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Abstract 
The problem of image registration is discussed. Firstly, the well 
known Reddy-Chatterji algorithm is revised. It is shown that the 
speed may be dramatically increased by using Hartley transform 
instead of Fourier transform, especially when registration is re-
quired for more than two images. Secondary, a new registration 
algorithm is proposed for images obtained from pushbroom cam-
eras that is based on Hartley transform and fast Hough (Radon) 
transform. The issue of aliasing and artifacts suppression is 
treated. Two cases have been considered: approximately linear 
correlated spectral bands and without this assumption. Registra-
tion obtained is refined with optical flow technique up to subpixel 
accuracy  
Keywords: Image registration, pushbroom camera, Fourier trans-
form, Hartley transform, Hough transform, Radon transform, 
affine model. 

1. INTRODUCTION 

Image registration is an area of intensive research in computer 
vision [1-7]. One possible application of image registration is 
creation of mosaics from satellite images [1-6]. Pushbroom cam-
eras are widely used for high resolution satellite imaging. Such 
cameras are composed from one or more CCD line sensors placed 
at focal place of the camera (see Figure 1).  
 

 

One row of image is obtained by reading data from a sensor line 
at a time. Different image rows are obtained by reading data from 
the line sensor in time intervals, the satellite moves and hence 
different Earth surface lines become visible. Some geometric 
properties of pushbroom cameras are investigated in [8-11]. To 
obtain very wide images such sensors can be assembled as stairs 
of line sensors. One of the problems of synthesis color (or pseudo 
color) images is that due to line sensors related to different spec-
tral bands are spased in the focal plane, each time they see differ-
ent lines of the Earth surface.  
In section 2 we remind definitions and properties of Fourier and 
Hartley transform. In section 3 we review Reddy-Chatterji algo-
rithm [1]. In section 4 we modify it using Hartley transform, dis-
cuss some implementation issues, and extend it for no linear cor-
related spectral bands and color images. In  section 5 we propose 
a new registration algorithm for pushbroom cameras. Section 6 
presents some results.  
 

2. FOURIER AND HARTLEY TRANSFORMS  

Fourier transform )(ξ
r

F  of function )(xrf  is defined as [12]: 

∫= xξxxξ rrrrr
)dexp(2)()( TifF π  (1) 

Inverse Fourier transform is: 

∫= ξξxξx
rrrrr )dexp(-2)()( TiFf π  (2) 

Focal plane 
Amplitude or module of Fourier transform is:  
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Where symbol * denotes complex conjugation. Fourier transform 
of real-valued function is a complex-valued function with proper-
ties: 
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If we compose a complex-valued function from two real-valued 
functions )()()( 21 xxx rrr ifff += , their Fourier transforms 
can be extracted from Fourier transform of this complex valued 
function using property (4) as Building 
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Figure. 1. Multiband pushbroom camera and 
shooting geometry 
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Using this property in numerical calculations allows to obtain 2 
Fourier transforms at once and hence to save computations. 
Hartley transform is closely related to Fourier transform but has a 
very important feature for numerical calculations. Hartley trans-
form of real valued function is a real valued function too. This 
results in twice saving memory during computations, not requir-
ing complex arithmetic and give benefits in speed. Hartley trans-
form [13] is defined as 

∫= xξxxξ rrrrr
)dcas(2)()( TfH π , (6) 

and coincide with inverse Hartley transform 

∫= xξxξx rrrrr )dcas(2)()( THf π , (7) 

