
RestoCut: Reconstruction of regular images using graph cuts

Tagir Valeev
Institute of Informatics Systems,

Novosibirsk, Russia
lan@biorainbow.com

Abstract
In this paper new approach to reconstruct images, removing
unwanted objects from it, is described. The main idea of the
introduced approach is to generate texture over unwanted object
using graph cut based texture synthesis algorithm. Different
texture synthesis techniques are briefly covered, while used
technique is described in detail. After that, migration from the
texture synthesis problem to the image reconstruction problem is
explained, and some experimental results are shown.
Keywords: Image reconstruction, Texture synthesis, Graph cut.

1. INTRODUCTION

Let’s consider the following problem. We have some photo,
where some kind of landscape is shown. Though there are some
unwanted objects on the picture. For example, we have blooming
field with some junk on it or stony beach with people resting, but
our goal is to get the field without junk or unmanned beach. It’s
impossible sometimes to take the proper photo, so digital
processing is required to get what we want.
We’ll consider only those cases, where surrounding landscape has
similar structure like that covered by unwanted object. So the
easiest solution is to open our image in the favorite graphics
editor package, copy similar image fragment (pattern) and place it
over the object we want to remove. After feathering the borders
we may get something like we wanted. Being simple this
approach has many disadvantages. Here are some of them:

• Even after feathering the edges of copied fragment are often
visible. Increasing feather radius may strike viewer’s eye,
because some features will become translucent;

• In case if unwanted object is rather big, we may not found
similar image fragment large enough to cover the object
completely. We can copy smaller fragment several times,
but periodic structure of landscape will be striking;

• Rather often brightness is not constant across unwanted area
and pattern as well, resulting in significant color difference
on the edges of copied fragment. In this case feathering will
not help at all.

In this paper we introduce rather new approach to solve this
problem and describe how it was implemented in our software
package, called RestoCut. The main idea was taken from texture
synthesis techniques. In fact we can synthesize texture over object
we want to remove and them seamlessly combine it with existing
image.
Texture synthesis technique we are using was already introduced
in [1]. Our method is based mainly on paper by V. Kwatra et al
[2], where using of graph-cuts was suggested to generate textures.
We have developed and modified their approach to fit our
objective.

In the following section we’ll cover the approach used to create
textures using graph-cuts, pointing out the differences between
methods described in [2] and our realization. After that we’ll
center on using texture synthesis to solve the considered problem.
Then we’ll describe RestoCut and show some experimental
results.

2. TEXTURE SYNTHESIS

Currently there are many techniques exist to generate textures
from sample image. Most of them doesn’t take into account that
sample image may contain non-periodical objects of real world
(like flowers, stones, birds and so on). For example, Heeger and
Bergen [3] used sample image to generate color-frequency
distribution, and synthesize texture using this information. This
algorithm was already implemented by Igehy and Pereira [4] in
the work similar to this one. This is good enough to generate
textures like wool, plastic, bitumen, etc., but such features as
flowers will not be preserved. Image quilting technique, described
by Efros and Freeman [5] is more oriented to keep the features
from original sample, but still not good enough. In this approach
the sample is divided into blocks which are copied into newly
generated texture.

Figure 1: Patch placement.

In the method proposed in [2] whole patches from input are
copied to synthesized texture, and then algorithm finds the best
seam between newly copied patch, and patches copied before. We
are using similar technique. However, in contrast to this work, all
patches put to the new texture so far are merged together and
considered as underlayer. This makes patch placement procedure
more complicated, but simplifies seam finding and generalizes
problem: in our solution underlayer may not consist of patches
copied before only, but contain some other image fragments. Such
generalization is much desired to solve the problem, discussed in
introduction.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 2: Finding the optimal seam.

Figure 1 shows an example of how new patch is merged with
existing underlayer. New patch is placed so that it overlays
underlayer. Patch placement strategy is discussed in section 2.2.

Figure 3: New patch and underlay after merge.

Figure 2 shows the optimal seam found in overlapping area; this
procedure is described in section 2.1. Finally after slight
feathering we’ll get underlayer which consists of merged patches
as shown on Figure 3. Applying these steps repeatedly will
produce whole given area filled with sample image. An example
of resulting texture is shown on Figure 4.

Figure 4: Synthesized texture.

Let’s consider these steps in detail. We’ll begin from finding the
optimal seam rather than patch placement, because knowing how
the seam is searched will help to see the problems of patch
placement.

