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Abstract
The Art Gallery problem (AGP) consists of minimizing the num-
ber of cameras required to guard an art gallery whose boundary
is an n-vertex polygonP . In this paper, we report our ongoing
work in exploring an exact algorithm for a few variants ofAGP,
which iteratively computes optimal solutions to Set Cover prob-
lems (SCPs) corresponding to discretizations ofP . Besides hav-
ing proven in [Couto et al. 2007] that this procedure always con-
verges to an exact solution of the original continuous problem, we
have evidence that, in practice, convergence is achieved after only
a few iterations, even for random polygons of hundreds of vertices.
Nonetheless, we observe that the number of iterations required is
highly dependent on the wayP is initially discretized. As each
iteration involves the solution of anSCP, the strategy for discretiz-
ing P is of paramount importance. We present here some of the
discretization strategies we have been working with and newones
that will be studied in the near future. In comparison to the current
literature, our results show a significant improvement in the size of
the instances that can be solved to optimality while maintaining low
execution times: no more than 65 seconds for random polygonsof
up to one thousand vertices.
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1 INTRODUCTION
In 1973, Victor Klee posed theArt Gallery Problem, (AGP), which
consists in determining the minimum number of cameras suffi-
cient to guard the interior of ann-wall art gallery [Honsberger
1976]. Chvátal showed, that⌊n/3⌋ cameras are occasionally nec-
essary and always sufficient to guard a simple polygon withn ver-
tices [Chvátal 1975].

We focus here on the specific variation ofAGP in which the
placement of cameras is restricted to the vertices of the polygon and
they have a360◦ field of vision. Since the corresponding minimiza-
tion problem has been proven NP-hard [Lee and Lin 1986] even for
orthogonal polygons [Schuchardt and Hecker 1995], placement of
sub-optimal numbers of cameras has been studied [Avis and Tou-
ssaint 1981; Sack and Toussaint 1988], as well as a few approxi-
mation algorithms [Amit et al. 2007]. Moreover, modelingAGP as
a discrete combinatorial problem followed by the solution of the
corresponding optimization problem has been attempted by Erdem
and Sclaroff [2006] who discretize the interior of the polygon using
a fixed grid, yielding an approximation algorithm.

The approach that we have been studying consists of iteratively
modeling the problem as a classicalSet Cover problem(SCP).
Among the results obtained so far, we have shown that the num-
ber of iterations executed by our method is polynomially bounded,
and in practice, very small. Furthermore, the experimentalanalysis
show that the number of iterations and the total time dependsmuch
on how the polygon is discretized. This becomes clearer whenone
realizes that at each iteration an instance ofSCP, an NP-hard prob-
lem, has to be solved to optimality, by an Integer Programming (IP)
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solver, in our case.
So far, we have completed a thorough experimental investigation

concerning the trade-off between the number and nature of the dis-
cretizing points and the number of iterations, analyzing the practical
viability of each approach. Our test data, available at [Couto et al.
2008b], includes multiple instances for each size of the vertex set,
for various classes of polygons with up toa thousandvertices. The
experimental results obtained thus far surpass, by more than five-
fold, those reported elsewhere in [Tomás et al. 2006] and in[Couto
et al. 2007].

In the next sections, we present the method, we summarize the
experimental results, we describe our testing environmentand we
indicate venues of further investigation and a conclusion.

2 ALGORITHM
In an instance ofAGP we are given a simple polygonP that bounds
an art gallery and we are asked to determine the minimum number
and an optimal placement of vertex cameras in order to keep the
whole gallery under surveillance. Vertex cameras are assumed to
have a range of vision of360◦.

The approach used by the algorithm described below transforms
the continuousAGP into a discrete problem which, in turn, can be
easily modeled as an instance ofSCP.

Due to limited space, we will assume the reader’s famil-
iarity with the standard terminology from the literature, such
as [O’Rourke 1987]. However, the following notation is bestmade
explicit: avertex surveillance setS is any subset of vertices ofP
such that

⋃
s∈S V (s) = P , whereV (s), thevisibility region ofs,

is the set of all points visible from vertexs. In other words, a ver-
tex surveillance set forP gives the positions of stationary cameras
which can oversee an entire art gallery of boundaryP . Thus,AGP
amounts to finding the smallest subsetS of vertices that is a vertex
surveillance set forP .

