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Abstract 

In this paper we present a novel approach to fully automatic pan-

tilt-zoom (PTZ) camera calibration. A calibration system based on 

the proposed method is easy to setup, is easily scalable and does 

not require any human participation during operation. We focus 

on calibration of extrinsic parameters while assuming that all 

intrinsic parameters are known a priori. Our calibration technique 

uses a set of measurements that are each represented by the 

correspondence between the Cartesian world coordinates and the 

camera’s internal pan-tilt coordinates for a given point. Use of the 

proposed “direct measurement” approach makes the calibration 

process separable, which means that the camera position and 

rotation can be calculated independently. Although the internal 

coordinates are easily accessible in most contemporary cameras, 

the world coordinates of specific points must be obtained using a 

visual marker detection system. The output of the auto-calibration 

system for each camera is the extrinsic camera parameters that 

best fit the input measurements. The proposed method is designed 

for operation in areas under various lighting conditions or with 

complex wall topology and it exhibits adequate results in practice. 

Keywords: PTZ, pan-tilt-zoom, multiple camera calibration, auto-

calibration, automation, geometric approach, nonlinear search. 

1. INTRODUCTION 

Generally, calibration of a measurement device involves 

establishing a relationship between the device output and the units 

of measurement. The problem of camera calibration arose after 

scientists recognized cameras to be powerful measurement 

devices. Camera calibration processes are designed to produce a 

parameterized camera model by using several measurements that 

include frame information and, optionally, a priori data. 

Before development of any camera calibration system, it is 

important to define the minimal sufficient subset of calibration 

parameters, because algorithms for estimation of complex model 

parameters are of high computational complexity. Traditional 

classification of camera calibration parameters includes external 

(position, rotation) and internal (focal length, radial distortion, 

etc.) parameters [1]. The last class contains both parameters that 

represent some physical properties or integral features of a device 

(e.g. focal length) and parameters that describe shortcomings of a 

device (e.g. radial distortion). The increase in quality of camera 

manufacturing processes, however, has helped eliminate some 

problematic intrinsic camera attributes such as radial distortion 

and mismatch between the rotation center and the focal point. 

Throughout this paper we assume that the subset mentioned above 

only includes extrinsic calibration parameters and that the intrinsic 

parameters are either known a priori or are not required. As is 

shown in the following discussion, this assumption does not 

introduce any additional errors into the calibration process. 

This paper is organized as follows. Section 2 of this paper 

presents a review of related work. Section 3 provides some 

notation and mathematical background for the camera calibration 

problem. In Section 4 we describe the proposed method. Section 

4.1 presents the outline of the auto-calibration method, followed 

by descriptions of position estimation in Section 4.2 and of 

rotation estimation in Section 4.3. Implementation notes, 

experimental results and a method evaluation are given in Section 

5. Finally, conclusions are drawn in Section 6. 

2. RELATED WORK 

The problem of automatic calibration of a static camera was 

addressed in the early work of R. Tsai [1]. Tsai proposed various 

calibration techniques, such as calibration using a monoview 

coplanar set of points and multiple viewing position calibration. 

He suggested performing the calibration in several steps, utilizing 

calibration separability, and claimed that analytic methods of 

camera parameters evaluation, such as linear least squares, are 

preferable if no intrinsic parameters need to be calibrated. 

However, performing static recalibration of a PTZ camera after 

each rotation is not a desirable solution. 

One group of methods for PTZ camera calibration includes those 

that use calibration objects such as visual markers or sets of 

coplanar points with known coordinates [2-4]. The calibration 

process can be described as follows: given the world coordinates 

and corresponding frame coordinates of a set of points, the 

calibration is performed by minimizing the error of mismatch 

between the projection of world coordinates and corresponding 

frame coordinates in accordance with a set of calibration 

parameters. Some of the techniques from this group of methods 

use unusual objects to obtain additional information from the 

environment. M. Agrawal et al. [3] used spheres as calibration 

objects to simplify the object detection process and to 

simultaneously calculate the frame scale factor along the 

horizontal direction (the uncertainty image scale factor [1]). 

