
International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Modeling of Fuzzy Natural Phenomena with Particle System: A General
Method for Interactive Visualization

Vladimir Beliaev, Natalia Zaytseva
Applied Mathematics Department,

St. Petersburg State Polytechnical University, St. Petersburg, Russia
{vladimir, nata}@d-inter.ru

Abstract
We present a general approach for rendering fuzzy objects
modeled by a system of particles. At present time a lot of
different techniques exist for rendering such objects. Often
researchers who develop methods for modeling of complex fuzzy
objects like smoke and clouds use there own methods for
rendering these objects. This separate developing of rendering
techniques has led the methods to loss of generality. We propose
general approach based on using image-aligned sheet-buffer
splatting method for objects visualization taking into account light
scattering inside object volume. Such approach gives physically-
based general method for visualization of modeled objects and
should lie in base of rendering tool, which takes as input the set of
colored particles (the color defines optical material properties)
and density distribution function which specifies the way of
material distribution inside particle’s domain. So researchers do
not need to develop rendering algorithm for visualization their
results at the step of model developing, they can see results
immediately after modeling.
Keywords: Volume Rendering, Particle Systems, Image-Aligned
Sheet-Buffer Volume Splatting, Light Scattering Models.

1. INTRODUCTION

Physically-based methods of modeling so-called volume (fuzzy)
effects like smoke, fog and clouds often give result as a set of
particles. Every particle specifies some portion of substance, and
is defined by position in 3D space, has volume and density value,
which defines how much material is distributed in particle’s
domain. Optical properties of object’s material are specified by
particle’s color and optical model, which is used for objects
lighting. Thus natural object may consist of several materials;
particles may have different colors inside one set. Note, that some
modeling methods mean particle as a material point which has no
volume, but only position. In this case size of particle’s domain
can be set due to required visual effects.
Volume rendering methods are very close to our needs, as they
take sampled scalar field and reconstruct it. Every value of scalar
field defines density material in that point of space. For simplicity
of understanding we will call scalar value as particle (thus in the
context these terms are equal).
Volume rendering (VR) methods were developed for medical
needs and as a result some of them use the benefit of objects
stativity. Note, that objects which are modeled by particles are
dynamic – every frame particles change their position in the
space. VR methods are divided into the following groups: cell-
projection [14], texture-based [16], ray–casting [17], splatting [1]
and shear-warp [15] method. Table 1 gives a brief comparison of
these techniques. More detailed discussion you can find in [2].

Table 1: Comparison of general volume rendering algorithms.

 Ray
casing

Splatting Shear-
Warp

Cell
Projection

Texture
-based

Processed
scalar values

All Required Required Required All

Speed + ++ +++ + ++++

Quality ++++ ++++ ++ ++ ++

Irregular
grids

Yes Yes No Yes No

Hardware
acceleration

No Yes Yes Yes Yes

The most suitable method for rendering dynamic objects,
presented by set of particles is splatting, because it gives the best
quality-speed trade-off and it is the only method which considers
every particle independently and as a result it can be used for
dynamic particles as well as for static ones. Other VR methods
process static 3D grids with particles in nodes (density grids). So
the only way to use these methods for dynamic set of particles is
to build an irregular density grid at every frame and render it.
Evidently, they are inefficient in our case.
Splatting is a popular algorithm for direct volume rendering; it
was first proposed by Westover [1]. Splatting method reconstructs
a continuous density function from the sampled scalar field (set of
particles) using 3D reconstruction kernels. Reconstruction kernel
is a radially symmetric function that distributes particle material
inside particles’ volume. For volume rendering, the continuous
function is mapped to the screen as a superposition of pre-
integrated 3D kernels, which are called 2D footprint or splat.
In this paper we present unified approach for rendering set of
physical particles. Our method is based on image-aligned sheet-
buffer splatting, which was presented by Mueller and Crawfis [3]
to eliminate popping artifacts (incorrect illumination of several
object parts) that appear due to changing of viewer’s position (see
Section 3 for details). We propose to use image-aligned sheet-
buffer splatting for rendering different-colored particles inside
one set without color popping artifact (it appears for penetrating
particles with different colors). Also we use image-aligned sheet-
buffer splatting for modeling the process of light propagation
inside object volume from some light source taking into account
light scattering. Additionally we propose to use volume textures,
which are supported by modern GPUs, to store pre-integrated
segments of reconstruction kernel instead of using the set of 2D
images. This increases quality because current hardware allows us

