
Automatic building texture completion

Vadim Konushin, Vladimir Vezhnevets
Department of Computational Mathematics and Cybernetics, Graphics and Media Lab

Moscow State Lomonosov University, Moscow, Russia
vadim@graphics.cs.msu.ru, vvp@graphics.cs.msu.ru

Original image. Reconstructed model without image
completion.

Reconstructed model with image
completion.

Fig.1. Example of image completion applied to a reconstructed model.

Abstract
In this paper a new image completion algorithm, specifically
designed to work with building textures, is proposed. It uses high
periodicity, inherent to building textures, to estimate a floor size.
The usage of this estimate speeds up image completion process,
allowing dealing with high texture resolutions, and helps to
capture the macrostructure of the texture. Results and some ideas
for further improvement are also provided.
Keywords: image completion, graph cuts.

1. INTRODUCTION

Image completion task consists in filling in missing pixels in
unknown region of an image in a visually plausible way. One of
its important applications is a reconstruction of building textures
in building reconstruction tasks. Buildings are often partially
occluded by other buildings, road signs, trees, people or other
objects. Choosing a right perspective with no occlusion is not
always possible. And even when it is possible, a viewing angle
can be very small, which leads to a poor texture quality.
This image completion application has some specific properties:

1. As the building’s geometry is reconstructed before the
texture, we already know correct perspective
transformation and therefore can deal only with
orthographic views.

2. Large texture resolutions and large missing areas.
3. High image periodicity.

In this paper, we propose an image completion algorithm,
specifically designed for building texture reconstruction tasks. It
searches for a building’s floor height and then uses it in a patch
cloning process. This strategy helps to capture the macrostructure
of a building and substantially speeds up the total completion
time.

Our algorithm is primarily designed for automatic reconstruction
systems, like Automatic Photo Popup [4], though it can also be
used for other systems.
The rest of the paper is organized as follows: section 2 gives an
overview of the related works, section 3 describes proposed
algorithm in details, section 4 presents some results of the
algorithm, and in section 5 we draw a conclusion and discuss
future works.

2. RELATED WORK

Here we consider only exemplar-based methods, as they are best
suited for our task. Inpainting techniques work only with small
missing areas, like scratches, and when applied to large holes,
produce blurry results, that lack texture.

Drori et. al. [3] use pyramid image approximation for patch
cloning guidance, adaptive patches sizes and a very large search
space: patches can be translated, scaled, flipped or rotated.
Results a very impressive, but the computation time is prohibitive
even for small size images.
Criminisi et. al. [2] use a special patch filling order to encourage
isophotes propagation inward a hole. This enables to reconstruct
simple linear structures.

In Sun et. al. [7] additional user input is used to extend some
curves or line segments inward an unknown area. At first texture
along these lines is reconstructed using Belief Propagation.
Remaining unknown regions are filled by a common patch
cloning technique.

In Shen et. al. [6] patch based filling algorithm is used in a
gradient domain. At first gradient map in an unknown region is
reconstructed, and after that image itself is reconstructed by
solving a Poisson equation.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

(a) Source image with masked region. (b) Found horizontal lines.

(c) Estimated floors.
(d) Step k of the algorithm. Original hole has been split several
times, at last a source patch for an active patch is found. Active

marked with white.

(e) Step k + 1 of the algorithm. Found source patch has been cloned

to the destination patch. New destination patch is found (again
marked with white).

(f) Resulting image.

Fig. 2. Algorithm’s stages.

All these algorithms are able to capture only microstructure, as
the patches sizes are generally small. In addition, their processing
time is too large for typical size of occluded regions in building
textures.
In contrast, Hole Filling through Photomontage [8], tries to
capture the macrostructure of an image by searching for one large
patch to clone into the hole. But the algorithm is still rather slow,
and the authors haven’t provided any solutions in case, when
there is not enough known texture for a patch, that can cover the
hole. Our work is based on this algorithm and alleviates these
problems.
In real urban modeling projects, that we are aware of, mostly only
general-purpose image editors, like Adobe Photoshop [1], are
used. Image completion is performed either by tools like a cloning
brush, which require a long, meticulous work, or by manually
cloning many times a simple patch over the whole texture, which
results in synthetic-looking textures. Such projects can also
benefit from our algorithm, though its main application is for
automatic reconstruction programs, like Automatic Photo Popup
[4].