We now describe how the solutions to successively refined dis-
crete instances ofSCPare guaranteed to converge to an optimal so-
lution to the original continuous problem. To this end, consider an
arbitrary discretization ofP into a finite set of pointsD(P ). An IP
formulation of the correspondingSCPinstance is:

z = min
∑

j∈V

xj

s.t.
∑

j∈V

aijxj ≥ 1, for all pi ∈ D(P ) (1)

xj ∈ {0, 1}, for all j ∈ V

where the binary variablexj is set to 1 if and only if vertexj
from P is chosen to be in the surveillance set. Moreover, given a
point pi in D(P ) and a vertexj of P , aij is a binary value which
is 1 if and only ifpi ∈ V (j).

Given a feasible solutionx for the IP above, letZ(x) = {j ∈
V | xj = 1}. Constraint (1) states that each pointpi ∈ D(P ) is
visible from at least one selected camera position in the solution and
the objective function minimizes the cardinalityz of Z(x). Clearly,
as the setD(P ) is finite, it may happen thatZ(x) does not form a
vertex surveillance set forP . In this case, we must add a new point
inside each uncovered region and include these points inD(P ). A
newSCPinstance is then created and the IP is solved again.

We are now able to describe the algorithm proposed in [Couto
et al. 2007]: in thepreprocessing phase, two procedures are exe-



cuted. The first one computes the visibility polygons for thepoints
in V . The second one computes the initial discretizationD(P ) and
builds the corresponding IP model. In thesolution phase, the al-
gorithm iterates as described above, solvingSCP instances for the
current discretization, until no regions remain uncovered.

We had shown in [Couto et al. 2007] that an upper bound on
the number of iterations isO(n3) which derives from the fact that
the edges of the visibility regions induce a subdivision ofP which
is comprised ofΘ(n3) faces orAtomic Visibility Polygons(AVPs)
– see [Bose et al. 2002]. One point inside an AVP is enough to
guarantee that this entire AVP will be covered by the solution to
the discretized problem. Whence follows the upper bound on the
number of iterations.

Moreover, the actual number of iterations that is required de-
pends on how many uncovered regions can be successively gener-
ated. As the cost of each iteration is related to the number ofcon-
straints in (1), an interesting trade-off naturally sprouts and leads
one to attempt multiple choices of discretization schemes.On the
other hand, any method of cleverly choosing the initial points of the
discretization will have a corresponding cost in preprocessing time,
opening another intriguing time exchange consideration. These
questions are precisely what we address next.

In Section 3 we briefly describe several discretization schemes
leading to the various performance analysis summarized in Sec-
tion 4.

3 DISCRETIZATION STRATEGIES
The key point in the IP approach is to set up instances ofSCPthat
can rapidly be solved while minimizing the number of iterations re-
quired to attain an optimal solution to the original art gallery prob-
lem, within the least amount of time. However, one must take into
account that sophisticated geometric properties used to build more
efficient discretizations will generate a corresponding cost in pre-
processing, possibly outweighing the benefits.

Regular Grid. The first discretization strategy considered here is
based on the generation of a dense grid inside the polygon in the
assumption that few iterations might result. This approach, how-
ever, leads to very large instances ofSCPs which increase the time
needed to run the IP solver. A summary of the outcome of the use
of regular grids for von Koch polygons can be seen in Table 1.

Induced Grid. Given the perception that reflex vertices are partly
responsible for the hardness of the problem, a natural discretization
strategy is the grid induced by the edge extensions that intersect
in the polygon. Here, we generate fewer constraints than in the
previous strategy while capturing more of the intrinsic visibility in-
formation of the polygon. One can expect this to decrease thetime
to solve the instances.

Just Vertices. As an extreme case, consider the rather sparse grid
consisting only of the vertices ofP . Surprisingly, this strategy leads
to an overall faster method than the two aforementioned ones, due
to the fact that at each new iteration all added constraints correspond
to areas harder to supervise and allSCPinstances are small.

