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Abstract 

A new method is presented for rendering general FRep 

(functionally represented) models using GPU-accelerated ray 

casting. We use the GPU acceleration for all computations in the 

rendering algorithm: ray-surface intersection calculation, function 

evaluation, and normal vector computation. Performing geometric 

intersection calculations in parallel with shading allows us to 

combine the whole process of rendering within one fragment 

program on GPU. The algorithm is well-suited for modern GPU 

and provides good performance with good quality of results; it is 

practically memoryless and does not require a powerful CPU. 

Keywords: Ray Casting, Real Time, FRep, implicit models, 

rendering, visualization, GPU.  

1. INTRODUCTION 

The function representation (FRep) defines a geometric object by 

a single continuous real function of point coordinates as: F(X) ≥ 0 

[15], where the function is evaluated while tracing an underlying 

tree structure or by running a “black box” evaluation procedure. 

Functionally based models are also called implicit models or 

implicit surfaces. Methods of constructing implicit models are 

developed well enough; however, rendering of these models with 

interactive rates remains an open problem.  

At present, there are two ways to render FRep models. The first 

one is the polygonization, where the surface of a FRep object is 

represented approximately with a set of polygons. The second one 

is ray-tracing. The polygonization has become popular due to the 

intensive development of software and hardware for polygonal 

mesh visualization. However, it is memory- and computationally 

expensive to generate in real time and moreover it is not robust, 

because features like spikes and sharp edges can be lost during the 

polygonal mesh generation. Ray-tracing is regarded as more 

precise method to visualize FRep models; however it is 

computationally expensive to perform in real time too. 

In this paper, we present a method of ray-casting (ray-tracing 

primary rays only) accelerated using GPUs (graphics processing 

units) and specialized for rendering FRep models with interactive 

rates. In recent years, the evolution of graphics hardware has 

resulted in using graphics cards not only for rendering polygons, 

but for solving more general problems. It is due to introduction of 

shaders, which are GPU programs for processing vertices and 

fragments. Although shaders basically allow for the parallel 

calculations of positions of vertices or colors of pixels, they can 

be used as programs for more general computations. These 

computations can be performed faster on GPUs than similar 

computations on CPUs because of using multi-core parallel 

processing in modern GPUs. 

The ray-tracing algorithm computes the ray-surface intersection 

for the particular pixel independently from other pixels; therefore 

we can accelerate these computations with parallel processing on 

a GPU. In our method, we use GPU for all the necessary 

computations: ray-surface intersection calculation, function 

evaluation, and calculation of the normal. By performing shading 

computations in a shader program we avoid superfluous 

computations on CPU and process all the data in one shader pass. 

Computation of normals of the FRep surface allows us to use per-

pixel lighting, leading to better surface rendering. Moreover, we 

only need to store ray data (two vectors) for each pixel, so our 

method is practically memoryless, thereby alleviating the large 

memory consumption problems essential to polygonization based 

rendering.  

 

                        a.                                                  b. 

Figure 1: Rendering of some FRep objects using our method.      

a) stand (virtual shikki), b) sandbox (Hyperfun gallery) 
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By using acceleration on GPU, we achieve ray-tracing 

performance competitive with real-time. We also present 

techniques for additional accelerations of the ray-tracing 

algorithm that allow for further improving its performance. 

2. PREVIOUS WORKS 

Ray-tracing of functionally based models and especially skeletal 

implicit surfaces was examined by many researchers in recent 

years. Classical methods of ray-tracing were summarized in [9]. 

These methods generally are very slow even on modern hardware 

and they were improved for different special cases. Thus, in [17] 

ray-surface intersection was accelerated using polynomial 

approximations of implicit surfaces. The authors of [5] deal with 

implicit models represented by tree data structures; rendering was 

accelerated due to this restriction on models. For models 

represented by tree structures, acceleration was achieved in [10] 

because of analytical root finding in the tree leaves with implicit 

surface primitives. Although these methods provide good 

performance, they are not appropriate for general case objects, 

because not each procedural model can be easily represented with 

a tree-like structure. In [4] acceleration was achieved for dynamic 

scenes, where the previous frame was used as input data for the 

current frame. However, rendering of the first frame and finding 

the difference between frames remains computationally expensive.  

Ray-tracing on GPU is also a well researched area. However, most 

papers have focused on polygonal meshes and parametric 

surfaces. Thus, GPU-accelerated ray-tracing for triangle meshes 

was introduced in [16, 1], where computations were divided 

between GPU and CPU because of limitations of graphics 

hardware. Further development of GPU-based ray-tracing of 

scenes composed of triangle meshes was considered in [2], where 

classical recursive ray-tracing was implemented for GPU. In [6], 

performance of ray-tracing was improved using kd-trees, in [20] 

acceleration of ray-tracing was achieved using threaded bounding 

box hierarchy stored as a geometry image. GPU ray-tracing of 

volumetric data using graphic hardware was introduced in [12]. 