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

to interpolate between segments automatically (see Section 4 for
details).
The remainder of this paper is organized as follows: We first
discuss related work in Section 2. We then briefly review the
theory and main algorithm of splatting (Section 3), introduce
color popping term in Section 4 and present image-aligned sheet-
buffer splatting as way of eliminating this affect in Section 5.
Next, we present our volume texture approach for effective
storing images of particles segments in Section 6. In Section 7 we
introduce our method of light propagation inside object’s volume
based on image-aligned sheet-buffer splatting and compare it the
one based on classical splatting. Then we present results of
rendering two objects. Finally, we conclude our work and outline
future research directions Section 9.

2. RELATED WORK

2.1 Splatting
Splatting-based methods of volume rendering were intensively
developed during last years.
First splatting was mentioned by Westover [1]. This method uses
pre-integrated 2D splat for visualization every particle. Splat is a
quad with 2D texture of pre-integrated 3D reconstruction kernel,
and this quad is always perpendicular to viewing direction (in
computer graphics it is also known as sprite). Correctness of such
approach is based on the fact that reconstruction kernel is a
radially symmetric function and it looks the same from every
viewing position. So its image can be pre-calculated.
The main disadvantage of this method for us is incorrect
processing of penetrating particles with different colors. Mueller
and Crawfis [3] proposed image-aligned sheet-buffer splatting
method to eliminate popping artifacts, which occur in classical
splatting when viewer changes his position relative to object. In
this method 2D splats are firstly accumulated in sheet images.
Then images are composited1 sequentially back-to-front with
frame buffer giving the resulting image. Plane of sheet images is
parallel to screen (in classical sheet-buffer method the plane is
aligned with the grid face most parallel to the image plane - 3D
density grid is often rectilinear due to scan nature of visualized
data). We use image-aligned sheet-buffer splatting to solve the
problem of visual artifacts, which appear when two dynamic
particles with different colors penetrate each other (color popping
artifact).

2.2 Lighting model
Max [4] showed that general lighting model for light propagation
inside material should include emission, absorption and scattering
of incoming light by elementary material particle. All volume
rendering methods take into account only emission and absorption
of light incoming from object’s background. This approach is
correct when visualized object is opaque (material is solid).
Emission and absorption is not enough for gaseous fuzzy objects
we are talking about – light scattering is necessary. General
approach to visualization of particles which simulate physical
natural phenomena should take into account light scattering inside
volume object. We consider volume objects that have no distinct
surface, so we have no need to take into account light reflection
from the surface. As a result our lighting model should include

1 Compositing means the same as blending.

such optical effects as: emission, absorption and scattering from
some light source through the object volume. These optical
models were described by Max [4] in detail. Whereas emission
and absorption are realized by standard interactive volume
rendering methods light scattering is more complex process.
There are a lot of papers dedicated to light scattering inside object
volume [6], [7], but proposed methods are far from being
interactive. Different approximations are used to process
scattering interactively.
Scattering illumination models simulate the emission and
absorption of light by a medium as well as scattering through the
medium. Single scattering models simulate scattering through the
medium in a single direction. This direction is usually the
direction leading to the point of view. Multiple scattering models
are more physically accurate, but must account for scattering in
all directions (or a sampling of all directions), and therefore are
much more complicated and expensive to evaluate.
Approximation which takes into account only single scattering
was used by Voss [9] and Nishita et al. [10]. Such approach
results in too dark part of cloud which is opposite to light source
(Figure 1). The reason is necessity to model multiple scattering
for such objects as clouds.
Nishita et al. [11] showed that scattering of first and second order
is sufficient. Dobashi et al. [5] developed two-pass method for
single scattering. And Harris [8] generalized these ideas and used
splatting for real-time modeling of light multiple scattering inside
cloud. He used (classical) splatting for both passes: light
propagation calculations and rendering particles with new light
values.
Nulkar and Mueller [12] proposed to use image-aligned sheet-
buffer splatting for generating shadows from volume object. Also
they proved that image-aligned sheet-buffer splatting has the
quality comparable with ray casting method (see Table 1).
Our idea consists in using image-aligned sheet-buffer splatting to
model the process of light scattering from light source through the
fuzzy object volume. Our goal is to improve quality and make
speed-up of existing algorithm for light propagation through the
set of particles.