Agrawal stated that every camera sees sphere contours as ellipses, 

and, thus, the uncertainty image scale factor can be calculated as 

the ratio of the radii of the ellipse. I.-H. Chen et al. [4] described a 

system that uses sheets of A4 paper lying on the horizontal plane. 

This approach yields information about the right angles of the 

paper, thus simplifying the calibration model. Common 

drawbacks of these clever methods, however, are the 

inconveniences that arise during the preparation stage or during 

the calibration. 

A number of other approaches (self-calibration methods) [5-7] are 

based on inter-frame homography or on point correspondence 

between several frames. Most of these methods handle the 

nonlinearity of the calibration parameters calculation by making 

assumptions about scene factors and by taking into account a 

priori knowledge of intrinsic camera parameters. The methods in 

the first group mentioned above seem to be unstable in conditions 

with low lighting, and others are designed to perform mainly just 

intrinsic calibration. As a result, these methods are not of interest 

here. An additional difficulty associated with this group of 

methods is that they only operate in static environments, because 

any captured motion yields errors in homography and calibration 

results. This difficulty is rather valuable limitation of use cases. 



3. BACKGROUND AND NOTATION 

Assume that a single PTZ camera is fixed at some location within 

a room. By convention, this location is described by the 

translation vector OCT =  in the Cartesian coordinates system 

using axes X, Y and Z (Fig. 1). As can be seen in the figure, we 

use a right-handed system, but this is not a necessary condition. 

Every PTZ camera has internal polar coordinates that span a half-

space that consists of all points P on one side of plane τ , such 

that ( ) 0, ≥NCP  and τ⊥N . N  is the representation in world 

coordinates of the vector that specifies the origin of the camera’s  

 coordinate system. The two camera coordinates are pan and tilt. 

To specify the direction of the vector ( )βα ,=M  in the figure, 

pan is measured in the plane τ  in a clockwise direction from 

vector B , and tilt is measured from vector N  in the plane defined 

by vectors N  and M ′  ( M ′  is the normalized projection of M

onto τ ). Since the camera has only two degrees of freedom, each 

3D point in the world (XYZ) coordinates uniquely maps onto a 2D 

point in the camera’s internal pan-tilt coordinates. The inverse 

coordinate transformation produces a unit vector in the direction 

defined by the 2D point in pan-tilt coordinates. These 

transformations are described in greater detail later. 

The camera’s extrinsic parameters for this notation are the vectors 

BNT and, . Every camera has six independent degrees of 

freedom: three for the translation vector and three for rotation [1]. 

The rotation can be presented using Euler’s angles (φ, θ and ψ), as 

a series of three rotations around a set of known axes. This allows 

vectors N  and B  to be represented in terms of the scalar 

quantities φ, θ and ψ.  

Although the translation calibration is clearly an essential means 

of camera calibration, rotation calibration is also critical, since it 

is practically impossible to install a camera such that ZN || . Even 

if the camera was installed in such a precise manner (resulting in 

ZN || , 0=′N  and XY||τ , where N ′  is the projection of N  

onto the X-Y plane), it would still be necessary to either calibrate 

the rotation with one degree of freedom or to continue to tune the 

installation until XB || . Here we consider the common rotation 

case with three degrees of freedom. 
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There are 12 possible ways to perform space rotation using Euler 

angles. Here we propose a series of rotations around the axes in 

the order Z-Y-Z. The rotations by angle ω around the Y and Z axes 

are given by (1). 

Rotation of the camera using the matrix R is equivalent to the 

rotation of the scene using the inverse matrix. We denote the 

scene rotation matrix as the rotation matrix, which is shown in 

(2).  

.,,

,,

ϕθψψθϕ
ZYZZYZ RRRR ⋅⋅=  (2) 

The transformation of the world coordinates of some point W
P  

into the camera’s Cartesian coordinates C
P , which are bound to 

the camera’s internal pan-tilt  coordinates, is the following: 

( ).,,

,, CPRP
W

ZYZ

C −⋅= ψθϕ
 (3) 

The transformation between the internal pan-tilt coordinates 

( )βα ,  of the camera and the Cartesian coordinates of point P is 

given in (4). The inverse transformation is given in (5). 
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4. PROPOSED METHOD DESCRIPTION 

The proposed calibration method is similar to those of the first 

group of approaches described in Section 2. The algorithm 

receives a set of point correspondences and then determines the 

calibration parameters by minimizing the error of fitting input to 

model in accordance with the set of calibration parameters. 