where 
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For real valued function )(xrf  it is easy to see that 
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It should be mentioned that sign “+” in this formula depends on 
the manner in which Fourier transform is defined (1),(2) and dif-
fers from [13] because another Fourier transform definition is 
used there. Reverse formulas are 
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and Fourier amplitude can be expressed as 
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From numerical computation point of view there is a significant 
difference between multidimensional Fourier and Hartley trans-
forms. Fourier transform is separable, that is it can be computed 
as sequential transforms on each dimension, but Hartley transform 
can not. This drawback can be overcome by formal calculating 
Hartley transform as if it where separable, sequentially applying 
1D Hartley transform to each dimension and then performing 
some data modifications using formula 
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Details about these techniques and implementation issues for fast 
multidimensional Hartley transform can be found in [14-16].  
When input signal is Dirac δ-function such as 
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its integral transforms are 
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Let us consider affine transform model 
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and suppose that there are two related functions 
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Then it is easy to obtain the relationship between their integral 
transforms: 
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In particular, when the affine transform is a pure translation, rota-
tion and scale (no skew), it is a similarity transform 
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then 
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That is, image rotation results in the same rotation of its Fourier 
and Hartley transforms and image scaling-up results in scaling-
down of its integral transforms by the same factor. 
The approaches [1-3] are based on properties (19) of Fourier 
transform. Let the transform considered be a pure translation, that 
is matrix in (16) should be the identity matrix. Then, using (19) 
we can obtain 
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Using (13),(14) we see that it is a spectra of δ-function. 
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Thus pure translation can be found with: 
Algorithm 1. FindTranslation(F1,F2) 

Given )(1 ξ
r

F  and )(2 ξ
r

F  which is FFT of images 

 and  respectively  )(1 xrf )(2 xrf
1    

Calculate image  according to (20) )(ξ
r

FC
2    

Perform (21) inverse FFT of . )(ξ
r

FC
3    Locate maximal brightness peak coordinates 

at and assign result to )(xrc d
r

 

The peak coordinates can be computed by scanning image )(xrc  
with 3 by 3 pixels frame and checking condition that central pixel 
brightness is larger than that of all 8 its neighbors and selecting 
the largest local maximum. The largest local maximum coordi-
nates are equal to translation to be find. 
Note: A few largest local maxima can be comparable in bright-
ness. In this case it is possible that some image parts are subjected 
to different translation. Testing each hypothesis by calculating the 
difference image of image 1 and  image 2 which is translated by 
the found values it is possible to discover areas correspondent to 
each hypothesis.  
Algorithm 1 can be rewritten for using Hartley transform. Let’s 
define a “phase” function:  
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Then, using (19) and sin() and cos() symmetry properties it is 
easy to prove that 
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and using (14) we obtain 
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Algorithm 2. FindTranslationHartley(F1,F2) 

Given  and  which is Hartley 

“phase” (22) of images  and  respec-
tively  

)(1 ξ
r

Φ )(2 ξ
r

Φ
)(1 xrf )(2 xrf

1    
Calculate image  according to (23) )(ξ

r
HC

2    Perform (24) inverse Hartley transform of 

)(ξ
r

HC . 

3    Locate maximal brightness peak coordinates 

at )(xrc and assign result to d
r

 

The Note after Algorithm 1 remains true for this algorithm, too. 
Let’s return to similarity transform (18),(19). We can see that 
amplitude M does not depend on translation value d. Considering 
the Fourier amplitudes of both images it is possible to find the 
rotation and scaling parameters. Moreover, this problem can be 
reduced to that of finding translation. The way to do so is  to 
transform images of Fourier amplitudes to logarithmic-polar co-
ordinate system. Indeed , Fourier amplitudes are related by 
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Let us substitute: 

θρηθρηρ sin,cos,)( 22 ==+= ξξ  (26) 

Using (18) for component wise rotation matrix expression, argu-
ments of M1 in (25) in polar coordinates system look like  
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Thus, taking into consideration (26), (27) expression (25) looks 
like 
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where b is a positive value. We see that after substitution (26) into 
(25) functions ,  can be treated as functions 1M 2M 1

~M  2
~M  of  

logarithm of radius and angle, relationship between them is pure 
translation and can be found using algorithm 1 or 2.  
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Note, that when the radius grows Fourier amplitude decreases 
fast. So, logarithm of amplitude is generally used for visualiza-
tion. For algorithmic comparison of two amplitudes there are no 
reasons to do it differently and solve more complex problem. 
Thus, the problems of different image overall brightness and scal-
ing (29) simplify.  
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In numerical implementation the bases of logarithms in (30) must 
be selected. When computations are performed in floating point 
numbers, selection of base c is inessential and for simplicity rea-
sons it is appropriate to use natural logarithms. Selection of base b 
is essential and influences computation speed and accuracy. The 
images 1   are defined on a rectangular grid of pixels with 
size N which is a power of 2. To perform FFT transform for find-
ing translation transform between 1