Figure 1: Taking into account only single scattering of light
inside cloud leads to abnormal dark parts on the opposite side

from the light source [4].

3. SPLATTING: THEORY AND ALGORITHM
All volume rendering algorithms evaluate the so-called volume
rendering integral (VRI). We use notation and description from

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

[13]. Denote a point in ray space by a column vector of three

coordinates ()0 1 2, , Tx x x=x . Given a center of projection and a
projection plane, these three coordinates are interpreted
geometrically as follows: The coordinates 0x and 1x specify a
point on the projection plane. The ray intersecting the center of
projection and the point 0 1(,)x x on the projection plane is called

a viewing ray. Using the abbreviation $ 0 1(,)Tx x=x , we refer to

the viewing ray passing through 0 1(,)x x as $x . The third

coordinate 2x specifies the Euclidean distance from the center of
projection to a point on the viewing ray. The following notations

are equal: x , $ 2(,)Txx , or ()0 1 2, , Tx x x to denote a point in ray
space.

VRI describes the light intensity $()I xλ at wavelength λ that

reaches the center of projection along the ray $x with length L
(Figure 2):

Figure 2: Volume rendering. Left: Illustrating the volume

rendering equation in 2D. Right: Approximations in typical
splatting algorithms.

VRI looks as follows:

 $ $ $ $
0 0

() (,) (,) exp((,))
L

I c d d
ξ

λ λ ξ τ ξ τ μ μ ξ= −∫ ∫x x x x , (1)

where ()τ x is the extinction function that defines the rate of light

occlusion at point, and ()cλ x is an emission coefficient, which
defines quantity of light emitted by material in the point. VRI in
discreet form looks as follows:

 $ $ $ $
1

0

() () () (1 ())
k

k k q j j
k j

I c q qλ λ τ τ
−

=

= −∑ ∏x x x x , (2)

where ˆ()kq x denotes 2 2ˆ ˆ() (,)k kq r x dx=x x , where ()kr x is
reconstruction kernel for particle’s material. In theory
reconstruction kernel should have infinite definition domain and
spreads particle’s material portion all over the space. But
practically kernel function has finite definition area (local
support) – it is truncated at some distance from its centre (when
function value became lower than some threshold value). Locality
of support is needed for one of simplifications, which reduce VRI
(1) to discrete form (2).
More detailed description of VRI and its discreet version you can
find in [4].
Note, that VRI takes into account emission and absorption
lighting models. It means that every material elementary particle
may absorb some portion of incoming light and emit some
additional light (e.g. hot gases shine). But VRI doesn’t take into

account light scattering, which is very important for physically-
based visualization of fuzzy objects. For example, the main
lighting effect, which makes cloud visible for us, is sun light
scattering inside cloud volume. This problem is examined in
Section 7.

4. CLASSICAL SPLATTING: COLOR POPPING
EFFECT

In classical splatting method all particles are sorted by distance to
the viewer and then their splats are projected to the image plane
and composited with frame buffer in back-to-front order (relative
to viewer).
Consider situation when two particles with different colors are
very close (see Figure 3). Splats are blended according to the
following equation:

 (1)new frame bufferC C Cα α−= ⋅ + ⋅ − , (3)

where C is the particle color, α is the particle’s density –
material quantity in particle’s volume.

Figure 3: Sprites of two close particles turn due to viewer

position (top view). That leads to changing of particle
compositing order.