4.1 Outline of the auto-calibration method 

To avoid getting stuck on errors that can be introduced by 

unknown (or uncalibrated) intrinsic parameters in case of their 

usage, it is preferable to use “direct measurements”, which are 

data (3D points in world coordinates) collected by humans, as 

well as meta-information from the camera controller (using the 

camera’s internal pan-tilt coordinates). Thus, each direct 

measurement contains five known values ( )θϕ,,,, zyx
MMM  

which can be trusted as no others – this is the first key feature. 

The point ( )zyx
MMMM ,,=  must lie on the optical axis of the 

camera, this is called the “direct measurement requirement”.  

We use a nonlinear search algorithm to extract calibration 

parameters. As stated in [1], the dimensionality of the space in 

which the nonlinear search is applied should not increase beyond 
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Figure 1: PTZ camera position and rotation in world 

coordinates 



five. At this point we come to the second key feature of direct 

measurements: they permit separation of the calibration process 

into several sequential stages: 

1. Position estimation (transform vector T ); 

2. Rotation estimation (rotation matrix R); 

a. Estimation of vector N ; 

b. Calculation of vector B ; 

c. Calculation of φ, θ and ψ. 

The nonlinear search is used only in stages 1 and 2a and has a 

maximum dimensionality of three. The following algorithm is 

used for estimating both calibration parameters: 

1. Set initial parameter value; 

2. Pass the following subroutine into the numerical 

minimization algorithm: 

a. For each pair of unequal direct measurements 

(i,j), calculate the error functional (described 

below) for the parameter value in the current 

iteration and for direct measurements i and j; 

b. Calculate the sum of all error functional 

values obtained in the previous step; 

3. Output the argument of the last iteration. 

4.2 Camera position estimation 

Given the set of direct measurements of length N (N>2), we 

perform the position calibration using the algorithm above. For 

the error functional, assume that a camera is placed at point C and 

that the markers from the ith and jth measurements have 

coordinates 
iM  and 

jM  respectively (Fig. 2).  

The points 
ji MMC ,,  are vertices of a triangle. The 

ji MM side of 

the triangle is known, and the lengths of the other two sides 

depend on the location of point C. The side 
ji MM  can be 

calculated by means of the law of cosines using sides 
iCM  and 

jCM  and the angle 
ijα  between them. The angle 

ijα  can be 

calculated from internal camera coordinates using the following 

expression: 

( ),,cos jiij PP=α  (6) 

 where 
iP  and 

jP  are the 3D unit vectors that specify the camera’s 

internal pan-tilt coordinates in the associated Cartesian system, as 

with (5).  

Thus, the error functional for the pair of direct measurements can 

be written as the absolute difference between the actual length of 
 

ji MM  and the calculated length. The final form of the functional 

is the following: 
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As can be seen in Fig. 2, we are searching for point C such that 

we minimize the error of the wireframe model of our scene, thus 

minimizing the camera position offset CC −∆
.  

During testing of the prototype for our calibration method, it was 

found that setting the initial camera position to zero may produce 

erroneous results in cases where either the input data is imprecise 

or the number of measurements is small. It was also discovered 

that setting the initial position to the average of input 3D points 

yields better results in problematic cases. 

4.3 Camera rotation estimation 

The process of rotation calibration requires both a set of N direct 

measurements (N>1) and the exact camera position in world 

coordinates. The same measurement set that was used in position 

calibration can also be used in rotation calibration. As stated at the 

beginning of Section 4, rotation estimation can be performed 

separately from position estimation.  