M 2M

~M  and 2
~M , these functions 

also must be defined on a rectangular grid with size K which must 
be a power of 2. The Fourier amplitude at zero frequency reflects 
mean brightness of the entire image and doesn’t contain appropri-
ate information for finding of translation. Thus under logarithmic 
transform the range of radius ρ from 1 to N/2 should be reflected 
to the range from 0 to (K-1).. 
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To save all information the grid step must be small enough: 
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That is K must be larger than N. It is not optimal for computa-
tional speed. In this paper as in [1] it is proposed to use K=N. 
Some inaccuracies will be removed by algorithm [7] later. So 
logarithm base in (30) is selected as 

1
1

2
−

⎟
⎠
⎞

⎜
⎝
⎛=

NNb  (33) 

In this case, if translation is found between functions  1
~M  and 

2
~M , scale and rotation parameters can be found as  
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where (x,y) is a location of peak in (24) and Algorithm 1. The 
angle is defined up to π summand because only two upper quad-
rants of amplitudes are used in finding rotation/scale and correct 
value must be found by checking both hypothesis and selecting 
those when delta-correlation (20) produces the a larger peak 
value. 

3. REDDY-CHATTERJI ALGORITHM 

Frequently used classical Reddy-Chatterji algorithm [1] based on 
Fourier transform properties is reviewed in the previous section. 
 
Algorithm 3. Reddy-Chatterji: 

1    Perform FFT on data with I1(x,y) as real part  
and I2(x,y) as imaginary part  

2    Apply High pass filtering 
3    Extract 2 lower quadrants of amplitudes (11) 

of I1 and I2  spectra via formulas (5) 
4    Calculate logarithm of these amplitudes 
5    Perform log-polar conversion of logM1 and 

logM2 (28)-(30) 
6    Perform FFT on data with 1

~M  as real part  and 

1
~M  as imaginary part 

7    Find pure translation between these values 
according to (20) with Algorithm 1 

8    Calculate scale and rotation angle from coor-
dinates via (34) 

9    Next 2 steps are performed for both angle val-
ues 

10         Apply scale and rotation transform (18) to 
     I2 spectrum 

11         Find pure translation d between these 
     spectra according to (20) with Algorithm 1 

12    Select angle when peak value in (20) is greater 
13    Apply (18) to original I2 

 
At step 2, Reddy and Chatterji propose filter [1]: 
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The algorithm can work for scale changes up to 1.8. There are 
some problems when coinciding areas of two images are small 
relative to entire image areas. The algorithm was successfully 
applied to satellite image registration.  

4. REVISION OF REDDY-CHATTERJI ALGORITHM 

In articles [2,3] the Reddy-Chatterji algorithm [1] was success-
fully applied for image registration for different bands. They ad-
dress the problem of image registration when images in different 
bands are roughly linear correlated. It was shown that  

1) Images of Earth surface in visible bands 0.4787, 0.5610, 
0.6614 micrometers are highly linear correlated with 
mean square errors which are far less than 0.03. 

2) All formulas derived above remain valid under assump-
tion of linear band correlation everywhere except that of 
zero frequency in Fourier domain. No filtering step is 
applied like in [1] (step 2 of Algorithm 3). 



