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Abstract

The Art Gallery problem AGP) consists of minimizing the num-
ber of cameras required to guard an art gallery whose bowndar
is ann-vertex polygonP. In this paper, we report our ongoing
work in exploring an exact algorithm for a few variants AP,
which iteratively computes optimal solutions to Set Covesbp
lems Ecrs) corresponding to discretizations Bf Besides hav-
ing proven in [Couto et al. 2007] that this procedure alwags-c
verges to an exact solution of the original continuous pohlwe
have evidence that, in practice, convergence is achieved aily

a few iterations, even for random polygons of hundreds dices.
Nonetheless, we observe that the number of iterations nextjis
highly dependent on the wa¥ is initially discretized. As each
iteration involves the solution of asiCp, the strategy for discretiz-
ing P is of paramount importance. We present here some of the
discretization strategies we have been working with and oees
that will be studied in the near future. In comparison to therent
literature, our results show a significant improvement sgfze of

the instances that can be solved to optimality while manmajilow
execution times: no more than 65 seconds for random polygbns
up to one thousand vertices.

Keywords: Camera Placement, Art Gallery, Surveillance, Visibil-
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1 INTRODUCTION

In 1973, Victor Klee posed thart Gallery Problem (AGP), which
consists in determining the minimum number of cameras suffi-
cient to guard the interior of an-wall art gallery [Honsberger
1976]. Chvatal showed, thah /3| cameras are occasionally nec-
essary and always sufficient to guard a simple polygon witer-
tices [Chvatal 1975].

We focus here on the specific variation ®&P in which the
placement of cameras is restricted to the vertices of theggpoland
they have &60° field of vision. Since the corresponding minimiza-
tion problem has been proven NP-hard [Lee and Lin 1986] ewen f
orthogonal polygons [Schuchardt and Hecker 1995], plactmwie
sub-optimal numbers of cameras has been studied [Avis and To
ssaint 1981; Sack and Toussaint 1988], as well as a few aipprox
mation algorithms [Amit et al. 2007]. Moreover, modelingp as
a discrete combinatorial problem followed by the solutidrthe
corresponding optimization problem has been attempted tgri
and Sclaroff [2006] who discretize the interior of the pawpgusing
a fixed grid, yielding an approximation algorithm.

The approach that we have been studying consists of itehativ
modeling the problem as a classicaét Cover problen{scph.
Among the results obtained so far, we have shown that the num-
ber of iterations executed by our method is polynomiallyrizted,
and in practice, very small. Furthermore, the experimeanalysis
show that the number of iterations and the total time dependsh
on how the polygon is discretized. This becomes clearer when
realizes that at each iteration an instance©f, an NP-hard prob-
lem, has to be solved to optimality, by an Integer Prograngn(iR)
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solver, in our case.

So far, we have completed a thorough experimental invegiiga
concerning the trade-off between the number and naturesafith
cretizing points and the number of iterations, analyzirgttractical
viability of each approach. Our test data, available at [Cat al.
2008b], includes multiple instances for each size of théeweset,
for various classes of polygons with upadghousandrertices. The
experimental results obtained thus far surpass, by morefier
fold, those reported elsewhere in [Tomas et al. 2006] afi@dauto
et al. 2007].

In the next sections, we present the method, we summarize the
experimental results, we describe our testing environraadtwe
indicate venues of further investigation and a conclusion.

2 ALGORITHM

In an instance ohAGP we are given a simple polygaf that bounds

an art gallery and we are asked to determine the minimum numbe
and an optimal placement of vertex cameras in order to keep th
whole gallery under surveillance. Vertex cameras are asdum
have a range of vision &60°.

The approach used by the algorithm described below tramsfor
the continuous\GP into a discrete problem which, in turn, can be
easily modeled as an instancesufr.

Due to limited space, we will assume the reader’s famil-
iarity with the standard terminology from the literaturejck
as [O’'Rourke 1987]. However, the following notation is bestde
explicit: avertex surveillance sef is any subset of vertices d@?
such that J, s V(s) = P, whereV (s), thevisibility region ofs,
is the set of all points visible from vertex In other words, a ver-
tex surveillance set foP gives the positions of stationary cameras
which can oversee an entire art gallery of boundBryThus,AGP
amounts to finding the smallest subseof vertices that is a vertex
surveillance set foP.

