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Abstract 
An approach for providing BRDF support for coherent ray 
tracing is described. Unlike earlier approaches, this approach 
is able to handle real-world measured BRDF represented as 
3D or 4D grid of samples. The presented SSE 
implementation speedups BRDF support in 3-4 times 
comparing with traditional ray tracing BRDF computations. 
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1. Introduction  

 
The amount of computations involved, and 

consequently, the amount of time required for the algorithm 
to run is one of the main problems of realistic image 
synthesis. In order to compute the pixel color using backward 
ray tracing several rays have to be traced: the ray from the 
camera to the scene, the rays from the hit point to the light 
source, reflected and refracted rays etc. Given the image size 
of 1280 by 1024 pixels, the number of rays can be in the 
range of 10 to 20 millions. When a single ray is traced, it is 
tested against all scene objects, and the nearest intersection 
point is selected, as it is the visible point. In our estimate a 
rendering system (without global illumination computations) 
spends 65 – 75% amount of time performing ray tracing. 
According to T. Whitted, this amount may even reach 95% 
[1].  

Almost all existing realistic ray tracing-based rendering 
systems employ some kind of spatial hierarchical structure 
for acceleration of ray tracing. The entire scene is subdivided 
into subregions, and the list of objects belonging to each of 
the subregions is constructed. The goal of the subdivision is 
to accelerate the process of ray tracing. When a ray intersects 
a subregion, it is tested against all of the objects in that 
subregion. If one of them is intersected, the algorithm 
terminates for this particular ray and the intersection is 
reported. If there are no intersections, the ray proceeds to the 
next subregions, and so on. Spatial subdivision methods 
decrease the ray tracing time substantially (often by several 
orders of magnitude).  

Coherent ray tracing is a complement to spatial 
subdivision structures. In this approach, several rays are 
traced together in a bundle. The rays being traced are usually 
chosen in such a way that they require the same (or located 
near to one another) data in order maximize the acceleration 
provided by the use of SIMD instructions. This “similarity” 
among the rays traced simultaneously is called “ray 
coherency”, or just “coherency”, for short, hence the term 
“coherent ray tracing”.  In order to achieve coherence for 
primary rays, we place rays from nearby pixels in the same 
bundle. Reflection or shadow rays spawned by these primary 
rays are also traced together, providing coherency for these 
rays too. If properly implemented, coherent ray tracing gives 
a significant speed-up compared with classical single-ray 
approach [2]. The speed-up factor is usually equal to the 
number of SIMD data elements processed simultaneously. 

Coherent ray tracing has been developing since the 
SIMD support in commodity processors became available, 
namely SSE (Streaming SIMD extensions) in Pentium III 

and Pentium 4. This extension is now supported also by 
AMD processors, and it makes SSE a kind of de-facto 
standard for implementing coherent ray tracing. Coherent ray 
tracing is often called SSE ray tracing, as is sometimes done 
in this very paper. Since SSE operates with 4 single-precision 
floating-point values simultaneously, its use in ray tracing 
typically gives acceleration by a factor of 4 compared to 
optimized C++ implementation. 

BRDF (Bidirectional reflection distribution function) is 
the most general way to represent material properties for 
physically accurate rendering. BRDF is a very useful feature 
for realistic rendering. BRDF describes the energy transfer 
between arbitrary incoming and outgoing directions. The 
transfer factor may actually depend on wavelength and 
polarization of incoming light. But for simple cases, 
however, RGB color model with no polarization is sufficient. 
There are multiple ways to represent BRDFs (Phong and 
Blinn models [3-4]). More complex BRDFs may be 
represented by the set of samples for the pairs of incoming 
and outgoing directions. 

BRDF has already been used in our work ([5-6]). 
BRDF’s we use come from real-world data. They are 
obtained by either measuring the BRDF samples ([7]) or by 
deriving BRDF from the microstructure of the material. 
BRDF obtained in such ways exhibits complex structure 
which is hard to approximate by a particular BRDF model. 
Therefore, the only way to represent BRDFs suiting our 
purposes is tabular representation of BRDF. 

Tabular BRDF computations may become a bottleneck 
when other components are rather fast due to SSE ray 
tracing. Therefore, BRDF computations using SSE 
instructions would provide significant speedup. 