On Figure 3 two penetrate particles are shown schematically –
only sprites are drawn in top view. Particles are static, but viewer
moves. This movement changes order of splats composition with
image in frame buffer. In the case of Figure 3a) they are projected
and composited in order: 2, 1. But in case, illustrated on Figure
3c) they are composited in order: 1, 2. The following equation
shows the difference in resulting color in frame buffer after this
splats as been blended:

) 1 1 2 2 1 1 1 2 2 2 1 2

) 2 2 1 1 2 2 2 1 1 1 1 2

)) 1 2 1 2

(1)

(1)

()

a

c

a c

C C C C C C

C C C C C C

C C C C

α α α α α α α

α α α α α α α

α α

= + − = + −

= + − = + −

− = −

, (4)

where))a cC C− is the difference in resulting colors in the image.
Figure 3b) shows the case when the distances from two particles
to viewer are equal. The resulting order after sorting these
particles by distance to viewer may randomly vary from frame to
frame. This leads to the effect, which we call color popping effect.

5. ELIMINATING COLOR POPPING
To eliminate color popping effect described in previous section
we use image-aligned sheet-buffer splatting. This method was
developed to avoid popping artifacts, which appears in common
sheet-buffer splatting.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

In the sheet-buffer method, splats are added within sheets that are
aligned parallel to the grid face most parallel to the image plane.
After a sheet buffer has been accumulated, it is composited into a
cache image that traverses the volume in back-to-front order [3].
Popping artifact occurs when the orientation of the compositing
sheets changes suddenly as the image screen becomes more
parallel to another volume face.
In image-aligned sheet-buffer splatting sheet images are aligned
parallel to the image plane (Figure 4), so popping artifact from the
previous example doesn’t appear. But from the other side image-
aligned slices cut every particle on set of segments (Figure 1a), so
instead of storing texture with 2D splat we should store the set of
textures with pre-integrated particle segments. Disadvantage of
this particle representation is essentially increase of memory
usage and speed decrease, but advantage is avoiding of color
popping effect.

Figure 4: Image-aligned sheet-buffer splatting.

Why does it help to avoid our color popping artifact? Solution lies
in principles of this method. All particles’ segments which lie
inside one volume slice are added (not composited) into sheet-
buffer. Addition is commutative operation and doesn’t depend on
arguments order.

6. VOLUME TEXTURE FOR IMAGES OF PRE-
INTEGRATED SEGMENTS

As it was mentioned in previous section image-aligned sheet-
buffer method requires particles representation as a set of
segments (Figure 5a), thus every volume slice cuts particles on
parts. Mueller and Crawfis [3] store pre-integrated splats of
segments in a set of 2D textures (128 segments) and then use the
closest texture to the needed one. We propose to use volume
texture to store images of pre-integrated segments. Unlike method
of Mueler and Crawfis our approach allows to obtain not the
closest image but required image of segment via interpolation
between existed images. Access to the needed segment’s image is
done by texture w-coordinate. We declare that this method
increases resulting image quality.
Additional advantage of using volume texture is solving batching
problem, which exists in method of Mueller and Crawfis. Problem
consists in high cost of texture setup. So it is more efficient to use
one (volume) texture instead of set of 2D textures.

Figure 5: a) every slice cuts particles into set of segments. b) we
pre-integrate segments and store their images in volume texture.

7. LIGHT SCATTERING

We propose to use image-aligned sheet-buffer splatting for
modeling of light scattering from light source through the object
volume. Note, that Harris [8] used classical splatting for light
propagation calculations; Nulkar and Mueller [12] used image-
aligned sheet-buffer splatting to render shadow from volume
object. We generalize these ideas and declare that for our problem
using image-aligned sheet-buffer splatting is more efficient in
comparison with using classical splatting. Examine algorithms for
light scattering calculations based on: classical splatting (Figure
6-left), image-aligned sheet-buffer splatting (Figure 6-right).
Light propagation process looks as light front moving through the
object volume. Splatting-based methods model that movement: in
classical splatting front moves from particle to particle, in image-
aligned sheet-buffer splatting front moves from slice to slice.
The main idea of two-pass method is: pre-computing cloud
shading in the first pass, and using this shading to render the
clouds in the second pass.
Calculation of cloud shading means computing for every particle
the portion of light, which reaches it from the light source. Every
particle absorbs some portion of incoming light and scatters
residual light further. Scattering manner is a material property and
is defined by a (, ')PhaseFunction ω ω .