We now describe how the solutions to successively refined dis
crete instances ¢fcpare guaranteed to converge to an optimal so-
lution to the original continuous problem. To this end, ddasan
arbitrary discretization of into a finite set of point9(P). An IP
formulation of the correspondingcrinstance is:

min Z Tj

JjeEV

Z ajz; > 1, forall p; € D(P)
jEV

xz; € {0,1}, forallj € V

where the binary variable; is set to 1 if and only if vertey
from P is chosen to be in the surveillance set. Moreover, given a
pointp; in D(P) and a vertex of P, a;; is a binary value which
is 1 if and only ifp; € V(3).

Given a feasible solution for the IP above, leZ(x) = {j €
V | z; = 1}. Constraint (1) states that each poipte D(P) is
visible from at least one selected camera position in theisol and
the objective function minimizes the cardinalityf Z(z). Clearly,
as the seD(P) is finite, it may happen thaf (x) does not form a
vertex surveillance set faP. In this case, we must add a new point
inside each uncovered region and include these point¥(iR). A
newscrpinstance is then created and the IP is solved again.

We are now able to describe the algorithm proposed in [Couto
et al. 2007]: in thepreprocessing phaséwo procedures are exe-

z

s.t.

(1)



cuted. The first one computes the visibility polygons for plaints
in V. The second one computes the initial discretizafitfi®) and
builds the corresponding IP model. In thelution phasgethe al-
gorithm iterates as described above, solvii@pinstances for the
current discretization, until no regions remain uncovered

We had shown in [Couto et al. 2007] that an upper bound on
the number of iterations i©(n*) which derives from the fact that
the edges of the visibility regions induce a subdivisionPofvhich
is comprised 0B (n?) faces orAtomic Visibility PolygongAVPs)
— see [Bose et al. 2002]. One point inside an AVP is enough to
guarantee that this entire AVP will be covered by the sofutio
the discretized problem. Whence follows the upper boundhen t
number of iterations.

Moreover, the actual number of iterations that is required d
pends on how many uncovered regions can be successively gene
ated. As the cost of each iteration is related to the numbepof
straints in (1), an interesting trade-off naturally speoahd leads
one to attempt multiple choices of discretization schent&s.the
other hand, any method of cleverly choosing the initial poof the
discretization will have a corresponding cost in preprecestime,
opening another intriguing time exchange consideratiorhesé
guestions are precisely what we address next.

In Section 3 we briefly describe several discretization see
leading to the various performance analysis summarizedet S
tion 4.

3 DISCRETIZATION STRATEGIES

The key point in the IP approach is to set up instancesasfthat

can rapidly be solved while minimizing the number of itevas re-

quired to attain an optimal solution to the original art ga}lprob-

lem, within the least amount of time. However, one must take i
account that sophisticated geometric properties usedil tmore

efficient discretizations will generate a correspondingtdo pre-

processing, possibly outweighing the benefits.

Regular Grid. The first discretization strategy considered here is
based on the generation of a dense grid inside the polygdmein t
assumption that few iterations might result. This approdcw-
ever, leads to very large instancessafrs which increase the time
needed to run the IP solver. A summary of the outcome of the use
of regular grids for von Koch polygons can be seen in Table 1.

Induced Grid. Given the perception that reflex vertices are partly
responsible for the hardness of the problem, a naturalatization
strategy is the grid induced by the edge extensions thatsete

in the polygon. Here, we generate fewer constraints thamen t
previous strategy while capturing more of the intrinsidhiiity in-
formation of the polygon. One can expect this to decreasértte

to solve the instances.

Just Vertices. As an extreme case, consider the rather sparse grid
consisting only of the vertices df. Surprisingly, this strategy leads

to an overall faster method than the two aforementioned, ahes

to the fact that at each new iteration all added constraortespond

to areas harder to supervise andsatbinstances are small.

