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Abstract 
In this paper a new robust estimator based on the discrete-
attribute Particle Swarm Optimization (PSO) is presented. The 
proposed algorithm, called SwarmSAC, improves the standard 
RANSAC algorithm by making the search for the solution more 
guided and less random. The tentative solutions are iteratively 
updated using proportional likelihoods taking into account the 
best solutions obtained so far. The performance of the new 
method is evaluated in the context of image matching based on 
epipolar geometry estimation. Results demonstrate that for a fixed 
number of iterations, the SwarmSAC algorithm finds more inliers 
than the standard RANSAC method. The SwarmSAC method is 
generic and can be applied to a number of robust model 
estimation tasks. 
Keywords: RANSAC, robust model estimation, particle swarm 
optimization, image registration.  

1. INTRODUCTION 

Robust model estimation is an important topic in computer vision. 
In image registration, a model such as a transformation matrix is 
fit to the data, usually consisting of 2D points coordinates. In 
order to get an accurate model, the point coordinates need to be 
known with high precision. Point coordinates are often subject to 
noise, either because of errors in point positioning by a human 
operator or, in case of automatic point matching, due to 
ambiguous feature descriptors leading to mismatches.  
In case of small errors (noise) in point localization, the problem of 
model estimation can be treated by least-squares methods. When 
wrong point correspondences (mismatches) are present, least 
squares methods are not efficient since the assumption that 
measurement errors are generated by the underlying model is 
violated.  
The data points which are generated by a hypothetical model are 
called inliers with respect to that model; other points are called 
outliers. Several strategies for classifying points into inliers and 
outliers have been proposed in the past. They include filtering of 
mismatches [1], [5], as well as robust estimators such as the 
widely used RANSAC [6].      
RANSAC consists of randomly sampling the data and deriving 
hypotheses about the underlying model. Due to its randomness, 
many iterations are needed to explore a representative subset of 
the noisy data and find a reliable model which will be supported 
by most data points. In this paper we propose a technique of 
guided sampling based on the Particle Swarm Optimization (PSO) 
[8], [3], which guides the search towards samples which are more 
likely to produce more inliers.  
The structure of this work is the following. In Section 2 several 
methods of mismatch removal are described, basic information 

about robust model estimation is summarized. Also, we discuss 
the motivation of this paper. Section 3 presents the standard 
continuous and binary particle swarm optimization (PSO) 
algorithm. The new method of robust model estimation 
SwarmSAC based on PSO is fully described in Section 4. 
Experimental results and the comparison of SwarmSAC with 
RANSAC are given in Section 5. 

2. BACKGROUND  

Mismatches are frequent in automatic image registration. The 
reason is that the features (corner points, line junctions, textured 
image patches) are described by vectors of parameters 
(descriptors) which tend to be ambiguous and far less 
discriminative than the human eye. As a result, some points in one 
image may be erroneously matched to points in another image 
located in a totally different place. Therefore, the problem of 
automatic mismatch removal is of great importance.  
It is also important that after finding out which points are a true 
match, the number of inliers remains high. For camera pose 
estimation a large number of inliers assures a more accurate 
estimate; in object recognition, a larger number on inliers 
provides more support to the object classifier. One way of dealing 
with outliers is to filter out all possible mismatches, and then 
apply a least-squares method to derive a model that best fits the 
remaining points. By denoting as ]1,0[∈γ  the share of inliers in 
the input data, a model estimation method is called robust if it can 
estimate the model from data where 1<γ . It is assumed that 
mismatches possess some property which sets them apart from the 
rest of the points. Locating and removing all such points will 
hopefully lead to 1≈γ  in the remaining dataset.  