2.1 Using graph cuts to find the optimal seam
To find the optimal seam, which divides new patch and underlay,
we should cut through overlapping area, so that pixels around the
cutting line have the closest colors possible. This procedure is
quite similar to one proposed in [2].

S

T

New patch

Underlayer

Figure 5: Representing of overlapping area as graph.

First we have to build weighted graph, which fits the following
conditions. Each node corresponds to single pixel in overlapping
area (Figure 5), edges connect neighbor pixels. Also two special
nodes are added: S (source) and T (sink), which are connected to
all boundary pixels from the patch side and underlay side
respectively.
Now we should assign weights to the edges. If the edge connects
two regular nodes corresponding to pixels A and B, then edge
weight will be

 *

1AB A A B BW C C C C= − + − *

1
, (1)

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

where are color vectors of pixel A, corresponding to

patch and underlayer respectively (

*,A AC C
*,B BC C are the same for

pixel B). In other case, when the edge connects regular node with
source or sink, weight assigned to it is some constant, which is
bigger than maximal value of (1).
Finally we can split this graph into two sub-graphs, so that one of
them contains source node, other contains sink node, and weight
sum of edges connecting nodes from different sub-graphs has the
minimal possible value. This problem is well-known in graph
theory as min-cut problem, and can be reduced to network flow
problem, which is solved by Ford-Fulkerson algorithm [6]. To
perform this step we have used C++ code developed by Boykov
and Kolmogorov (it was introduced in [7] and freely available on
the authors’ website). This code is well-optimized and perfectly
suits for such tasks.
Note that underlayer may already contain several patches or some
other fragments, so the overlapping area is not necessarily
rectangular. It may be in any form, have holes or even consist of
several unconnected areas. These cases are handled in the same
way like described above. In [8] underlying patches are handled
separately, and additional nodes are created along the old seam to
refine it when new patch is placed. We’ve simplified this step to
make possible generalization mentioned above.

2.2 Patch placement strategy
The simplest way of patch placement is to place them randomly.
This approach works in some rare cases, when sample image fits
strict requirements. Of course, graph-cut algorithm, described
above, finds the best possible seam for specified patch position,
but in many cases even the best seam is not good enough. So we
should place patches using special strategy to lighten the graph-
cut work. Each patch placement is characterized by offset of its
left-top angle. We can assign some weight function to patch
position and minimize it. To speed up minimization we are using
genetic algorithm [8] where new patch position (x and y
coordinates) is considered as chromosome.
Now we should define that weight function to distinct between
good and bad patch placement. Here are some constraints which
should be reflected in weight function:
1. Overlapping area should be thick enough everywhere,

otherwise graph-cut algorithm have too small space to select
from;

2. Position where new patch touches underlayer, should be
considered as very bad;

3. New patch placement shouldn’t disrupt large-scale structure
if any;

4. New placement should cover enough uncovered pixels,
otherwise algorithm may work quite long (or even infinite)
time.

Figure 6: Thin overlapping area

Figure 6 illustrates first constraint. New patch (on top) intersects
underlayer, but right side of overlapping area is only two pixels
thick. This means that graph-cut have no choice but to draw seam
between these two pixels, even if it’s not good enough (in shown
example it’s really not good; the stones above and below thin area
are quite different). So it’s evident, that this case should be
considered bad and have rather big weight.

Figure 7: New patch touches underlayer

Second constraint is rather similar to the first one. It’s shown on
Figure 7. New patch was placed so that it touches underlayer in
the area, highlighted by ellipse. In this case graph-cut cannot do
anything, because contact area is outside of the overlay.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 8: Large-scale structure

Figure 8 illustrates the large-scale of sample image (bricks). In the
given case offset between patches is not the integral number of
brick periods, thus graph-cut cannot merge patches seamlessly, so
it’s impossible to synthesize good texture if we allow such patch
positioning.
Fourth constraint was introduced to reduce processing time.
Sometimes best weight according to three other constraints is
assigned to placement, when patch entirely lies on underlayer or
adds only several pixels to it, so it will take too many steps to fill
in whole given area.
According to all these constraints, we empirically have created
penalty functions. ()L x is responsible for touches and thin
overlapping areas, and ()B x is responsible for constraint 4. Third
constraint makes the base of weight function, for which penalties
are applied. So the weight function looks like this:

2*

2

1
p p

p S

N B L C C
S D ∈

⎛ ⎞⎛ ⎞
= ⎜ ⎜⎜⎜ ⎝ ⎠⎝ ⎠

∑ − ⎟⎟⎟⎟ , (2)

where S is set of overlapping area pixels and D is color deviation
of sample image pixels:

2

2

1

p
p T

C C
D

T
∈

−
=

−

∑
, (3)

where T is the set of pixels in sample image (patch), thus T is

the patch size. pC , *
pC are color vectors of pixel p corresponding

to patch and underlayer respectively.
Argument of L is penalty value without taking into account
constraints 1, 2, 4. Functions L and B can enlarge penalty value if
selected patch position is unsatisfactory from the point of these
constraints. Value of L depends on minimal thickness of
overlapping area. When overlapping area is thick enough, ()L x
returns x, otherwise it rapidly grows and returns maximal value
when constraint 2 takes place. ()B x is constructed similarly: it
returns x, when new patch placement adds to underlayer |
pixels or more, and comes to its maximal value, when new
placement doesn’t add to underlayer even a single pixel.

| / 2T

2.3 Seam feathering
Though graph-cut finds best seam possible, sometimes seam is
still visible. In such cases feathering of nearby pixels will help to
hide it. We are using simple linear feathering. New color for the
pixel A near seam is calculated using the following formulae:

 () ()()*
Re

1
2A s A AC C l d C l
l

= ⋅ − + ⋅ + d , (4)

where d is the distance between pixel A and seam, and l is
feathering radius (usually it’s about 5 pixels). Distance between
seam and current pixel is calculated in rather simple way. Two
subgraphs found by min-cut algorithm are considered separately,
source and sink are removed, but special seam-node is added
instead. The seam-node is connected to all the nodes which were
bound with other subgraph. After that distance between each node
and the seam-node (if it doesn’t exceed l) is calculated using
breadth-first algorithm.

3. RECONSTRUCTION OF IMAGES

Now we can apply texture synthesis approach to reconstruct
image fragments. Consider the sample image “Meadow”
(Figure 9). Our goal will be to remove a man from the picture,
leaving meadow and forest as it is.
As you can see, the man in the “Meadow” image covers some
flowers. So it is good idea to synthesize flower field texture over
the man. First we should define the patch for the texture synthesis
algorithm. We can select any rectangular area nearby, which
contains flowers. However it is not preferred to select flowers
above (or below) unwanted object because or perspective. Also
we shouldn’t select too small patch, in order to generate non-
monotonous texture. Example of patch selection is shown by
dotted line on Figure 10.

Figure 9: Source image “Meadow”. Image is courtesy of

Vladimir Logutenko

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 10: Mask and sample selection

Second we should mark the area which should be filled with new
texture. Actually we select two areas: texture area, which will be
replaced fully by newly synthesized texture, and buffer area,
which can be replaced partially. Typically texture area should be
inside buffer area (see Figure 10). In the most of cases buffer area
can be selected automatically, by expanding texture area to the
fixed number of pixels (this function presents in most of modern
graphic editors). The “Meadow” image has resolution of 800×600
pixels, and buffer area was selected by expanding texture area by
40 pixels. Also user can select texture area rather roughly, high
accuracy is unnecessary here, so defining areas is quite fast
procedure.

Figure 11: Processed “Meadow” image.

Finally we can launch texture generation algorithm. It considers
buffer area as area, which was already filled by generated texture.
Though some its pixels may be replaced, if graph-cut algorithm
decides to draw seam over them.
Pixels outside of selected areas are not modified at all. If patch
placed so that it juts out of buffer area, it’s cropped before graph-

cut applying. Figure 11 shows the result of processing the
“Meadow” image.

4. BRIGHTNESS COMPENSATION

An improvement of introduced algorithm is described below.
Sometimes though image has regular structure, image brightness
is not constant. Typically it’s applied to sky images (e.g. birds in
the sky), indoor photos (especially when flash bulb was used) and
so on. In these cases brightness of patch opposite sides is quite
different, so graph-cut algorithm will unable to produce good
result.

Figure 12: Sample image “Wall”.

In this case brightness compensation may be performed in the
initial and final stages. On initial stage brightness of patch is
equalized as well as brightness of buffer area. On the final stage
brightness of filled area is reversed to original.
Here we should define brightness compensation function, namely
the function of coordinates which we can subtract from source
image brightness to get brightness-equalized image. Light
intensity is inversely proportional to the square of distance
between light source and observer, so we assume that brightness
function looks like the polynomial of degree two:

 () 2 2,f x y Ax By Cxy Dx Ey F= + + + + + (5)

Figure 13: Selected patch before and after brightness

compensation.
Coefficients A–F in (5) are defined by minimizing sum of squares
of differences between the (,)f x y value and the actual pixel
brightness for the whole area:

 (6) () ()()2
, ,

S
Y x y f x y− →∑ min

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Minimization problem is solved by using least squares method
and Gauss-Jordan elimination function as it is described in [9].
We calculate coefficients A–F for patch and for buffer area
separately. Then we equalize buffer area and patch, subtracting

(,)f x y value from pixel brightness using obtained coefficients,
and generate texture. After that we restore original brightness,
adding (,)f x y value to all of the buffer area and texture area
pixels, using coefficients for buffer area. Equalization is
performed in YUV color space. Only luma is modified, while
chroma components remain unchanged.