Reduced Atomic Visibility Polygons. It is easy to see that, by
definition, if a camera surveillance sgtcovers the centroid of an
AVP, then it must cover the entire AVP. Therefore Sifcovers the
centroids of every AVP ofP, then S must be a surveillance set
for P. As an initial discretization comprised of the centroids of
all AVPs would lead to an impractically large instance®@fn?®)
constraints, we have devised a way to reduce it to an equivale
subset. We refer the reader to [Couto et al. 2008a] for thaildedf
this reduction.

4 EXPERIMENTAL RESULTS

In this section, we summarize our experimental evaluatiothe
discretization strategies discussed above. A descripfidie test-
ing environment is presented in section 5.

4.1 INSTANCES

We conducted the tests on a large number of instances, dadmlo
able from [Couto et al. 2008b], of polygons from three clasSée
first two of these are composedsoivertex orthogonal (random and
von Koch) polygons and the last one is comprised of randomlsim
(non-orthogonal) polygons.

WO

Figuree Sample polygons: Simple Random and Orthogonal von
Koch (with 100 vertices).

(1) Orthogonal Random: These aren-vertex random ortho-
polygons generated as described in [Tomas and Bajuelay.200

(2) Complete von Koch (CvK): These polygons are based on a
modified version of the fractal von Koch curve, which is geed,
starting from a square, by recursively replacing each edghawn

in Figure 1, whereir = st = ub ands7 = tu = 2ar

s t
level 1
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Figure 1: Levels of modified von Koch polygons.

(3) Simple Random: This class consists of randomized simple
(non orthogonal) polygons generated using [Auer and He@6]19
The random instances were generated for the number of eertic
in the ranges: [20, 200] with step 20, (200, 500] with step 60 a
(500, 1000] with step 100. The CvK class contains, by conttm,
only 3 instances with. € {20, 100, 500}.

To have statistical significance, we chose the number cliitsts
generated to be between 10 and 30 for each value dfhus, in
total, our data set is composed of 643 instances, havingelest20
and1000 vertices.

4.2 RESULTS

We now discuss the actual experimental evaluation of tlaegiies
described in Section 3. All values reported here are avaegydts
for all instances of each size, or multiple runs of the sarstairce
of CvK polygons.

Table 1. Results for Complete von Koch polygons.

level 0

Final[D(P)] Total Time
# vertices|| 20 | 100 500 20 100 500
Reg. Grid|| 45| 500 | 6905 || 0.05s| 1.57s| 92.37s
Ind. Grid || 24 | 205 | 1665 || 0.03s| 1.41s| 70.94s
Red. AVPs| 28 | 324 | 5437 || 0.07s| 3.14s| 143.93s
Just Vert. || 20 | 107 564 || 0.04s| 0.97s| 29.35s

The usage of discretization strategies based on denselggids
comes discouraging when we analyze the results in Table ¢hwhi
displays the execution time and the size of the discretinaif the
strategies proposed in Section 3 for the CvK polygons. Onesea
that for these instances, theduced Gridstrategy has a better per-
formance than thRegular Gridstrategy. The size of the discretiza-
tion produced byRegular Gridgrows quadratically in the number
of vertices and inflates the number of constraints in the ifhfta-
tion increasing considerably the time necessary to oplynsalve
the scrinstances. Th&®educed AVRtrategy has a poor behavior
for CvK polygons since the number of shadow AVPs increassts fa
in this case. Thdust verticesstrategy is the one that spends less
time.

Figure 2 shows the amount of discretized points necessary fo
each strategy to achieve the optimal solutionagf for random
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Figure2: Final discretization size: Random ortho-polygons.

ortho-polygons. One can see that Begular Gridstrategy rapidly
becomes impractical due to the huge size of the discratizaind,
therefore, will no longer be analyzed. On the other hand Rbe
duced AVPstrategy is very well-suited for random ortho-polygons.
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Figure 3: Number of iterations: Random ortho-polygons.

The curves corresponding to tlast Verticesstrategy suggest
that the set of vertices of the polygon is a good guess fontitiali
discretization since few new points are added to it to aehibe
optimal solution of amaGP instance for this class of instances.