The topological filter proposed in [5] tests all sidedness relations 
among matched image features. If feature  in the first image is 
located in the left/right half-plane with respect to the directed line 
from  to  in this image, then its matched counterpart 

3c

1c 2c 3c′  
should stay on the same side with respect to the directed line from 

1c′  to 2c′  in the second image. Otherwise, the sidedness constraint 
is violated and a mismatch is possible. A violation score is 
computed, the most violating match is removed and the procedure 
is repeated again. Authors claim that the method tolerates up to 
65% outliers ( 35.0=γ ). This figure was produced for the case 
when outliers were uniformly distributed across the image, and, 
based on our experience, the tolerance gets lower when there are 
regions (such as trees or grass) on an image that generate more 
mismatches than other regions. Also, the method has high 
complexity of  [4], where N is the total number of 
data points, and it does not tolerate parallax effects.  

)log( 2
2 NNO

Another method of mismatch detection is distance filtering used 
in [1]. The idea of the method is that the spatial distribution of 
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features in two images should be similar; the distribution itself 
can be described as a set of distances from each feature to all the 
others. For each feature, a histogram of distance differences 
involving this feature and its matched counterpart is computed. 
Mismatches are discarded after comparing the histogram entries 
to a threshold. This method works well for aerial imagery because 
of small viewpoint changes but tends to lose performance in wide-
baseline stereo situations. 
The random sampling consensus method (RANSAC, [6]), 
proposed more than 25 years ago, follows a different strategy. It 
takes samples of minimal size to minimize the probability that 
there are outliers among the sampled data. A vector of model 
parameters θ  is estimated from the data sample, and the score of 
this model )(θf  is computed by using all data points. Originally, 
the score was equal to the number of inliers, with a goal to 
maximize it. Other types of cost functions may be used:  
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where 2T  is the outlier rejection threshold,  is discrepancy 
of data point . The minimization of 

2)(θir

ix )(θf  is performed by 
trial-and-error, without computing its gradient. 
Sampling in the context of robust model estimation is reduced to 
deciding which points will be more likely to generate a model 
which will produce the most inliers. Sampling in RANSAC is 
purely random and therefore many trials are to be performed until 
an optimal solution is found. It is possible to reduce the 
computational cost by means of guided sampling. Guided 
sampling should be regarded as a robust technique, while random 
sampling should not [10]. In guided sampling the search is 
depending on information about reliability of the data points. It is 
either provided by the user, or by a preliminary matching routine 
(as in PROSAC, [2]) or derived automatically during the sampling 
process. 
In [12], a systematic trial strategy GASAC was proposed. For 
each sample, a fitness function was computed, and new samples 
were generated from the current ones based on their fitness using 
a genetic algorithm. The GA-based method achieved significant 
acceleration over RANSAC without using any prior information.  
In this work we propose another technique, also inspired by 
natural processes, based on particle swarm optimization. We 
demonstrate that the new method allows guiding the search 
towards areas in the M-dimensional space such that the quality of 
found models is higher, and the convergence to the best solutions 
is significantly faster than RANSAC. 

3. PARTICLE SWARM OPTIMIZATION  

Particle swarm optimization (PSO) is a population-based 
evolutionary computation technique, inspired by the social 
behavior of birds [8]. A simple set of rules such as evaluate, 
observe, imitate, guide a flock of birds, without apparent leader, 
towards a target (usually food, or resting place). These rules, 
expressed in mathematical form, may be applied to numerical 
optimization. 

When looking for a potential solution to an optimization problem, 
each M-dimensional solution vector, called a particle, 

),...,,( ,2,1, Miiii xxx=X  is updated by using information about its 
current performance, its best previous performance and that of the 
whole set of particles { }P

ii 1=X , called a swarm.  A fitness function 
 measures how well the solution  solves the current 

problem, and for each particle  the best fitness  found in 
position  is kept in an archive. Also, the global best position G 
and its fitness value f(G) is preserved. In many PSO realizations, 
a local best position within a specified neighborhood is used 
instead of the global best. Each particle has an associated vector 
of velocity 

)( if X iX

iX )( if B

iB

),...,,( ,2,1, Miiii vvv=V . Both  and  are initially 
generated randomly and updated according to the following rules: 

iX iV

)()( ,2,,1,, jijjijijiji xgxbvv −+−+= ϕϕ , 

jijiji vxx ,,, +=  (continuous PSO) 