The work [14] presented a method of GPU rendering of piecewise 

algebraic surfaces. 

GPU-accelerated ray-tracing of implicit surfaces was introduced 

only for several particular types of surfaces. The work [3] 

considered ray-tracing of implicit surfaces defined by radial based 

functions. Rendering of quadratic implicit surfaces on GPU was 

reviewed in [13]; in [19] effective ray-tracing on GPU was 

implemented for objects represented by CSG-trees with pre-

defined primitives; and [8] introduced ray-tracing of discrete 

isosurfaces.    

3. ALGORITHM DETAILS 

The main idea of our algorithm is using GPU for most 

calculations in classical ray-tracing algorithms adapted to FRep 

objects. As it was mentioned above, the calculation of the ray-

surface intersection for each pixel does not depend on other 

pixels. Therefore, we can use parallel calculations in GPU to 

accelerate rendering. We use a program called a fragment shader 

to perform computations on pixels. We use the fragment shader 

program for performing the following: 

o Find the ray-surface intersection  

o Calculate the surface normal 

o Compute shading 

The contents of the fragment shader are shown in Figure 2. 

The main calculation load is accounted for the function value 

calculation at the given point. If we use any classic method such 

as Newton root-finding or even dichotomy, we have to calculate 

function values for one ray many times. Therefore the main 

computations can be divided into two parts: 

o Calculation of the function value 

o Root finding when the function value is known 

The first part concerns the internal model representation. The 

second part concerns the ray-surface intersection algorithm. The 

part of the shader that calculate the function value depends on the 

model and should be re-generated for each new model; the root-

finding part is similar for all the models and depends only on the 

selected method of the ray-surface intersection.  

For our implementation, we use OpenGL and the shader language 

GLSL. Note that we should bare in mind GPU restrictions such as 

inability to use recursion or early breaks in functions. Hardware 

restrictions depend on current graphics hardware, in this paper we 

mention restrictions that we met during the implementation. 

 

 

Figure 2: Scheme of the fragment shader. 

 

3.1 Model representation 

We briefly review how the model can be represented by a 

fragment program in GPU. In the function representation any 

object can be described by a real value function with real value 
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arguments. This function can be either given by a text file 

describing a tree structure (as in BlobTree [5]) or by an evaluation 

procedure (HyperFun [11]). In this work, we use HyperFun 

objects, because both HyperFun and GLSL are C-alike languages 

and the conversion between them can be done easily. Thus, the 

model representation in the form of a HyperFun file is converted 

to a shader program in GLSL.  

The problem in the conversion from HyperFun could be with the 

library of primitives and operations, but all the library functions 

can be implemented in GLSL without any problem. For example, 

we show below how a HyperFun model of a sphere can be 

represented with GLSL functions: 

 

HyperFun: 

my_model(x[3], a[1]) 

{ 

my_model = 9 - x[1]* x[1] - x[2]* x[2] - x[3]* x[3]; 

} 

 

GLSL: 

bool my_model(in vec3 vecX, in vec3 vecA, inout float 

fValue) 

{ 

fMyModel = 9-vecX.x*vecX.x-vecX.y* vecX.y-vecX.z*vecX.z; 

bool bResult = (fMyModel>=0); 

return bResult; 

} 

 

Thus, the function related part of the shader can be generated as 

follows: 

o Check the input file for using library functions 

o For the used library functions, include their implementations 

into the shader 

o Convert objects from the input model to the shader language 

In the similar way, practically all HyperFun programs can be 

converted to the GLSL representation. As the result we have the 

function in the shader that has point coordinates as the input and 

the function value as the output. 

 

3.2 Ray-surface intersection 

For a FRep model, ray-surface intersection means the search of 

zero roots of the defining function along a ray. This process can 

be done using either  

o Approximate methods, or 

o Methods with exact root search or with localization of several 

roots and approximate search of the others.  

Approximate methods were discussed in detail in [9]. In our 

method, we use interval analysis combined with the Newton 

method. This method was selected as the easiest one to implement 

and relatively robust. Thus, during the generation of the fragment 

shader, we add the ray-surface intersection part built with the 

following algorithm: 

o calculate function value at the first point of the ray 

o subdivide the ray into intervals 

o for each interval 

o calculate the function value at the end of the interval 

o compare signs of the function at the beginning of the 

interval and at the end 

o if signs are different, set the flag of the found root as 

true 

o if the interval with a root is not found, return the no-

intersection flag  

o depending on the interval tolerance calculate the number of 

iterations for the Newton method 

o at each iteration refine the root with the Newton method 

o return the intersection point coordinates 

The length of the interval and all needed tolerances are set 

manually by the user. Input data for the ray-surface intersection 

are given for each pixel and include the ray beginning vector of 

coordinates and the ray direction. Moreover, input data can be 

reduced up to just the ray beginning vector, because the ray 

direction is the same for all primary rays. Thus, in our algorithm 

we have only one vector as the input data for each pixel. We store 

these data in texture and pass this data to the fragment shader 

using rendering a single polygonal primitive with 1:1 pixel-texel 

mapping. 