2. General overview 
 
The angles of BRDF parameterization are σ, ψ, θ and φ 

(see fig. 1). Based on the number of angles the BRDF really 
depends on, the BRDFs may be classified as anisotropic 
(depends on 3 angles) and isotropic (depends on 4 angles). 
 

 
Fig. 1. BRDF parameterization. 

 
The actual BRDF value is computed by n-linear 

interpolation. One should notice that although there may be 
uniform sampling along certain directions, some directions 
do not allow this kind of sampling. This is true for θ 
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direction. Typical BRDF has a maximum at θ = 0 and rapidly 
decreases with the increase of θ. Therefore, one needs to 
place more samples near θ = 0 and few samples near θ = π. 
The BRDF table grid thus becomes non-uniform, which 
requires performing binary search in order to define proper 
interpolation cell. 

It should be noticed that the BRDF values are stored 
with the angle grid, not the cosine or sine grid. This is done 
in order to perform n-linear interpolation with these values. 
Therefore, for each incoming and outgoing ray angles are to 
be computed. This requires using inverse trigonometric 
functions which usually take some 250-300 processor cycles 
to compute [8].  

When trying to implement all this on SSE for 4 rays in 
parallel, the complexity of the task increases. Things so 
familiar for non-SSE (indexing, binary search) become not so 
simple when trying to implement them in SSE. Therefore, 
following problems arise for SSE BRDF support: 

• Calculation of inverse trigonometric functions 
• Performing SSE binary search 
• Indexing and interpolation in SSE case 

3. Calculation of inverse 
trigonometric functions in SSE 

 
For non-SSE case, computing inverse trigonometric 

functions is very slow. Evaluating inverse trigonometric 
function must be performing once per dimension, slowing 
down the entire process. So, this is the first thing to 
accelerate. 

Notice that the angles need not be computed exactly 
since they are used only for interpolation. Therefore, it is 
feasible to use an approximation for inverse trigonometric 
functions. 

After considering various approximations, we have 
finally decided to use one from [9]. It requires only moderate 
amount of computation. The actual approximation has the 
form  
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It computes approximations for positive x only. For negative 
x, we compute arcsin(x) = -arcsin(-x) since arcsine is an odd 
function. Having computed arcsin, we can compute arccosine 
as 
 

xx arcsinarccos 2 −= π  
 
The precision of this approach is enough for our purposes. 
The precision plot is given in fig. 2 and the performance 
measurements are given in table one. 
 

 
 

Fig. 2. Precision plot for acos(x) approximation 

 
# calls, millions 10 20 40 
non-SSE(sec.) 1.479 2.954 5.908 
SSE (sec.) 0.084 0.156 0.319 
Speedup 17.6 18.93 18.52 

 
Table 1. Computational performance of inverse 

trigonometric functions (using SSE and without SSE). 
 

We have obtained significant performance gain by 
computing inverse trigonometric functions approximately in 
SSE. For the same number of values to compute, SSE 
approximation gives more than 17 times acceleration over 
original approach. 
  

4. SSE binary search 
 
Another item to be done in SSE is binary search. Binary 

search in non-SSE is a classical algorithm. However, it is not 
so for SSE case. 

The main issue in implementing SSE binary search is 
how to deal with branching, i.e. when different elements of 
the quadruple give different comparison results. In order to 
deal with it, a constant-size stack is introduced. Whenever 
the comparison gives different results, we select some of 
them as the current search value and push current search state 
to stack. When search for the current value is finished, the 
indices obtained are written to the output and we check 
whether the stack is empty. If the stack is empty, we finish 
the search. Otherwise, we pop the state from the stack and 
continue. The state stored in the stack consists of the current 
mask and current limit. The mask is used to select the values 
which are currently active. The initial value of the mask is 
passed to the procedure as a parameter. Here is the 
pseudocode of the SSE binary search algorithm: 
 
sse_int sse_binarysearch(array<float> arr, sse_float       val, 
int mask) { 

i = 0, j = arr.length(); 
sse_int res; 
while(true) { 
  if(i == j) { 
     res.set(i, mask); 
     if(stack is empty) 
        return res; 
      st.pop(i, j, mask); 
      continue; 
  } 
  k = (i + j) >> 1; 
  cmp = val < sse_float(arr[k]); 
  if(all_true(cmp, mask))  
     j = k; 
  else if(all_false(cmp, mask)) 
     i = k; 
  else { 
    push(false_mask(cmp, mask), i, k); 
    j = k; 
    mask = true_mask(cmp, mask); 
  } 