3. OUR APPROACH

3.1 Floor height estimation
At first, we estimate a floor height of the building. This process
consists of 3 steps:

• Line detection

• Horizontal lines extraction

• Ransac-based floor height estimation

For a line detection algorithm we use the one, described in
[Kosecka]. It applies Canny edge detector, then quantizes edge
pixels into several bins by their gradient directions, after which a
connected component algorithm is applied to group edge pixels
with the same label. Groups, which are smaller than a certain
threshold, are rejected. For other groups line parameters are
determined, and the ones with quality of the line fit below another
threshold are also rejected.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Horizontal lines extraction stage keeps lines, whose slope angle is
close to a horizontal. An example of found lines is shown in Fig.
2. b).

To estimate a floor height from these horizontal lines, we use the
RANSAC-based algorithm: for a set number of iterations, we
choose 2 random lines, compute a vertical translation between
them, and shift all horizontal lines by this distance. Then a
number of intersected lines between the original lines and the
shifted ones is counted. A translation, that gives the largest
intersection number, is taken as floor height estimation. This
algorithm is presented in the following pseudo code:

Code 1.

0=MaxNum ;

for IterNumi :1=

)]..1([1 LinesNumrandLinesL = ;

)]..1([2 LinesNumrandLinesL = ;

 if)2()1(LyLy == continue; end if;

)2()1(LyLyShiftVal −= ;

),(ShiftValLinesshiftesShiftedLin = ;

),(intersect esShiftedLinLinesCount = ;

 if MaxNumCount >

)(ShiftValabstFloorHeigh = ;

 CountMaxNum = ;

 end if;

end;

Results of floor height estimation can be seen in Fig. 2. c).

3.2 Cloning process
At this step, we try to fill the unknown area with as large patches,
as possible. This strategy helps to keep the macrostructure of the
image.

Let I be the whole original image, R be an unknown area, P be
a current destination patch and S be a corresponding source
patch. The cloning process is summarized in Code 2. In short, we
are trying to find a source patch to cover the whole unknown area
at once. If we find it, then we clone it into the hole, otherwise we
split the hole in two, and do the same with each of them.

3.2.1 Find a source patch (P)
We take the same approach, as in [8]. Let dI be a distance image
for the patch P . We define its band mask J as following:

⎩
⎨
⎧ ∈∨>

=
otherwise

RjihjiIif
J d

ji 1
),(),(0

,

where h - is a predefined width.

Code 2.

RP = ;

while 0≠P

)(PePatchFindASourcS = ;

 if 0≠S

),(PSClone ;

 else

)(PSplit ;

 end if

 ()PatchFindActiveP = ;

end while

A translation),(00 yx to a source patch is searched by
minimizing the following sum-of-squared-differences (SSD):

2
00

),(
00)),(),()(,(),(yyxxIyxIyxJyxSSD

Iyx
++−= ∑

∈

All

shifted points),(00 yyxx ++ must come from known area RI \ .
As candidate vertical translations 0y only those, that are divisible
by the floor height, are considered.

3.2.2 Clone (S, P)
Cloning is performed into an extended target region, which is
computed by a graph cut algorithm, again as in [8]. We use only a
smoothing term in the minimized energy (formula (7) of [8]), as
we are only interested in absence of visible seams, but the seams
are not required to be close to the not extended target region.

3.2.3 Split (P)
If the current destination patch is too large, and there is no source
patch, large enough to cover it, we split this destination patch in
two. If a width of the destination patch is greater, than its height,
we split it with a vertical line passing through its middle;
otherwise we split it with a horizontal line.

3.2.4 Find active patch ()

As a next active destination patch we take a patch with a
maximum number of known neighbors, so that SSD
minimization will be based on enough number of pixels.

Main stages of proposed algorithms are depicted in Fig. 2.