⎩
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otherwise ,0

)( if  ,1 ,
,

ji
ji

vSrand
x  (binary PSO) 

where 1ϕ , 2ϕ  and rand are random numbers uniformly distributed 
in the interval (0,1);  and  are the components of particles 

 and G correspondingly;   is the sigmoid 
function. The parameters 

jib , jg

iB [ 1)exp(1)( −−+= zzS ]
1ϕ  and 2ϕ regulate how likely the 

particle will be attracted to the global best solution and its 
previous best position.  
PSO has been successfully used for a wide range of optimization 
problems, including image registration [15]. An advantage of PSO 
is that it allows optimization of very complex cost functions 
without the need to compute the gradients, which is sometimes 
hard or impossible. Several researchers have generalized PSO to 
handle variables belonging to discrete sets of integer or real 
numbers [11]. In [2] a variant of discrete PSO was introduced, in 
which the particles represented unordered non-repeating integer 
numbers: in other words particle {1, 5, 8} was treated as 
equivalent to {8, 1, 5}. The authors of [2] applied this algorithm 
to identify attributes relevant for classification in data mining. 
Their discrete attribute-based particle swarm algorithm was 
initially devised for the case of variable attribute length. In the 
current work, a fixed attribute length M=8 is used. The 
application of particle swarm optimization to robust model 
estimation is presented in the next section. 

4. THE SWARMSAC METHOD FOR ROBUST 
MODEL ESTIMATION  

4.1 The SwarmSAC algorithm  
Suppose that the total number of data points is N, the length of a 
sample is M and fix a swarm size (number of particles) as P; N, 
M, P > 0. A set of P particles is randomly generated, where each 
element is a unique positive integer index varying from 1 to N. 
There are no repeating elements within a given particle. After the 
initial population is generated, the global best G and personal best 
values  are computed and stored, along with fitness values. iB

Next, the velocities are computed. The discrete-attribute DPSO 
algorithm of [2] deals with proportional likelihoods instead of 
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velocities. Every particle  is associated with a 2xN array  of 
proportional likelihoods. Each of the N elements of the first row 
represent the proportional likelihood that a point will be selected. 
The second row of  shows the indices of points associated with 
the respective proportional likelihoods. At the beginning, all 
points are equally likely to be selected for the next iteration of the 

particle swarm algorithm: . Afterwards, the 

array  is altered based on whether each particular index from 
the second row of   is also part of the current personal best and 
global best solution. Three constant updating factors 
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chosen by the user are used to update the elements of . These 
parameters define the influence of ,  and G to the 
adjustment of every element . All indices present in  have 
their proportional likelihood increased by 

iV

iX iB

jiv , iX
α ; additionally all 

indices present in  and/or G are increased by iB β  and γ . For 
example, if N=5 and M=3, and , }4,3,2{=iX }2,5,3{=iB , 

, then the updated  will be: }4,2,1{=G iV
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In our experiments we used the values }9.0 ,5.0 ,3.0{},,{ =γβα . 
Next, the first row of  is multiplied by uniform random 
numbers between 0 and 1. All elements of the first row of  are 
ranked in decreasing order of value, and the indices of attributes 
follow their respective proportional likelihoods. The M indices 
from the second row corresponding to the largest proportional 
likelihoods are selected to compose a new particle . Indices 
that have a higher proportional likelihood are, on average, more 
likely to be selected. The above procedure is repeated for all the 
particles of a swarm, the personal and global best are updated if 
necessary. The algorithm continues until a pre-defined number of 
iterations is performed or some other termination criterion is met. 
The outline of SwarmSAC is the following: 