  } 
} 

 
For the sake of performance, we use several specialized 

versions of SSE binary search algorithm. Namely, there is a 
version which computes interpolation weights and evaluates 
1d grid functions. This allows avoiding some extra SSE 
indexing operations.  
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# calls, millions 10 20 40 
non-SSE(s) 0.9 1.78 3.55 
SSE (s) 0.41 0.79 1.61 
Speedup 2.23 2.25 2.20 

 
Table 2. Performance measurements for binary search using 

SSE and without SSE. 
 

The results of the performance measurements are given 
in table 2. The achieved speedup is 2.5. This is quite enough 
for the purposes of the fast BRDF interpolation. 

5. SSE indexing and 
interpolation 

 
Having retrieved the indices for BRDF computations, 

now we need to linearly interpolate between them in order to 
get the BRDF value for the specified incoming and outgoing 
directions. Prior to interpolation, we need to extract the 
BRDF values between which to interpolate. And that 
assumes using indexing operators.  

Indexing in SSE case is not so simple because one 
needs to extract 4 values from different memory locations 
simultaneously. The naive way is to read 4 different values 
from memory and place them in the respective elements of 
an SSE register. However, this approach is inefficient for the 
case of coherent rays since we would often read the same 
value several times which would incur additional penalties in 
creating SSE values. This is further aggravated by the fact 
that we need to do this 8 (for 3D BRDF) or 16 (for 4D 
BRDF) times per BRDF computation for a single ray. This 
may become a real bottleneck.  

In order to accelerate the process, we modify the 
indexing algorithm a little. We take the 0-th element of the 
SSE quadruple and check whether it equals to the other 
components (taking the current mask into account). If all the 
active elements equal to the 0-th element, we perform 
indexing and interpolation only once, thus considerably 
reducing the number of operations required and avoiding 
setting operations. In case of incoherency, we successively 
check the elements beginning from 0-th. For each element, 
we define those elements of the quadruple which are equal to 
it, and then perform indexing and interpolation for these 
elements. Then we exclude these elements from the active 
mask and do the same thing for the elements which have not 
yet been processed. 

In order to accelerate index comparison, we store them 
as floating-point values. This also accelerates computation of 
single array index from 3 or 4 BRDF indices since 
multiplication operations are performed simultaneously. 

Due to performing 4 operations simultaneously, the 
acceleration must be near to 4 for coherent cases, but will 
drop down significantly (almost by the number of the groups 
of coherent rays in the quadruple) for the case when rays are 
incoherent. So, the average acceleration is about 2.5. It must 
be also kept in mind that 3D or 4D interpolation for non-SSE 
case involves significant number of operations and the 
compiler may optimize even the code for the single ray to 
take benefit from using SSE instructions which will 
accelerate non-SSE case.  

6. Results 
 
We have implemented SSE BRDF computations for 

backward ray tracing rendering. SSE BRDF support was 

implemented in C++, under Microsoft Visual Studio 2003. 
Microsoft compiler has been used with all optimization 
options turned on. We have not used any assembler code or 
inline assembly at all and we have used SSE intrinsic 
functions only in basic classes which support operations with 
quadruples of integers and single-precision floating-point 
values.  

We have measured the time of BRDF computations 
separately. The timings were performed for both 3D and 4D 
BRDFs separately. The results are given below (Tables 3 and 
4). 
 
# calls, x 105 1 2 4 

non-SSE(sec.) 0.085 0.177 0.350 

SSE (sec.) 0.024 0.050 0.101 

Speedup 3.54 3.54 3.46 
 

Table 3. The results for 4D BRDF performance test. 
 

# calls, x 105 1 2 4 
non-SSE(sec.) 0.137 0.248 0.495 
SSE (sec.) 0.040 0.078 0.156 
Speedup 3.43 3.17 3.17 

 
Table 4. The results for 4D BRDF performance test. 
 