In [4] another idea is exploited. They suggest that if spectral 
bands can be low correlated, the edges on these images should be 
more stable and it is possible to register images after edge detec-
tion step is applied. The registration method itself is different 
from [1-3]. Nevertheless, it seems that such edge detection image 
preprocessing step can be incorporated into Fourier/Hartley regis-
tration scheme for weakly correlated spectral bands. We propose 
to use gradient module operator for this purpose [19]. Moreover, 
this approach allows us to extend the algorithm 3 for color image 
processing via using color gradient module [20]. Non maxima 
suppression step of edge detection algorithms [19] is not required, 
because it can reduce ridge position accuracy to 1 pixel from sub-
pixel accuracy typical for Gaussian convolution. 
In Reddy-Chatterji algorithm [1] some issues related to FFT are 
not described. All formulas above are derived by treating images 
and their integral transforms as continuous functions. But numeri-
cal implementation implies discrete transforms. This means that 
the transforms are calculated not for image of size NxN, but for 
infinite image plane paved by tiles of size NxN. These images 
usually experience a jump at the interfaces between tiles which 
results in appearance of a sinc-like artifact in the Fourier trans-
forms (like a crest composed from horizontal and vertical lines 
through zero frequency). This spectra feature reflects the fact that 
the images have a rectangular form and don’t reflect the images 
content which should be registered. To suppress such artifacts it is 
necessary to subtract a mean image brightness from the image and 
then multiply the result by window function. The Gaussian win-
dow seems to be most appropriate due to its radial symmetry. 
This symmetry is preferable to avoid artifacts which can disturb 
the rotation finding process. The first step – mean subtraction - is 
important, otherwise window multiplication results in registration 
of this window but not the images content. When using edge im-
ages the subtraction step is not applicable because far from edges 
the image brightness is zero. Mean subtracting results in shifting 
this level and discontinuities appear at the tiles interfaces. An-
other problem with discrete transforms is aliasing. This produces 
artifacts in spectra and can be critical at the step of finding rota-
tion and scale, which are derived from spectra amplitudes only. A 
traditional way to suppress aliasing is to convolve a signal with 
some windowing function. One of the best windowing functions 
is Nuttall window with continuous first derivative [18] which 
supplies side lobe suppression in 93.32 dB and asymptotical de-
cay with 18 dB/octave. 
In section 2 it was shown that there exist analogues for all steps of 
Reddy-Chatterji algorithm through Hartley transform. It seems 
preferable because Fast Hartley Transform is much faster than 
Fast Fourier Transform. Both transforms have been implemented 
in C++ templates in the same manner, a significant part of code 
being common. The FFT implementation has been based on [12] 
and Fast Hartley Transform implementation has been based on 
[13-16]. The code has been compiled by Visual Studio 2005 and 
tested on Pintium-4 2.8GHz and AMD Athlon XP 2200+, 1.8 
GHz processors. For images of equal size speed benefits exceed 
10, probably due to more compactly data layout for Hartley trans-
form [15]. 
Appling the Hartley transform to images registration gives one 
more advantage. Algorithm 3 at steps 1 and 6 processes both im-
ages simultaneously. It is good when only 2 images must be regis-
tered. In practice, there are a lot of applications when several 
images must be registered relative to one image and it is ineffec-
tive to transform it each time. For example, it is true for image 

mosaicking [17], color image synthesis from different spectra 
band images, etc. When using Hartley transform these common 
steps can be separated and treated as data preprocessing. 
Summarizing issues discussed above we obtain registration algo-
rithm based on Hartley transform. For each image to be registered 
the preprocessing step (Algorithm 4) should be applied to obtain 
phase Φ and natural logarithm of amplitude logeM in logarithmic 
polar grid. 
Algorithm 4. Preporcessing step  

 Given image I(x,y) of size WxH  
1    If input data set is color then 
2        Replace image by color gradient module [20] 
3    Else if we know that images are weakly corre-

lated  
4     Replace image by gradient module [19] 
5    Else  
6        Subtract mean brightness and multiply by 

    2D Gaussian window with σ=min(W,H)/8. 
7    Perform the image zero padding to size NxN 

where N is the smallest power of 2 larger than 
max(W,H)  

8    Convolve each row and then each column with 
Nuttall window of size 7 pixels 

9    Calculate Hartley transform H of I and assign 
H(0,0)=0 

10    Extract 2 lower quadrants of (11) amplitude M 
and replace H by (22) phase Φ  

11    Transform logeM to logarithmic-polar grid (28), 
(33) 

 
To register a pair of images Algorithm 5 should be applied to the 
preprocessed images data. 
Algorithm 5. Modified Reddy-Chatterji 

1    Given phases Φ and amplitudes logeM in loga-
rithmic-polar grid for 2 images. 

2    Find rotation and scale using Algorithm 2. 
3    For both rotation hypothesis φ and φ+π  
4        Apply rotation scaling to the second image 

    phase 
5        Find pure translation using Algorithm 2. 
6    Select angle when peak value in (23) is greater 
7    Apply (18) to original I2 

 
This algorithm is approximately 5 times faster than the original 
algorithm 3 and gives additional benefits when more than two 
images are to be registered. 