Reduced Atomic Visibility Polygons. It is easy to see that, by
definition, if a camera surveillance setS covers the centroid of an
AVP, then it must cover the entire AVP. Therefore, ifS covers the
centroids of every AVP ofP , thenS must be a surveillance set
for P . As an initial discretization comprised of the centroids of
all AVPs would lead to an impractically large instance ofO(n3)
constraints, we have devised a way to reduce it to an equivalent
subset. We refer the reader to [Couto et al. 2008a] for the details of
this reduction.

4 EXPERIMENTAL RESULTS
In this section, we summarize our experimental evaluation of the
discretization strategies discussed above. A descriptionof the test-
ing environment is presented in section 5.

4.1 INSTANCES

We conducted the tests on a large number of instances, download-
able from [Couto et al. 2008b], of polygons from three classes. The
first two of these are composed ofn-vertex orthogonal (random and
von Koch) polygons and the last one is comprised of random simple
(non-orthogonal) polygons.

Figure: Sample polygons: Simple Random and Orthogonal von
Koch (with 100 vertices).

(1) Orthogonal Random: These aren-vertex random ortho-
polygons generated as described in [Tomás and Bajuelos 2004].
(2) Complete von Koch (CvK): These polygons are based on a
modified version of the fractal von Koch curve, which is generated,
starting from a square, by recursively replacing each edge as shown
in Figure 1, wherear = st = ub andsr = tu = 3

4
ar.

Figure 1: Levels of modified von Koch polygons.

(3) Simple Random: This class consists of randomized simple
(non orthogonal) polygons generated using [Auer and Held 1996].
The random instances were generated for the number of verticesn
in the ranges: [20, 200] with step 20, (200, 500] with step 50 and
(500, 1000] with step 100. The CvK class contains, by construction,
only 3 instances withn ∈ {20, 100, 500}.

To have statistical significance, we chose the number of instances
generated to be between 10 and 30 for each value ofn. Thus, in
total, our data set is composed of 643 instances, having between20
and1000 vertices.

4.2 RESULTS

We now discuss the actual experimental evaluation of the strategies
described in Section 3. All values reported here are averageresults
for all instances of each size, or multiple runs of the same instance
of CvK polygons.

Table 1: Results for Complete von Koch polygons.

Final |D(P )| Total Time
# vertices 20 100 500 20 100 500
Reg. Grid 45 500 6905 0.05s 1.57s 92.37s
Ind. Grid 24 205 1665 0.03s 1.41s 70.94s

Red. AVPs 28 324 5437 0.07s 3.14s 143.93s
Just Vert. 20 107 564 0.04s 0.97s 29.35s

The usage of discretization strategies based on dense gridsbe-
comes discouraging when we analyze the results in Table 1 which
displays the execution time and the size of the discretization of the
strategies proposed in Section 3 for the CvK polygons. One can see
that for these instances, theInduced Gridstrategy has a better per-
formance than theRegular Gridstrategy. The size of the discretiza-
tion produced byRegular Gridgrows quadratically in the number
of vertices and inflates the number of constraints in the IP formula-
tion increasing considerably the time necessary to optimally solve
the SCP instances. TheReduced AVPstrategy has a poor behavior
for CvK polygons since the number of shadow AVPs increases fast
in this case. TheJust verticesstrategy is the one that spends less
time.

Figure 2 shows the amount of discretized points necessary for
each strategy to achieve the optimal solution ofAGP for random
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Figure 2: Final discretization size: Random ortho-polygons.

ortho-polygons. One can see that theRegular Gridstrategy rapidly
becomes impractical due to the huge size of the discretization and,
therefore, will no longer be analyzed. On the other hand, theRe-
duced AVPstrategy is very well-suited for random ortho-polygons.

Number of Vertices

N
um

be
r 

of
 It

er
at

io
ns

0 100 200 300 400 500 600 700 800 900 1000

0
2

4
6

8
10

12
14

Regular Grid
Induced Grid
Reduced AVPs
Just Vertices

Figure 3: Number of iterations: Random ortho-polygons.

The curves corresponding to theJust Verticesstrategy suggest
that the set of vertices of the polygon is a good guess for the initial
discretization since few new points are added to it to achieve the
optimal solution of anAGP instance for this class of instances.