Figure 14: Processed “Wall” image.

Brightness compensation is illustrated on the sample image
“Wall” (Figure 12). Our goal is to remove the picture on the right
side of the “Wall” image. Figure 13 shows patch (actually it was
selected below the picture) and the same patch after brightness
equalization. Figure 14 shows the processed image.

5. COMPARISON WITH OTHER WORKS

Recently using graph-cut approach to generate textures became
quite popular so several implementations of it can be found
through the Internet. Optimal seam search described in 2.1 above
is quite similar in these works. Edge weight is calculated using
formulae similar or exactly the same as (1). Also to solve min-cut
problem most of developers use the same Boykov and
Kolmogorov’s code. The main difference between the approaches
is patch placement strategy. This step can be performed in many
different ways.
We have compared our implementations with two others which
are available in the Internet:

• Texture Synthesis project of the National University of
Singapore (authors are: Guo Dong and Zhuo Shaojie); available
from: http://www.comp.nus.edu.sg/~guodong/syntxt/

• The Texturize plugin for GIMP; available from:
http://www.manucornet.net/Informatique/Texturize.php
Both of these works are based on [2]. Though they don’t allow to
replace fragments of image by generated texture like RestoCut,
they can be compared with RestoCut texture synthesis module.
Also these products don’t have brightness compensation

implemented, so comparison was performed for patches without
notable brightness gradients.
The Texturize plugin for GIMP uses patch placement strategy
which is rather similar to the one described in [2]. Texture
Synthesis places patches in slightly different manner. It places to
the output area not patches, but samples, rectangular subpictures
of patch with fixed width and height, but offset of sample inside
patch may differ. User may specify parameters x and y which
define ratio between sample and patch size (for width and height
respectively). By default w and h both equal 0.5. Places for new
samples are fixed; coordinates (a, b) of new sample left-top
corner are defined as:

 , (7)
()
()
1
1

a Wx l i
b Hy l j

= −
= −

where l is overlapping area size, W and H are patch width and
height respectively. Values of i and j are changed from 0 to w and
h in the loop (w and h are also specified by user indirectly
defining output picture size). For each pair (i, j) the best offset of
sample in the patch is selected and chosen sample is combined
with generated so far picture using min-cut.

Figure 15: Patches “Nuts” and “Flowers”.

“Nuts” is courtesy of VisTex.

This approach is easier to implement, but results not always look
well. Also there are many parameters and sometimes it’s
necessary to tune them in order to get satisfactory results.
Texturize gives the best results for patches with regular structure.
Consider an example patch “Nuts” shown on Figure 15.
Synthesized result (Figure 16, left) is almost perfect, only slight
artifacts are visible. Result of RestoCut (Figure 16, right) is not so
good. Result generated by Texture Synthesis (Figure 17) has no
artifacts, but turned nuts are not spread all over the texture which
makes result the worst.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 16: Texture “Nuts” generated by Texturize (left)
and RestoCut (right)

The second example is “Flowers” (Figure 15). Generated restuls
are shown on Figure 18. Result of Texturize (in the middle) have
somewhat regular structure, thus looks unnatural. Images
generated by RestoCut and Texture Synthesis look good, though
image generated by Texture Synthesis with default parameter set
was really bad, so parameter tuning was necessary.

Figure 17: Texture “Nuts” generated by Texture Synthesis.

On some textures generated by Texturize and Texture Synthesis
seams similar to one shown on Figure 7 can be noticed. In total
seven images were involved in comparison, though we cannot
observe all the generated textures here. More detailed results are
available from http://skypiece.iis.nsk.su/~lan/restocut/
Table 1 shows time spent to generate textures by different
realizations. All times are in seconds and were measured on PC
with AMD Athlon XP 2500+ CPU and 512 Mb RAM. For
RestoCut also time spent to graph-cut and patch placement steps
is calculated separately. Total time is higher than sum of them
because it includes also file loading and storing, feathering and
other steps.