Notation: L is the light direction (from source to particle), ω is
the direction from particle to the viewer. Phase function

(, ')PhaseFunction ω ω determines portion of light coming from
direction 'ω and scattering along direction ω .

We use the same Raleigh phase function as Harris [8]:

 2(, ') 3 / 4(1)PhaseFunction xω ω = + , (5)

where �cos(, ')x ω ω= . This phase function gives the most
scattering in forward and backward directions, such scattering
manner is characteristic for clouds. But we should note, that our
algorithm (as well as two-pass methods of Harris and Dobashi et
al.) takes into account only forward multiple scattering, due the
way of shading the cloud in first pass – light front moves away
from light source. Backward multiple scattering is very complex
process. We include developing of approximation method for
modeling backward scattering in our future work directions.
In addition to phase function optical properties of the medium are
characterized by albedo. We denote it as albedo in algorithms
and in experiments we use 9.0=albedo as it was in [8].

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 6: Two-pass rendering of particles set. Colored lines illustrate front movement through the volume. Left: method based on classical

splatting, front moves from particles to particle. Right: method based on image-aligned sheet-buffer splatting, front moves from slice to
slice.

In algorithms presented below extinction coefficient is calculated
as ατ −= 0.1)(x , where α is the particles’ density value.

7.1 Classical Splatting
2D footprint of reconstruction kernel in calculated while
preprocessing.
Every Frame
I Pass
1. Set camera to light source position
2. Sort particles relative to distance from
 light source
3. Clear frame buffer with color of light source

4. For every particle , 1,kP k n= (front-to-
 back order)

5. Calculate projection center kP onto
 the screen

6. Calculate color of the pixel _frame bufferC

 in frame buffer
7. Store particle color

 _. . * .k k frame buffer kP C P C C albedo P τ= ∗ ∗

8. Light portion, scattered forward

 (,)k PhaseFunction L L= −

9. Render kP with color .kP C k∗ through
 compositing with frame buffer
10.Endfor

II Pass
1. Set camera to viewer position
2. Sort particles due to distance from viewer

3. For every particle , 1,kP k n= (back-to-front
 order)
4. Portion of light, scattered to viewer

 (,)k PhaseFunction Lω=

5. Render kP with color .kP C k∗ through
 compositing with frame buffer
6. Endfor
EndFrame

7.2 Image-Aligned Sheet-Buffer Splatting
Preprocessing
1. Calculate 2D images of pre-integrated segments
and store them in
 volume texture

2. For every segment calculate weight Weight[iS]
 (portion on particle’s material, which is
 contained in segment volume)

Every Frame
I Pass
1. Set camera to light source position
2. Clear frame buffer with color of light source
3. Build lists of segments for all slices
4. For every slice (front-to-back order)

5. For every segment iS of the slice
6. Build sprite with corresponding segment
 footprint

7. Calculate projection center iS onto the
 screen

8. Calculate color of the pixel _frame bufferC in

 frame buffer
9. Store particle color

 _. . * .k k frame buffer kP C P C C albedo P τ= ∗ ∗

10. Add segment’s color with weight to

 particle color . []
ik new S iP C C Weight S+ = ∗

11. Light portion, scattered forward

 (,)k PhaseFunction L L= −

12. Render iS with color iS k∗ through adding
 with image current slice
13. Endfor
14. Composite slice’s image with contents of
 frame buffer
15. Endfor

II Pass
1. Set camera to viewer position

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

2. Build lists of segments for all slices
3. For ever slice (back-to-front order)

4. For every segment iS of the slice
5. Build sprite with corresponding segment
 footprint
6. Light portion, scattered to the viewer

 (,)k PhaseFunction Lω=

7. Render iS with color . .i kS P C k∗ through

 adding to image current slice
8. Endfor
9. Composite slice’s image with contents of
 frame buffer
10.Endfor
EndFrame

Method, which models light scattering process using classical
splatting, is slower because we have to read contents of frame
buffer for every particle and this operation is very expensive.
While method based on image-aligned sheet buffer splatting reads
contents of frame buffer for every slice. Number of slices depends
on viewer position and particles location (Figure 7).

Figure 7: Number of slices in sheet-buffer splatting depends on

particles location relative to viewer. a) only two slices are needed.
b) eight slices are required.