Figure 3 shows the number of iterations each strategy needs t
achieve the optimal solution for random ortho-polygonse thart
displays the expected behavior with the number of iteration
creasing as the size of the discretizations decrease. Ntmtive
to the size of the input polygon, the number of iterationsais

negligible when compared to the theoretical boun@®¢h.?).
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Figure 4: Total time: Random ortho-polygons.

Figure 4 shows the total time, including the preprocessimg) a
processing phases, to solve instances from the random-ortho
polygons. The curves are plotted in leglinear format and both
charts are in the same scale. One can see that for Randonopslyg
all the strategies behave similarly except, Regular Grid
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Figure5: Total time: Random simple polygons.

Itis interesting to notice that the corresponding graptsforple
random polygons in Figure 5 is similar in shape, except that t
times are doubled, due to this being a more difficult problem.
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Figure 6: Execution time for polygons of 1000 vertices: Random
ortho-polygons.

In Figure 6 one can see that even though we are solving NP-hard
problems §crs) in the solution phase, most of the computing time
is spent in the preprocessing phase, which is polynomial Wwbile
constructing the visibility polygons and while assemblihg IP
model after setting up the initial discretization. Notetttiee Just
Verticesstrategy requires almost no computation after the vigbili
polygons are built.

5 TESTING ENVIRONMENT

To evaluate our algorithm and the discretization strategie im-
plemented, irC++, a testing environment designed in three layers,
each one with a specific function. The first layer is a comixnat
of the geometric libranCGAL 3.2.1 , the commercial IP solver
Xpress v17.01.02 and literature standard algorithms to con-
struct visibility polygons and to generate random polygofiis
layer also contains a strategy depot. The system’s arthitecs
depicted in Figure 7.

The second layer consists of the core of the application,the
implementation of the method and uses several differeatfates
for communication with the other layers and thus managesilthe
gorithms that optimally solve the problem.

Finally, the third layer comprises the graphical interfate¢he
application (see Figure 8) containing several toolbars dflaws
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Figure 7: Application Architecture.

the user to: change polygon type and the strategy used; min th
method step by step with visual identification of the uncedeaind
covered regions; display the visibility region of any pdirgide the
polygon; and zoom in to investigate details. It also displafor-
mation related to the discretization strategy and from tiat®n

in view.

Figure 8: Application Interface showing an optimal solution for a
polygon of 232 vertices corresponding to a simplified floamnpbf
the Basilica of St. Saturnin in Toulouse, France.

As for hardware, we used a desktop PC featuring a Pentium IV

at 3.4 GHz and 1 GB of RAM runninGNU/Linux 2.6.17
6 CONCLUSIONS AND REMARKS

We conducted an experimental investigation of an exactritghgo
for the NP-hard Art Gallery problem which relies on the ditiza-
tion of the interior of the input polygo® and on the modeling of
this simplified discrete problem as a Set Cover probleoP(. The
resultingscpinstance is solved to optimality by an IP solver and, if
uncovered regions remain, additional constraints areiiled and
the process is repeated. Clearly, the performance of tregitdm
depends on the number of such iterations.

This work focused on different strategies to implement tise d
cretization of P. Thorough experimentation was carried out to as-
sess the trade-off between the number of iterations andspast
by the many variants of the algorithm that arise from therattgve
discretization methods.

Our conclusion is that this exact algorithm is a viable chdiz
tackle instances ofGP, since the largest ones we solved were five
times larger than those reported earlier in the literature.

Additional strategies for the initial discretization ttzae still un-
der consideration include starting off witfi) a single vertex, or a
single internal point(ii) only the reflex vertices, or only the convex
vertices;(iii) only the centroids of AVPs that intersect edged of

Furthermore, our algorithm can solve (with minor modifioas)
a few related problems which we are currently working on:
e alternate sets of discrete potential camera spots (instead
just vertices), such agi) just reflex vertices, or just convex
vertices; (ii) midpoints of all edges(iii) a dense internal

grid, leading to an approximate solution to the continuous
placement problem.
e redundant coverage (e.g., double coverage of P).

On the other hand, a promising venue of further investigatio
lies in trying to identify inexpensive geometric propestthat might
lead to a set of constraints that capture the essence of tHedss
of the problem, such as a significant reduction on the number o
AVPs.
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