin-
Kernighan), its performance become very interesting when 
applied to a slightly different problem. Some extended versions of 
the algorithm were comparable with hybrid genetic algorithm and 
other GRASP methods.  
All these facts let us conclude that applying Ant colony approach 
to the problem of constructing Hamiltonian cycle on segments is 
very perspective. When compared with genetic algorithms on a 
cutting chart our method performs even better. And according to 
experiments (see table 1) it can find solutions better than those 
found by greedy heuristic, moreover solutions are close to optimal 
and can be found in admissible time. 

5. CONCLUSION  

We consider the chosen approach very promising for our research. 
This method is also well suited to parallelization. Solutions found 
by the method have desirable features such as admissible 
execution time, stability and closeness to optimum.  
The model proposed has the following features: positive 
feedback, distributed computation, constructive greedy heuristic.  
Good solutions are discovered rapidly due to positive feedback, 
distributed computation avoids premature convergence. 
Acceptable solutions can be found in the early stages of the search 
process even in large scale problems.  
Further work aimed at increasing the efficiency of the approach 
developed will show how fast a solution can be found. The 
simplest way to decrease execution time is to use inherent 
parallelism (distributed computation) mapping it on solving 
process and parallel architectures. 
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