8. RESULTS

For our experiments we use Intel Pentium 4 platform, 2,4ГГц
CPU, 512 M RAM, ATI Radeon 9700 Pro.
All algorithms were implemented using software, because our
goal was verification of methods not optimized implementation.
For particles we use Gaussian reconstruction kernel, which was
proposed in [3]:

22() 0.446 rG r e−= ⋅ (6)

where 2 2 2r x y z= + + .

Figure 3 demonstrates two penetrating each other particles with
different colors (red and green). We use slices of 2/Rwidth = ,
where R - radius of particle’s sphere (volume), so every particle
is divided into the 4 segment. Figure 8 (left, center) shows result
of rendering these particles with classical splatting, while Figure 8
(right) demonstrates result of image-aligned sheet-buffer splatting
application. We see that application of our method allows us to
avoid color popping effect. We should note that result images are
not very demonstrative because color popping occurs in dynamic
scenes while static images don’t give good presentation of
motion.
Table 2 contains time, required for rendering these two particles.

Table 2: Result of rendering two particles by different methods.

Classical Splatting, ms (fps) 3.11 (321)

Image-Aligned Sheet-Buffer Splatting, ms
(fps)

43.10 (23)

Speed is the cost we pay for eliminating visual artifacts, but
benefit is the physically-based general approach of our method.

Figure 9 shows results rendering cloud-like objects. It consists of
500 particles and is lit by directional light source. Cloud model is
very robust and doesn’t’ pretend on natural look. It was created to
verify shading method (e.g., test halo effect in case when light
source and viewer are positioned at the opposite sides from the
cloud) and to measure its speed in comparison with shading
method proposed by Harris (note that we use our implementation
of Harris’ method). Table 3 gives time of rendering.

Table 3: Result of rendering cloud with lights scattering
modeling.

Lighting by directional light source On off

Classical splatting used for both
phases, ms (fps)

3003
(0.3)

2.83
(353)

Image-aligned sheet-buffer splatting
for both phases, ms (fps)

286
(3.5)

58.1
(17.2)

9. CONCLUSION AND FUTURE WORK
We have proposed a general approach for rendering volume
objects which are modeled with a particle set. Our method
includes usage of image-aligned sheet-splatting for visualization
of particles with different colors. Also we develop method which
models light propagation inside object volume taking into account
light scattering, which is very significant lighting effect for
visualization of “physical” fuzzy objects. Moreover, our method
for scattering is more efficient for light scattering in comparison
with the method based on classical splatting because our method
is than 10 times faster than the method, presented by Harris. To
prevent reader from being confused while comparison our results
with Harris’ ones, we should make a note. Harris obtained the
following results: “shading phase for scenes with only a few
thousand particles takes less than a second per light source” –
unfortunately these results are given very approximately. We
shaded 500 particles for using classical splatting about 3 seconds
with implementation that is not optimal. So we think our time
results are adequate. We note, that our goal consisted in
verification of method based on imaged-aligned sheet-buffer
splatting for eliminating color popping artifacts for particles with
different colors (e.g., cloud has different-shaded particles that
may penetrate leading to color popping) and for shading particles
in physically-based manner (image–aligned sheet-buffer method
approximates light propagation process better than the classical
splatting). We made a justification of using image-aligned sheet-
buffer splatting for shading phase instead of using classical
splatting. Time results shows that our method is interactive and
suitable for interactive visualization.

Algorithms implementation was made without using of GPU
possibilities. We plan to optimize these methods using hardware
accelerators to relieve CPU for other needs, e. g. simulations. In

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

fact, most of specified calculations may be processed in vertex
shader, e.g., phase function, computation of required segment
image. This will allow us to speed up our method in cases when
CPU is heavily used for other (not rendering) needs.
 Also we plan to compare different reconstruction kernels in
respect to image quality and possible visual effects. We want to
examine triangles and quads as sprite primitives with a view of
rendering speed. Also we are interested in developing method
which takes into account not only forward scattering of light
inside volume, but also backward scattering.