The vector N  (Fig. 3), which defines the camera’s origin 

direction, is unity and can thus be represented by the two scalars 

(α and β) using (4) and (5). The main concept of the error 

functional is that the error of the rotation series that transform 
iM  

into 
jM  exhibits a minimum value for the correct vector N . 
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Figure 2: Position calibration scheme 
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Figure 3: Rotation calibration scheme 



Speaking more precisely, we calculate the angle between ''

iM  and 

jM , where ''

iM  is the vector 
iM rotated first around N  by the 

pan difference angle (resulting in '

iM ) and then rotated in the 

plane containing vectors N  and '

iM  by the tilt difference angle 

(resulting in ''

iM ). The related equations are given below. 

The matrix for the rotation by angle ω around the general 

normalized vector [ ]T
zyxa ,,=  is given by (8). 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ).sin,cos

,

ωω

ω

==

















++

++

++

=

sc

czc-1xsyzc-1ys-xzc-1

xs-yzc-1cyc-1zsxyc-1

ysxzc-1zs-xyc-1c xc-1

R
2

2

2

a
 

(8) 

The rotation in the plane defined by the unique nonzero vectors 

1V  and 
2V  can be written as follows: 
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The pan and tilt difference angles mentioned above are given by 

the following: 

ijij θθθϕϕϕ −=∆−=∆ , . (10) 

The final error functional formula can be written using (8) through 

(10). 
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According to the experimental results, the initial values for α and 

β can be chosen arbitrarily as soon as the error functional has a 

single global minimum in the ranges [ ]πα 2,0∈  and [ ]2/,0 πβ ∈ . 

The concept behind the calculation of B  is that for each marker 

point 
iM , we calculate 

iB  using (12) by projecting 
iM  onto the 

plane τ  and rotating around N  by the angle –φi. The median of 

iB  is assumed to be the estimation of B . 
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Finally, we obtain the Euler angles by observing how the vector 

[ ]T
C 0,0,10 =  is transformed to B  (Fig. 4). The intersection of the 

τ plane with the X-Y plane, shifted to the camera level, gives us 

the vector 
1C , which is the one we rotate round when tilting 

camera by θ . This means that: 
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Thus, we have proven that the Euler angles for space conversion 

can be expressed in terms of the vectors N  and B , which were 

estimated earlier. 

5. PROPOSED METHOD IMPLEMENTATION AND 
EVALUATION  

To make the system as automatic as possible, we used visual 

markers that can be identified in a video stream by means of 

software. Recognition systems can be divided into two classes: 

those that simply register the existence of a marker in the video 

frame and those that also output additional information about the 

marker identity. The second class is more interesting from the 

perspective of system automation. 

The calibration process is as follows.  

1. An operator places markers (each having a unique 

identification number, or ID) in specific locations with 

respect to the camera’s field of view, measures their 3D 

world coordinates and then inputs the ID numbers and 

coordinates into the system; 

2. The system searches for markers by sequentially 

rotating the camera through all possible angles and by 

capturing frames and passing them to a marker detection 

routine. The scanning is performed with different zoom 

values. This allows locating both close and distant 

markers, which is especially useful in extensive 

environments; 

3. After searching for the markers, the system assembles 

the set of direct measurements by decoding marker 
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Figure 4: Scheme for extraction of Euler angles 



coordinates and then passes the measurement set to the 

calibration routines. 

The calibration process described above is suitable for 

simultaneous calibration of multiple PTZ cameras located in a 

single scope (all points of space from which at least three markers 

are visible and easily recognizable by means of marker detector), 

because stage 1 is done by the operator once, and other stages can 

be performed by a set of cameras independently. 

There are certain requirements that the marker recognition system 

should meet: low false positive rate, high detection rate and 

insensitivity to scaling of marker images. Also, error correction is 

highly desirable to enable the system to still function correctly 

even in conditions with low lighting. 

All these requirements are met by ARTag, a fiducial marker 

recognition system [8]. Each marker is represented by an image 

with a white background containing a black rectangular region (or 

vice-versa) and 36 bit fields. According to [8], there are 2002 

unique markers. This number is much smaller than the 
362  

possible bit sequences, because each ARTag marker contains 

redundant parity and recovery bits. This arrangement allows the 

algorithm to determine if the captured image contains a valid 

ARTag marker and to recover the ID in cases where some part of 

marker is overexposed or partially hidden by another object. The 

author claims that the false positive rate of the system is about 

0.0039%, which is rather good result. A sample ARTag marker 

that acts as the calibration object is shown in Fig. 5. 