The performance of the ray-surface intersection algorithm can be 

increased using exact root search. Unfortunately, in general case 

we cannot find exact roots, but we can use it as preprocessed data 

for some case studies. In section 4.2 we consider details of these 

modifications. 

3.3 Calculating the surface normal and shading 

The result of the fragment shader is the colour of the pixel. Many 

applications use graphics hardware to perform advanced per-pixel 

shading. We use it also in the generated fragment shader in such 

way that shading computations take place together with other 

computations considered above. 

In addition to global light parameters such as light position and 

color, eye position and view direction, we have to calculate the 

surface normal vector at the found ray-surface intersection point. 

We use an approximate method to calculate the normal locally as:  

))(),,(),(),,(),(),,(()( xfzyxfxfzyxfxfzyxfxn −+−+−+−≈ εεε

Note that we have to calculate additional function values for the 

normal calculation; therefore the normal calculation procedure 

should be inserted after the defining function in the generated 

shader. The shading is performed using the Phong method or 

similar. In the shading step we can also add procedural texture 

using methods, described in [18]. 

4. RENDERING 

In this section we show how rendering of a functionally based 

model is performed using the fragment shader generated by our 

algorithm. Because of restrictions of modern graphics hardware, 

we have to use auxiliary polygonal data for rendering. However, 

we can render only a single fit-to-viewport polygon and it is 

sufficient for performing the shader calculations.  

The standard pipeline for polygonal object processing is shown in 

Figure 3. 
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Figure 3: Standard rendering pipeline 

 

There are two programs in the pipeline; one is applied to vertices 

and another one – to fragments. In our algorithm we do not use a 

vertex program at all because all the calculations are performed in 

the fragment shader. As mentioned above, we use texture as the 

container for input data and we apply this texture to the fit-to-

viewport polygon using 1:1 (one pixel – one texel) mapping. 

In this work we use the main algorithm for general models and its 

modification with pre-processing on CPU for better speed and 

quality for case studies. Below we describe these rendering 

algorithms in detail. 

4.1 Rendering using the fragment shader 

The implementation of the rendering algorithm on GPU is a 

classical approach from the point of view of general-purpose 

calculations technology on GPU, also known as GPGPU [7]. As it 

was mentioned above, the auxiliary model for rendering is the 

viewport-sized polygon. We also use viewport-sized texture that 

we map to this polygon, so we have 1:1 mapping from texel to 

pixel. This texture is the data source for our method, and we store 

point coordinates in it. The viewing direction and the bounding 

box are defined as global variables that we pass to the fragment 

shader.  

In the fragment shader, we obtain the ray position coordinates 

from input data stored in texture, and then calculate the ray-

surface intersection and the normal, and after that in the same 

fragment shader we make shading. Return data is pixel color in 

output area. If there is no intersection, we shade the pixel to the 

background color. As we make shading inside the fragment shader 

along with other calculations, we do not have to return anything 

to the CPU programs unlike general GPGPU programs. The 

rendering process in this case looks as follows (Figure 4): 

 

Figure 4: Rendering using the fragment shader. 

Advantages of such a process are:  

1. All calculations performed only in the fragment shader, there 

are no suspicious calculations. Moreover, we do not encounter 

unnecessary rasterization issues, because there is only one 

quad (two triangles) as the input data. 

2. We can get the best image quality for general functionally 

represented models. However, the better quality-lower speed 

law is applicable. 

3. Shading is performed along with other calculations, so there 

are no unnecessary data transfers. 

Disadvantages of the described approach: 

1. For general models we use interval analysis, so the object has 

thin or sharp features, we can skip an interval, where the root 

is located. The solution is to decrease the interval length, but 

in this case the number of intervals increases and the speed is 

reduced. 

2. Some GPU cannot handle fragment programs with many 

instructions, therefore some complicated models cannot be 

rendered with our method. 

4.2 Rendering with CPU pre-processing 

We use this modification of the general algorithm when the ray-

surface intersections can be calculated at the pre-processing step. 

This technology was introduced in [10] for CPU-based rendering. 