iV

iV

iX

for i:=1 to P particles in the swarm do 

Create  as a vector of M random non-repeating indices iX

Generate model hypothesis from   iX

Evaluate fitness of model  )( if X

iB := ,  := , update G and  iX )( if B )( if X )(Gf

end  
for t:=1 to number of swarm iterations do 

for i:=1 to P particles in the swarm do 

Generate 2xN array  iV

Update  using , , G, and iV iX iB γβα ,,  

Multiply first row of  by uniform random numbers from iV

(0,1) and sort  according to proportional likelihoods iV

Replace  by indexes from  corresponding to M largest      
likelihoods 

iX iV

Generate model hypothesis from  iX

Evaluate fitness of model  )( if X

Update , G, and  if necessary iB )( if B )(Gf

end 
end 
Return model corresponding to particle G with best fitness 

4.2 Computational load 
Compared to the standard RANSAC, SwarmSAC requires slightly 
more memory and CPU time. Since the particle swarm needs to 
store the previously achieved results, memory must be allocated 
for: P particles each consisting of M indices (PM integers), P 
personal best positions (PM), P values of personal best fitness (P 
integers or real numbers – depending on the definition of fitness), 
global best particle (M integers), one global best fitness (real 
number). In total, 2PM+1 integers and P+1 real numbers will be 
stored. One can see that the memory requirements are negligible.  
Apart from model estimation and residual computation present 
both in RANSAC and SwarmSAC, the CPU time and resources 
are spent in SwarmSAC during the velocity computation stage. It 
requires PN multiplications and P calls to a sorting procedure. 
Sorting is time consuming, but full sorting is not required. Instead 
we need to find the largest M elements, and therefore a selection 
method based on the HeapSort algorithm [9] is preferred. It has 
complexity of )log)(( 2 MMNO − . Taking into account that 

NM << , the overall cost of sorting one swarm becomes 
. )log( 2 MPNO

   
Figure 1: Tentative matches before outlier rejection 

 

  
Figure 2: Inliers satisfying the epipolar constraint found by 

SwarmSAC 

5. RESULTS 

In order to demonstrate the effectiveness of SwarmSAC and 
compare its performance with RANSAC, we used a pair of 
images containing N=488 tentative point correspondences 
obtained from an automatic algorithm using local descriptors. We 
then applied SwarmSAC and labeled point as inliers/outliers 
according to the epipolar geometry, with displacement  
equal to the sum of squared distances of the points from epipolar 

2)(θir
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lines [16], and . The fundamental matrix was estimated 
using the normalized eight-point (M=8) algorithm by Hartley [7]. 
Swarm size of P=20 particles was iterated for 50 iterations, which 
gave 1000 calls to model estimation function. Figure 1 shows the 
tentative matches, and Figure 2 demonstrates the 178 inliers (36% 
of all points) for the image pair; lines point to the place where the 
matched counterpart of each feature is located. The maximum 
number of inliers was found after 32 swarm iterations, 640 
function evaluations. 

52 =T

 
Figure 3: Improvement of the number of inliers averaged over 

100 attempts
We then studied how fast SwarmSAC finds the inliers compared 
with RANSAC and MSAC. It is important, especially for real-
time systems, to maximize the number of inliers found for a fixed 
number of iterations. We run both methods for 100 times and 
compute the mean best fitness. RANSAC and MSAC were 
iterated 1000 times. Figure 3 shows the number of calls to 
functions for fundamental matrix estimation and computation of 
residuals plotted along the x-axis, and the largest number of 
inliers found so far presented on the y-axis. For a fixed number of 
function evaluations, the new method finds 52% more inliers than 
the standard RANSAC. 

6. CONCLUSION 

The use of particle swarm optimization guides the sampling 
process towards areas which are more likely to produce more 
inliers. Clearly, the new SwarmSAC method achieves better 
results for a given number of function evaluations, proving that 
guided search outperforms purely random trials.  
In the future we plan to compare the performance of standard 
RANSAC and our SwarmSAC method on images with various 
inlier share γ . It is hoped that for a decreasing γ , SwarmSAC 
will outperform RANSAC more and more. Another direction of 
research would be to tune parameters of the proportional 
likelihood update formula dynamically, based on estimated γ  at 
each iteration of the swarm; this might also help to escape 
occasional local extrema of the cost function. Finally, we plan to 
study how the swarm optimization will perform on other popular 
cost functions such as the maximum-likelihood (MLESAC, [13]). 
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