In practice, the use of direct measurements introduces some 

difficulties related to the requirement for point M to be lying on 

the camera optical axis. Usually, the intersection of camera optical 

axis with the focal plane matches the center of the frame. A visual 

marker detection system may recognize marker at almost every 

point of frame. There are two possible ways to produce direct 

measurement in such a case:  

• Rotate the camera in the direction of the marker until 

the marker projection onto the focal plane converges to 

the frame center and the direct measurement 

requirement is met; 

• Calculate pan and tilt values (PTM), corresponding to 

world coordinates of the detected marker M and marker 

detection coordinates P using known camera intrinsic 

parameters µ and ν and internal pan-tilt coordinates PT0 

(Fig. 6) as follows: 
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Here PTM can be calculated by applying (4) to vector 

1OP . Point P0 is the marker projection in Cartesian 2D 

coordinates with zero at the frame center; point F is the 

top-left frame corner and has coordinates [ ]T1,1− . 

The minimization routine used in both implementations is the 

Nelder-Mead simplex search, but the conventional Levenberg-

Marquardt or even gradient descent searches are also suitable. 

Typical plots of error functionals for both position and rotation 

calibration methods are presented in Fig. 7. In this sample case, 

the input of calibration is six direct measurements. The real 

camera position is C=[0.90, 3.55, 2.68]T, the real N-axis angles 

are (α,β)=(113°,18°). The ranges of α and β in rotation calibration 

are: [ ] [ ]oooo 90,0,360,0 ∈∈ βα . As can be seen from the plots, the 

functionals have single global minimums at specified ranges, and 

these minimums match real data. 

The result of the calibration process depends on the number of 

measurements, precision of 3D coordinates specification and 

maximum distance between any pair of measurements. The last is 

defined by absolute angular differences between corresponding φ 

and ψ with respect to wraparound of φ.  

The minimum number of measurements for position calibration is 

three. Geometrically, it is similar to the problem of finding the 

fourth vertex of the triangular pyramid with three vertices and 

some vertex angles given. It can be proven, that this problem is 

unsolvable if less than three vertices and angles are given. As for 

rotation calibration, two measurements (one for Mi and one for
 Mj) are clearly enough to perform it as in (11).  

The comparisons of diverse approaches to PTZ camera calibration 

are non-traditional in this problem domain, as far as there is no set 

of conventional reference techniques. The prototype of the system 

has been tested for stability. Fig. 8 shows the response of 

calibration results to the normally distributed error in input 3D 

marker coordinates. The variance of error varies over the range 

[0,1] along the x-axis. The offset of the camera position from the 

real position in meters is shown at the left plot. The norm of the 

angular error of rotation calibration, in degrees, can be seen at the 

 

Figure 5: ARTag visual marker acting as a calibration object 
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Figure 6: Calculation of pan and tilt values for any frame point 



right plot. Tests on real data have proven that small errors in 

calibration input yield acceptable precision of the calibration 

output. 

The calibration subsystem was implemented in MATLAB and 

C++. Both implementations show acceptable speed of operation 

(1-2 seconds) on a Pentium 4 1.7 GHz computer when calculating 

all of the parameters using the set of 50 synthetic measurements. 

This calculation is only the third step of the calibration process.  

6. CONCLUSION 

In this paper we have proposed a new, fully automatic PTZ 

camera calibration algorithm. The algorithm performs calibration 

of extrinsic camera parameters by applying a nonlinear search. 

The concept of direct measurements was introduced, and it was 

shown that their use yields calibration separability and total 

invariance from any intrinsic camera parameters. The 

implementation of the calibration system included a special visual 

marker detection and recognition technique that demonstrates 

good detection rates and very low error rates.  

Areas of further work include research and development of 

combined methods for fully automatic multiple PTZ cameras 

calibration. 
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Figure 7:  Position functional Err(X,Y) for fixed Z=2.0 (Top), 

Rotation functional Err(α,β) (Bottom) 

 

Figure 8: Error response (left – position calibration, right – 

rotation calibration) 