The actual results depend on the characteristics of the 

PC and the dimensionality of the BRDF. For performance 
measurements, the BRDFs with the following 
dimensionalities have been used: (7 along sigma, 8 along phi, 
13 along theta) for 3D BRDF and (17 along psi, 7 along 
sigma, 17 along phi, 13 along theta) for 4D BRDF. All 
timings were performed on a Mobile Pentium-IV 1800 MHz 
Intel Centrino notebook with 512 MB of 433 MHz RAM.  

 
 

 
 

Fig. 3. An example of 4D BRDF rendering using SSE BRDF 
support. 
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Fig. 4. Another example of 4D BRDF rendering using SSE 
BRDF support. 

 
7. Conclusion 

 
We have implemented SSE BRDF support for ray 

tracing and have achieved speedup by a factor of 3 – 3.5. The 
performance increase may be even higher if we use Intel C++ 
compiler. It would be interesting to consider the use of 
integer instructions available in SSE 2 and some new 
instructions provided by SSE 3. 

We have already implemented BRDF support for RGB 
color model only for the case of backward ray tracing. But 
our framework supports complex global illumination 
algorithms and spectral color models. All this is based on ray 
tracing, and additional performance may be achieved if these 
algorithms are implemented on the top of coherent ray 
tracing. The speedup for forward ray tracing, however, would 
be not as big as for backward ray tracing since ray coherence 
is lower. New structures and techniques are to be used in 
order to provide greater speedup for global illumination 
algorithms. Spectral color model, on the contrary, will 
benefit more since it uses much more color components 
(about 30) and allows using SSE instructions not only for 
working with color quadruples, but also for working with 
single color. 

The work was supported by RFBR, grant № 05-01-
00345-a, and Integra Inc. (Tokyo, Japan). The version of the 
paper with color illustrations can be found at  
http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.h
tm 

 
REFERENCES 

 
[1] Turner Whitted, An Improved Illumination Model 

for Shaded Display. Communication of ACM, Vol. 23, № 6, 
June 1980, pp. 343-349. 

[2] I. Wald, C. Benthin, M. Wagner, Ph. Slusallek. 
Interactive Rendering with Coherent Ray Tracing. Computer 
Graphics Forum (Proceedings of EUROGRAPHICS 2001) 
Vol. 20, № 3, pp. 153-164. 

[3] B. Phong, “Illumination for Computer Generated 
Pictures”, Communications of the ACM, Vol. 18, № 6, pp. 
311-317, 1975. 

[4] J. F. Blinn. Models of light reflections for computer 
synthetized pictures. In Computer Graphics (SIGGRAPH’77 
Proceedings), pp. 192–198, 1977. 

[5] A.Khodulev, E.Kopylov,  Physically accurate 
lighting simulation in computer graphics software. Proc. 

GraphiCon’96 - The 6-th International Conference on 
Computer Graphics and Visualization, St.Petersburg, 1996. 

[6] А.Г. Волобой, В.А. Галактионов, К.А. Дмитриев, 
Э.А. Копылов. Двунаправленная трассировка лучей для 
интегрирования освещенности методом квази- Монте 
Карло. "Программирование",  № 5, 2004, с. 25-34. 

[7] Letunov A.A., Barladian B.H., Zueva E.Yu., 
Veshnevetc V.P., Soldatov S.A. CCD-based device for BDF 
measurements in computer graphics. The 9-th International 
Conference on Computer Graphics and Vision, Moscow, 
Russia, Aug 26 - Sep 1, 1999. 

[8] IA-32 Intel Architecture Optimization Reference 
Manual, p. 440. 
ftp://download.intel.com/design/Pentium4/manuals/2489661
1.pdf 

[9] Mathematical Handbook for Scientists and 
Engineers, Second Edition. McGraw-Hill Book Company, 
1968. 

 

Authors: 

Andrew V. Adinetz, five course student of the Moscow State 
University. E-mail: adi_@mail.ru. 
 
Boris H. Barladyan, PhD, senior researcher of the Keldysh 
Institute for Applied Mathematics RAS. 
E-mail: obb@gin.keldysh.ru 
 
Lev Z. Shapiro, PhD, senior researcher of the Keldysh 
Institute for Applied Mathematics RAS. 
 
Alexey G. Voloboy, PhD, senior researcher of the Keldysh 
Institute for Applied Mathematics RAS. 
E-mail: voloboy@gin.keldysh.ru 


