
 

 

Using Quad-Trees for Acceleration of Physically-Based Image-Space 
Rendering of Glare 

Peter Sikachev, Ilya Tisevich, Alexey Ignatenko  

Department of Computational Mathematics and Cybernetics 

Moscow State University, Moscow, Russia 

{psikachev, itisevich, ignatenko}@graphics.cs.msu.ru 

 

Abstract 

Glare effects have recently become a point of interest for many 

researchers. It adds realism to a 3D-scene, making light sources 

and bright objects look true-to-life. Several applications demand 

physical proof for these effects. 

Though most of the methods are only concerned with a simple 

“bloom” effect, new methods with more complex effects become 

available, taking in consideration such parameters as lens aperture 

and occluder. Some of them are based on wave optics, but there 

are also a number of methods for real-time hardware-accelerated 

rendering. 

An interactive method for glare rendering is proposed, based on 

Fourier Optics. Several improvements were made in speed and   

physical correctness of our method. We provide results of a 

comparison between real-life and simulated effects showing 

realism of our approach. 

Keywords: Fraunhofer Diffraction, Streaks, Glare, Bloom, HDR 

Rendering, Hardware-Accelerated Rendering. 

1. INTRODUCTION 

Rendering of high intensity light is a tricky problem because of 

physical limitations in the brightness of displays and other output 

devices. Therefore techniques like bloom and streaks appeared 

which could reproduce the effects of high-intensity lighting, 

simulating genuine optical effects on limited brightness hardware, 

such as computer displays. These effects include interaction of 

observed light with eyelashes, diaphragm, retina and camera 

film/matrix. 

Bloom simulates the retina’s feature to illuminate the neighboring 

cells to those which bright light has effectively hit. Streaks are 

used to visualize the diffraction, which appears due to the 

presence of an occluder, that is far away (Fresnel diffraction, e. g. 

streaks from glass) or near the viewpoint (Fraunhofer diffraction, 

e. g. streaks from eyelashes or finite lens aperture). 
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Figure 1: Example renderings with different HDR effects. (a) no 

HDR effect; (b) bloom effect (c) Streaks and bloom effects 

 

In our work we limit ourselves to rendering Fraunhofer diffraction 

for an arbitrary scene and given lens or eye properties. Methods 

we used are similar to [1]. 

Our contribution is acceleration of the physically-based streak 

rendering algorithm. Acceleration rate varies from 1.5 to 4 times, 

depending on the selected algorithm. 

2. RELATED WORK 

Several algorithms have been developed to render bloom and 

streak effects. 

Methods [7, 8] render bloom using simple two or more pass 

algorithm. They are hardware-accelerated and, being very fast, 

are used in many applications like computer games and 

demonstrations. 

Method [3] simulates the complex effect on the retina that 

depends on many parameters, such as scene illumination and age 

of the observer. It doesn’t take into consideration any effects 

linked with diffraction in an occluder or a lens. 

           

Figure 2: Occluder samples for an eye (left) and camera (right, 

objective polishing is simulated by regular grid) cases. Eye 

occluder simulates eyelashes, camera occluder simulates rough 

surface of a “streak” optical filter. 

Methods such as [2, 5] are suited for hardware-accelerated fast 

visualization. They somehow lack physical proof, but work fine 

for applications, where ‘true’ photorealism is not required. 

Finally, there are methods like [1] which are specifically suited 

for rendering Fraunhofer diffraction streaks. Authors describe 

how this method could be used in real-time, but in most cases it is 

too time-consuming even for high-end GPUs.  

Section 3 describes how we integrate this method into our 

rendering pipeline. There are some interesting tricks about how 

we combine streaks and make several improvements to the 

algorithm (increasing its speed), which are described in Section 4. 

We conclude and describe our future work plans in Section 6. 



 

 

3. STAR RENDERING PIPELINE 

3.1 Streak Rendering Stages 

In a nutshell, streak rendering technique consists of two stages 

(see Figure 3). 

 

 

Figure 3: Streak rendering stages in the graphics pipeline. 