Figure 3 shows the number of iterations each strategy needs to
achieve the optimal solution for random ortho-polygons. The chart
displays the expected behavior with the number of iterations in-
creasing as the size of the discretizations decrease. Now, relative
to the size of the input polygon, the number of iterations remains
negligible when compared to the theoretical bound ofΘ(n3).
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Figure 4: Total time: Random ortho-polygons.

Figure 4 shows the total time, including the preprocessing and
processing phases, to solve instances from the random ortho-
polygons. The curves are plotted in log× linear format and both
charts are in the same scale. One can see that for Random polygons,
all the strategies behave similarly except, theRegular Grid.
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Figure 5: Total time: Random simple polygons.

It is interesting to notice that the corresponding graph forsimple
random polygons in Figure 5 is similar in shape, except that the
times are doubled, due to this being a more difficult problem.
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Figure 6: Execution time for polygons of 1000 vertices: Random
ortho-polygons.

In Figure 6 one can see that even though we are solving NP-hard
problems (SCPs) in the solution phase, most of the computing time
is spent in the preprocessing phase, which is polynomial both while
constructing the visibility polygons and while assemblingthe IP
model after setting up the initial discretization. Note that the Just
Verticesstrategy requires almost no computation after the visibility
polygons are built.

5 TESTING ENVIRONMENT
To evaluate our algorithm and the discretization strategies, we im-
plemented, inC++, a testing environment designed in three layers,
each one with a specific function. The first layer is a combination
of the geometric libraryCGAL 3.2.1 , the commercial IP solver
Xpress v17.01.02 and literature standard algorithms to con-
struct visibility polygons and to generate random polygons. This
layer also contains a strategy depot. The system’s architecture is
depicted in Figure 7.

The second layer consists of the core of the application, i.e., the
implementation of the method and uses several different interfaces
for communication with the other layers and thus manages theal-
gorithms that optimally solve the problem.

Finally, the third layer comprises the graphical interfaceof the
application (see Figure 8) containing several toolbars that allows



Figure 7: Application Architecture.

the user to: change polygon type and the strategy used; run the
method step by step with visual identification of the uncovered and
covered regions; display the visibility region of any pointinside the
polygon; and zoom in to investigate details. It also displays infor-
mation related to the discretization strategy and from the solution
in view.

Figure 8: Application Interface showing an optimal solution for a
polygon of 232 vertices corresponding to a simplified floor plan of
the Basilica of St. Saturnin in Toulouse, France.

As for hardware, we used a desktop PC featuring a Pentium IV
at 3.4 GHz and 1 GB of RAM runningGNU/Linux 2.6.17 .

6 CONCLUSIONS AND REMARKS
We conducted an experimental investigation of an exact algorithm
for the NP-hard Art Gallery problem which relies on the discretiza-
tion of the interior of the input polygonP and on the modeling of
this simplified discrete problem as a Set Cover problem (SCP). The
resultingSCPinstance is solved to optimality by an IP solver and, if
uncovered regions remain, additional constraints are included and
the process is repeated. Clearly, the performance of the algorithm
depends on the number of such iterations.

This work focused on different strategies to implement the dis-
cretization ofP . Thorough experimentation was carried out to as-
sess the trade-off between the number of iterations and timespent
by the many variants of the algorithm that arise from the alternative
discretization methods.

Our conclusion is that this exact algorithm is a viable choice to
tackle instances ofAGP, since the largest ones we solved were five
times larger than those reported earlier in the literature.

Additional strategies for the initial discretization thatare still un-
der consideration include starting off with:(i) a single vertex, or a
single internal point;(ii) only the reflex vertices, or only the convex
vertices;(iii) only the centroids of AVPs that intersect edges ofP .

Furthermore, our algorithm can solve (with minor modifications)
a few related problems which we are currently working on:

• alternate sets of discrete potential camera spots (insteadof
just vertices), such as:(i) just reflex vertices, or just convex
vertices; (ii) midpoints of all edges;(iii) a dense internal

grid, leading to an approximate solution to the continuous
placement problem.

• redundant coverage (e.g., double coverage of P).
On the other hand, a promising venue of further investigation

lies in trying to identify inexpensive geometric properties that might
lead to a set of constraints that capture the essence of the hardness
of the problem, such as a significant reduction on the number of
AVPs.
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