Figure 18: Texture “Flowers” generated by RestoCut (top),

Texturize (middle) and Texture Synthesis (bottom).
Table 1: Texture synthesis speed.

RestoCut
Source
pattern

Source
size

Target
size Placement Graph-

cut Total Te
xt

ur
iz

e

Te
xt

ur
e

Sy
nt

he
si

s
brickwall 256×256 578×578 25.8 1.7 29.2 27.9 30.8

daisy 176×234 646×855 52.5 1.3 57.4 135.3 81.8

icystraw 200×150 450×340 14.3 0.8 15.9 15.8 23.4

input 256×256 578×578 32.0 1.0 34.7 42.9 78.8

flowers 145×161 327×360 11.3 0.7 12.6 32.6 25.9

Nuts 293×217 661×488 30.9 0.6 31.2 49.6 26.6

field 566×585 880×907 67.9 3.2 74.1 35.0 234.8

Table 2 below shows which additional features are supported by
these implementations. Tiling texture is the texture which can be
seamlessly stitched to itself (useful for webpage or desktop
wallpapers and so on). Rotation means that software has an option

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

to generate more diversified textures by rotating original patch by
90°, 180° or 270°. Rotation and mirroring was also introduced in
[2].

Table 2: Features supported by different implementations.

Feature RestoCut Texture Synthesis Texturize

Brightness
compensation

+ – –

Tilable textures + – +

Rotation – + –

As for texture synthesizers which are not graphcut-based, we have
considered that results are much worse visually, thus not so
interesting. In [2] you can find comparison of graphcut-based
algorithm with image quilting based.

6. CONCLUSION AND FUTURE WORK

The method, proposed in this paper, is suitable for solving the
problem of reconstructing image fragments, which are somewhat
regular by its nature.
Future improvements of this idea may include modifications of
current placement procedure and adding new features. In some
special cases placement may be improved so result will look more
natural. New features may include using patch modifications (e.
g. rotations or mirroring) as well as several patches to synthesize
more varied texture. Also some algorithms to take the perspective
into account may be analyzed and included into this work.

7. REFERENCES

[1] Valeev T. F. GRAPHCUT: Using graph-cuts in texture
synthesis. // Proceedings of the conference-and-contest of young
scientists "Microsoft Technologies in the Theory and Practice of
Programming" Feb 22-24, 2006; pp.51-53.
[2] Kwatra, V., Schödl, A., Essa, I. et. al. Graphcut Textures:
Image and Video Synthesis Using Graph Cuts // Proc. of
SIGGRAPH 2003.
[3] Heeger, D. J., Bergenn, J. R. Pyramid-based texture
analysis/synthesis. // Proc. of SIGGRAPH 1995, pp. 229–238.
[4] Igehy, H., Pereira, L. Image replacement through texture
synthesis. // Proc. of the 1997 international Conference on Image
Processing (ICIP '97) Oct. 26 - 29, 1997; 3-Volume Set-Volume 3,
pp. 186-189.
[5] Efros, A., Freeman, W. Image quilting for texture synthesis
and transfer. // Proc. of SIGGRAPH 2001.
[6] Ford, L., Fulkerson, D. Flows in Networks. // Princeton
University Press. 1962.
[7] Boykov Yu., Kolmogorov V. An Experimental Comparison
of Min-Cut/Max-Flow Algorithms for Energy Minimization in
Vision. // IEEE Transactions on Pattern Analysis and Machine
Intelligence, Sept. 2004; vol. 26, no. 9, pp. 1124-1137.
[8] Goldberg, David E, Genetic Algorithms in Search,
Optimization and Machine Learning. // Kluwer Academic
Publishers, Boston, MA., 1989.

[9] Press, W.H. et al, Numerical recipes in C: The Art of
Scientific Computing. // Cambridge University Press, 1992.

About the author

Tagir Valeev is a Ph.D. student at Institute of Informatics
Systems, Russian Academy of Sciences, Siberian Branch,
Complex Systems Modeling Group. Also he is the leading
developer of BioRainbow scientific software group. His contact
email is lan@biorainbow.com.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

mailto:lany@ngs.ru

	1. INTRODUCTION
	2. TEXTURE SYNTHESIS
	2.1 Using graph cuts to find the optimal seam
	2.2 Patch placement strategy
	2.3 Seam feathering

	3. RECONSTRUCTION OF IMAGES
	4. BRIGHTNESS COMPENSATION
	5. COMPARISON WITH OTHER WORKS
	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