The pre-processing step on CPU can include:  

1) General procedural solution for the ray-surface 

intersection points. In this case we just need to substitute 

initial data such as ray origin and direction to the provided 

solution and find the function root. These calculations can 

be executed on GPU and the rendering process looks as 

following (Figure 5): 

 

Figure 5: Rendering with CPU preprocessing (procedural 

solution). 

 

2) Exact roots. In this case we calculate the roots on CPU, 

then calculate normals and perform shading on GPU 

(Figure 6): 

 

Figure 6: Rendering with CPU preprocessing (exact roots). 

 

 

Advantages of this modification: 

1) If the exact root finding is possible, the speed of the 

rendering and the quality is the best between all these 

methods. 
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2) The number of operations on GPU is less than in other 

modifications, so we can use more complicated models. 

Disadvantages: 

1) Unfortunately, exact function roots for the ray-surface 

intersection cannot be found for an arbitrary model. An 

even relatively simple object such as blended union 

between two cylinders leads to the root search in 

polynomials of degree of 5. In such cases we have to use 

approximate methods and the speed with quality can 

decrease.  

2) If there are many possible roots, problems can occur with 

transferring these data from CPU to GPU because of 

limits of the data which can be transferred within one 

pass. 

5. RESULTS 

We tested our algorithm implementation with rendering several 

relatively simple and more complicated functionally based models 

(Figure 1, 7, 8). In the performance results shown below, we use a 

standard torus primitive as a simple model. We also used 

complicated models from the Virtual Shikki project [11]. For 

computations in general methods we use the tolerance value that 

produces minimum of artifacts. 

 

 

Figure 7: Rendering of a torus primitive: real time rotating and 

zoom, Phong shading (2 light sources). 

 

Figure 8: Rendering of dynamic model with procedural texturing: 

metamorphosis from a rabbit (Hyperfun gallery) to a sandbox 

(Hyperfun gallery) 

Performance characteristics of our implementation were measured 

on a PC with single NVIDIA GeForce 6800 card and Intel 

Pentium 4 3.20GHz CPU. According to specifications, this 

graphics card can process up to 16 pixels per clock. All models 

were rendered on a 256x256 pixels viewport. For comparison 

with CPU, we also measure speed characteristics of a CPU-based 

ray-tracer implemented in PovRay (namely CPU general) and a 

CPU-based ray-tracer with root solving implemented in [10] 

(namely CPU, root solving). We provide the result in the 

following table, where speed is measured in frames per second 

(bigger fps means higher speed). 

 

 CPU, 

general 

CPU, root 

solving  

Fragment CPU/Fragment 

Torus 0.16 6 30  100  

Cup 0.25 N/A 20  60  

Rabbit 0.03 4.7 12 50 

Sandbox 0.015 N/A 10 N/A 

Stand 0.02 N/A 8.56  N/A 

 

It can be seen from the table that with the proposed GPU-based 

algorithm we can achieve the substantial acceleration of rendering 

(up to five times) compared with the fastest CPU-based method.  

 

 

 

                           a                                                b 

Figure 9: Rendering of a cup model. a) Fragment b) 

CPU/Fragment. Note that because of interval method errors we 

have bowed edge in the first case. 

Adding pre-processing on CPU, when the model allows, brings 

further increase in speed with the factor up to three and, in some 

cases, improves quality (Figure 9). Another shown advantage of 

the GPU-based solution is that it can process general procedural 

models, while other methods have limitations on model structure 

or complexity. 

6. CONCLUSION 

In this paper we presented the method of real-time rendering of 

general procedural FRep models with GPU-accelerated ray 

casting. As it was shown, with this method good image quality 

can be obtained along with high rendering speed providing 

interactive frame rates. This has been achieved because of: 

- Parallel calculations on GPU of intersection points of cast 

rays with functionally represented models. 

- Depending on the algorithm modification, we can obtain 

higher speed along with lower quality for approximate 

visualization; also we can use modifications to fit the 

algorithm implementation to a concrete graphic card.  

- We perform shading in the GPU shader, so we obtain a 

model image with per-pixel lighting. 

- If the exact root finding is possible, we can increase the 

speed of rendering with pre-processing on CPU.  
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However, our method has some limitations: 

- In our method, we find only the first intersection of the 

ray with the surface, so it is not currently possible to 

render functionally based models with transparent 

materials. 

- Traditional methods of texturing will not work in the 

fragment shader and in CPU/fragment modifications, 

because of binding of texture coordinates to vertices, but 

we do not have vertices as the direct ray casting is 

performed.  

- It is impossible to represent recursively defined models, 

because recursion is not supported by modern GPUs. 

Probably this possibility will appear in the next-generation 

GPUs. 

- Modern GPUs can handle many instructions per shader. 

However, it still can be insufficient for very complicated 

models.  

The removal of these limitations and further optimization of the 

proposed method is the subject for future research and 

development. 
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