10. REFERENCES

[1] L. Westover. Footprint evaluation for volume rendering. In
Proceedings of ACM SIGGRAPH 1990, pages 367–376, August
1990.
[2] Meissner, M., J. Huang, D. Bartz, K. Mueller and R. Crawfis.
A Practical Evaluation of Popular Volume Rendering Algorithms.
In IEEE/ACM Symposium on Volume Visualization, Salt Lake
City, Utah. 2000.

[3] K. Mueller and R. Crawfis. Eliminating popping artifacts in
sheet buffer-based splatting. In Proceedings of the 1998 IEEE
Visualization Conference, pages 239–246, Ottawa, Canada,
October 1998.
[4] N. Max. “Optical Models for Direct Volume Rendering”,
IEEE Transactions on Visualization and Computer Graphics, vol.
1 no. 2, June 1995.
[5] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T.
Nishita. "A Simple Efficient Method for Realistic Animation of
Clouds". SIGGRAPH 2000, pp. 19-28.
[6] Joshua Schpok, Joseph Simons, David S. Ebert, Sharles
Hansen. A Real-Time Cloud Modeling, Rendering and Animation
System, Eurographics/SIGGRAPH Symposium on Computer
Aimation’03. pp.160-166, 2003.
[7] Horng-Shyang Liao, Jung-Hong Chuang, Cheng-Chung Lin,
"Efficient rendering of dynamic clouds", Proceedings of the 2004
ACM SIGGRAPH international conference on Virtual Reality
continuum and its applications in industry, 2004.
[8] M. J. Harris. “Real-Time Cloud Rendering for Games”. Game
Developers Proceedings, 2002.

[9] R. Voss, “Fourier synthesis of gaussian fractals: 1/f noises,
landscapes, and flakes”, Tutorial on State of the Art Image
Synthesis, ACM Siggraph Course Notes (1983).
[10] T. Nishita, Yasuhiro Miyakawa, and Eihachiro Nakamae, “A
Shading Model for Atmospheric Scattering Considering
Luminous Intensity Distribution of Light Sources” Computer
Graphics Vol. 21 No. 4 (July 1987) pp. 303 – 310.
[11] T. Nisihita, Y. Dobashi, E. Nakamae. “Display of Clouds
Taking into Account Multiple Anisotropic Scattering and Sky
Light”. SIGGRAPH 1996, pp. 379-386.
[12] M. Nulkar and K. Mueller. Splatting with shadows.
International Workshop on Volume Graphics 2001 Stony Brook,
June 2001 pp. 35-50.
[13] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
Markus Gross. EWA Volume Splatting, IEEE Visualization 2001,
pp. 29-36, 2001.
[14] M. Weiler, M. Kraus, and T. Ertl. Hardware-Based View-
Independent Cell Projection, Proceedings IEEE Visualization
2002.
[15] P. Lacroute and M. Levoy, “Fast volume rendering using a
shear-warp factorization of the viewing transformation”, Proc.
SIGGRAPH ‘94, pp. 451- 458, 1994.
[16] B. Cabral, N. Cam, and J. Foran, “Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware”, 1994 Symposium on Volume Visualization, pp. 91-98,
1994.
[17] M. Levoy, “Display of surfaces from volume data”, IEEE
Comp. Graph. & Appl., vol. 8, no. 5, pp. 29-37, 1988.

About the authors

Vladimir Beliaev has master’s degree and is an engineer-
programmer at St-Petersburg Polytechnic University, Department
of Applied Mathematics. His contact email is vladimir@d-inter.ru
Natalia Zaytseva has master’s degree and is an engineer-
programmer at St-Petersburg Polytechnical University,
Department of Applied Mathematics. Her contact email is
nata@d-inter.ru.

International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 8: Two particles viewed from two positions, angle between viewing directions differs on 0,020. Left and center images were

generated by classical splatting. Right image shows result of image-aligned sheet-buffer splatting (images for two viewing directions are
accurate within color component value capacity).

Figure 9: Left image shows cloud rendered taking into account light scattering, light source locates behind the cloud – cloud has brighter

halo, which is typical for that light source position [8]. Center image shows cloud rendered taking into account light scattering, light
source is located from the front of the cloud. Right image is result of rendering the cloud without light scattering.