 

At the first stage, a streak image is generated using occluder and 

lens images exactly as in [1]. This is done once, until any change 

in the occluder or the lens takes place; recalculation is not needed 

at each frame. 

At the second stage we map this image on the bright points of the 

image, using additive blending [4]. Unlike [1], we cannot afford 

ourselves selecting only one streak per light source/bright 

polygon, because we need to generate smooth streaks for large 

bright areas due to photorealism requirements. Moreover, due to 

object domain and application specifics, we cannot obtain 

position of the streak generating sources in any other way than 

analyzing per-pixel brightness of the final image. 

3.2 Integrating Streaks into the HDR Rendering 
Pipeline 

Another problem is how to combine streaks effect with other 

image-space effects like bloom, tone mapping and antialiasing. 

 

 

Figure 4: Rendering pipeline with streaks and bloom. 

 

Taking into consideration that streak effect is linked with 

diffraction in eyelashes/lens (i.e. ahead of retina/film/matrix) and 

bloom effect occurs in the retina/film/matrix itself, it is clear that 

bloom should be added to an image after the streaks. 

We use two rendering targets (color buffers) of screen size 

(‘small’) for ping-ponging [2] between them during blur rendering 

and one of double screen size (‘large’) for supersampling 

antialiasing [4]. As shown in Figure 4, we render streaks and 

bloom to the small buffers. Due to smooth nature of bloom and 

streaks, they don’t require being antialiased, and rendering them 

into small buffers saves fill rate and rendering time. 

We also introduce a new method of tone mapping [9], specifically 

adapted for our application area. Motivation and the algorithm 

itself are explained in Section 3.3. 

After all the passes have been executed, adaptive shader blur 

takes place, which has been fine-tuned to give an image anti-

aliased look, and only affects areas of the screen space, where 

rendered polygons adjoin [10]. 

3.3 Tone Mapping Algorithm 

Since streaks are mapped on the image in HDR buffer before its 

conversion to low-range (8bit), they take part in tone-mapping 

step.  

Tone mapping is needed because after rendering our screen buffer 

contains unbound intensity values which and needed to be 

converted into low dynamic range [0..1] and a specific RGB color 

space. The latter is important because after simulation we can get 

colors which cannot be represented by the gamut of the target 

(monitor) color space. So a tone mapping algorithms deals with 

two types of out-of-gamut values: high intensity (>1) value and 

non-RGB values (<0). 

Other requirements for tone mapping were high (interactive) 

speed and preservation of color tone for high intensity pixel 

values. Note than we don’t need to compress all dynamic range 

into low range, rather we need to simulate camera behavior, so in 

our application user can select desired exposure ratio. 

Out tone mapping is based on simple global intensity scaling 

solution with some modifications. To match requirement of color 

tone preservation we scale all components of color proportionally 

in case there are at least one component with value greater than 

one. This allows keeping correct object color tone in contrast to 

typical approaches based on simple linear or logarithmical 

mapping, like in [1]) (see Figure 5). 
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+5EV                                                                               0EV 

Figure 5: (a) wrong color behavior with increasing exposure on 

simple tone mapping (b) realistic behavior on our algorithm 



 

 

For dealing with negative values, we transform rendered spectrum 

values into CIE XYZ 1931 color space which is guaranteed not to 

have negative values. Tone mapping is performed in this space 

and only after that we return to monitor RGB space with gamut 

mapping (clipping). Working in XYZ space helps us correctly 

tone-map out-of-gamut color and also to get more realistic result 

for saturated colors. Saturated colors are usually poses a problem 

for global tone mapping approaches because very bright pixels 

don’t become white even with high exposure ratios (see Figure 5), 

which gives unnatural result. 

Our tone mapping technique produces correct and predictable 

behavior on different exposures. 

4. ACCELERATION TECHNIQUES 

Though we have implemented all the described optimizations, 

streaks rendering time is still unacceptable. The bottleneck is in 

the GPU’s fill rate, because generating streak for each point, we 

render a textured quad with additive blending (i.e. without z-

buffering and z-cull). 

Therefore we involve techniques limiting the number of screen-

aligned textured quads that are actually drawn. 

4.1 Clusterization 

Consider an input image for the streaks rendering algorithm. 