4. IMPLEMENTATION AND RESULTS

Some results are shown in Fig. 1, 2. More results can be seen in
Fig. 3.
We have tested our algorithm on more, than 30 building of
Moscow and Seoul. Most apartment buildings of Moscow had
high vertical repetitiveness and low horizontal one due to
alternating windows and balconies. So in our current
implementation we changed a source patch search algorithm in
order to encourage pure vertical translation. Specifically, if there

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

(a) Source image 1 with masked region. (b) Resulting image 1. (c) Source image 2
with masked region. (d) Resulting image 2.

Fig. 3. Some results of the proposed algorithm.

is known texture above or below current destination patch of at
least one floor height, we prohibit horizontal cloning, and split the
destination patch, until we can clone to it a source patch with no
horizontal translation.
Besides significant algorithm’s speed increase (average floor
height in our tests was 30-40 pixels), explicit use of floor height
preserves periodical structure of building textures even in cases of
SSD minimization errors, so that final texture is plausibly
looking (see Fig 3 b.)
We had no other algorithms implementations, and we couldn’t
compare our method on pictures, presented in other papers, as the
proposed algorithm works only with building textures (in
orthographic view). So we used computational statistics,
presented in Table 1 of [6] with the assumption of linear time
dependency on inpainting area size (real dependency is higher
and there is also a time dependency on image size). Our
comparison results are presented in Table 1. We couldn’t compare
our time with the time of [8], which is supposed to be faster than
other compared algorithms, as the authors didn’t present any
processing time.

5. SUMMARY AND FUTURE WORK

In this paper we have presented a new image completion
algorithm, designed to work with building textures. It estimates a
floor height and uses it to guide a patch cloning process. Our
algorithm is able to keep a macrostructure of the building and
deals with large resolution textures.
In future we plan a more sophisticated building structure analysis,
including automatic detection of windows and other structural
elements. This additional information can enable a correct
reconstruction of occluded building texture in more complex
cases and may further increase computation time.

6. REFERENCES

[1] Adobe System Incorp. Adobe Photoshop User Guide, 2002
[2] Criminisi, A., Perez, P., and Toyama, K. Object removal by

exemplar-based inpainting. In Proc. Conf. Comp. Vision
Pattern Rec., pp. 417–424, 2003

Examples Fig 3 a), b) Fig 3 c), d)

Image Size 522 x 875 1000 x 667

Inpainting area 162482 286674

Time of [2] 8,72 min 15,38 min

Time of [3] 8,59 hr 15,16 min

Time of [6] 9,21 min 16,25 min

Time of ours 21 sec 55 sec

Table 1. Algorithms time comparison.

[3] Drori, I., Cohen-Or, D., and Yeshurun, H. 2003. Fragment-

based image completion. In Proceedings of ACM
SIGGRAPH, pp. 303–312, 2003

[4] Hoiem D., Efros A.A., and Hebert M., Automatic Photo Pop-
up. In ACM SIGGRAPH, pp. 577 – 584, 2005

[5] Kosecka J. and Zhang W.. Video compass. In European
 Conference on Computer Vision, pp. 657 – 673, 2002.
[6] Shen J., Jin X., Zhou C. Gradient Based Image Completion

by Solving Poisson Equation. In PCM (1), pp. 257-268, 2005
[7] Sun J, Yuan L, Jia J, Shum H.-Y. Image completion with

structure propagation. In ACM Transactions on Graphics
24(3): pp. 861-868, 2005

[8] Wilczkowiak M., Brostow G., Tordoff B. and Cipolla R..Hole
Filling Through Photomontage. In the proceedings of the
16th British Machine Vision Conference, pp. 492-501, 2005

About the authors

Vadim Konushin is a 5th year student at Moscow State
University, Department of Computational Mathematics and
Cybernetics, Graphics and Media Lab.
His contact email is vadim@graphics.cs.msu.ru.

Vladimir Vezhnevets is a Ph.D. at Moscow State University,
Department of Computational Mathematics and Cybernetics,
Graphics and Media Lab.
His contact email is vvp@graphics.cs.msu.ru.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