Normally, bright points are joined in groups, each of the groups 

corresponding to a bright polygon or another light source. 

Consider an N×N pixel region, where each pixel is bright enough 

to produce a streak. Let’s precompute a streak (we call it ‘integral 

streak’), assuming that each pixel has the same color (see Figure 

6).  

 

 

Figure 6: Integral streak for a 2×2 region (bright points are filled 

with red and yellow, resulting streak contour – with orange). 

 

Let's divide an input image by a grid with a grain size of N×N. 

Some of the grains will be filled with pixels, all of which are 

bright enough to produce streaks. Assuming that their colors do 

not vary greatly (which is fairly probable), instead of rendering 

four ‘single’ streaks, we can render one ‘integral’ streak with the 

color, equal to the average color of these streaks. See Figure 7 for 

example. 

 

Figure 7: Applying integral streaks. Borders of candidates for 

integral streaks use are highlighted with green. 

 

 

4.2 Quad-Tree Adaptive Clusterization 

Selecting cluster size is a tricky problem. If we select it too small, 

some large streaks sources that could be optimized well will be 

optimized worse. If we select it too large, some small light 

sources will not be optimized at all. 

We propose a method, which adaptively select the best possible 

size of the cluster for each image fragment. Assume that the 

maximum cluster size is 2n. Then we need n integral streaks and 

one single streak image. First, we try to use the largest integral 

streak for a cluster. If it fails, we recursively divide it and repeat 

the process for the case of (n-1). 

Since quad-streak clusterization renders more integral streaks than 

any 2n clusterization, it provides the best speed (but the ‘worst’ 

quality, too). 

In Figure 8 it can be seen that a 2×2 clusterization introduces 

160% optimization, compared to the conventional rendering. This 

estimation is obtained comparing the total number of bright pixels 

(96) to the sum of 2×2 clusters and non-clusterized pixels (20 and 

16). Using the similar calculations we can obtain that a 4×4 quad-

tree one introduces another 20% optimization, compared to the 

2×2, but that could be one of the worst cases. 

 

 

Figure 8: Using a 3-level quad-tree clusterization. Pixels that 

don’t produce streaks are colored in blue. Light blue and light 

green shows the borders of the 4×4 and 2×2 clusters accordingly. 

 



 

 

4.3 Comparison of Speed of Different Streak 
Rendering Techniques 

We have tested the proposed methods on different image sets and 

measured time elapsed during streaks rendering. The results are 

shown in Figure 9. Notice the time difference between the no 

cluster, 2x2 static cluster and 16x16 quad-tree cluster methods. 

 

 

Figure 9: Comparison of streaks rendering speed for different 

cluster sizes. Time is given in milliseconds. 

Test configuration: Dell Inspiron 1520, Intel Core 2 Duo T7500 

(2.2 GHz), GeForce 8600 M GT, 2 Gb RAM 

6. CONCLUSION AND FUTURE WORK 

In this paper we propose a novel method for glare rendering. It 

offers a speed increase of up to four times, compared to the 

known physically-based method [1]. We’ve also made a research 

on the problem of correct integration of the streak effect into the 

rendering pipeline, and selected the fastest scheme available. 

Future research should be made on both acceleration and quality 

enhancement. Clusterization could introduce a few new artifacts, 

and although we have corrected it, more R&D should be done on 

that subject. Besides, with the growth of GPU fill rate, other 

algorithm steps, like the search for bright points and recursive 

clusterization may become a bottleneck.  

Although we have implemented these features on the CPU, they 

could be easily performed on a GPU, limiting bandwidth 

bottleneck (during image read from a framebuffer) and 

parallelizing image processing. Instruments that allow multiple 

arbitrary size output from a shader/thread, such as geometry 

shader or CUDA might be used. 
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Figure 10: Bloom 

  

Figure 11: Streaks only. 

 

Figure 12: Streaks and bloom combined. 

 

Figure 13: High quality streaks (cluster size 1). 

 

Figure 14: Low quality streaks (cluster size 2). 

 

Figure 15: Streaks from eyelashes. 

 

Figure 16: Streaks from camera diaphragm. 