5. REGISTRATION ALGORITHM FOR 
PUSHBROOM CAMERAS 

The pushbroom camera (Figure 1.) implies a different transforma-
tion model to be estimated. Let there be more than 1 sensor line 
related to different spectral bands in focal plane. Generally, all 



sensor elements in all the lines have the same size with very high 
accuracy provided by modern chip technology. This means that 
up to perspective distortions, which are small for high resolution 
satellite imaging, pixels size at the Earth surface are the same, or 
at least pixels with the same position on different sensor lines 
have the same ground sizes. The sensor lines are approximately 
parallel in focal plane. Due to some non parallelism of these lines 
and due to perspective effects when the camera is directed aside 
of the orbit plane, the sensor lines see line areas of the Earth sur-
face that are nonparallel. Different images rows for each band are 
obtained due to satellite motion. For high resolution imaging the 
Earth surface can be treated as a plane with sufficiently high ac-
curacy. This results in affine transformation model (15) with ma-
trix 
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that is a skew. From (35) and (17) we see  
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that is the amplitude suffers a skew by the same angle absolute 
value as the image, but in the other coordinate axis. More strictly, 
if the right column of image is shifted up and the left down, the 
down amplitude row is shifted right and the upper left. The shift 
of each column for image (each row for amplitude) is proportional 
to the distance from it to the image center (zero frequency). 
As for similarity transform the unknown skew angle can be found 
from amplitudes analysis and then pure translation can be found. 
The problem of skew finding is easier and more computationally 
stable than that of rotation/scale and can be reduced to Fast 
Hough transform [15,16]. For all corresponding rows (with the 
same number) of logarithms of amplitudes we can find the shift 
by using technique (22)-(24) but this time in one dimension. The 
resulted peaks will form a straight line through the coordinate 
system origin and the angle is to be found will be the angle be-
tween this line and the vertical axis. 
Thus the proposed algorithm for registration images from 
pushbroom camera is: 
Algorithm 6. Preporcessing step pushbroom 

 Given image I(x,y) of size WxH  
1    If input data set is color then 
2        Replace image by color gradient module [20] 
3    Else if we know that images are weakly correlated  
4     Replace image by gradient module [19] 
5    Else  
6        Subtract mean brightness and multiply by     2D 

Gaussian window with σ=min(W,H)/8. 
7    Perform the image zero padding to size NxN where N 

is the smallest power of 2 larger than max(W,H)  
8    Convolve each row and then each column with Nuttall 

window of size 7 pixels 
9    Calculate Hartley transform H(ξ, η) of I(x,y) and 

assign H(0,0)=0 
10    Extract 2 lower quadrants of (11) amplitude logeM and 

replace H by (22) phase Φ  

11    For each logeM row replace it by R which is 1D Hart-
ley transform phase (22).  

 
To register a pair of images Algorithm 5 should be applied to the 
preprocessed images data. 
 
Algorithm 7. Pushbroom registration 

1    Given phases Φ and R from Algorithm 6 for 2 images. 
2    For each R1 and R2 row compute phase correlation 

(23) CH. 
3    For each row of CH replace it by 1D inverse Hartley 

transform 
4    Reflect lower half plane data to upper one relative to 

position where zero frequency was. This reflection is 
performed only to save computations because direct 
processing both half planes gives the same result. Now 
image CH is replaced by image of line cL. 

 Next pseudocode fragment (5-8) is the Fast Hough 
(Radon) transform [15,16]: 

5         Replace cL by its 2D Hartley transform. 
6         Transform the result to polar grid 
7         Apply DoG filter to each row, 

     the larger σ should be greater than the 
     row length quarter, the smaller σ is 
     about 2 pixels. 

8         Replace each row by its 1D Hartley  
     transform. This results in sinogram. 

9    Find maximal peak coordinates. This search is per-
formed only near central column of the image. 

10    The peak y coordinate corresponds to angle ψ to be 
found. Calculate it and form matrix (35). 

11 Apply skew transform (35),(15) to the second image 
phase Φ2 

12    Find pure translation using Algorithm 2. 
13    Apply (15),(16) to original I2  

 
The algorithm step 4 is performed to simplify peak detection at 
step 9. The line to be found should move through the image center 
(zero frequency). It is possible not to perform reflection and apply 
Hough transform only to 2 lower quadrants, but in this case the 
line is characterized by 2 parameters – angle and distance from 
the center. This results in more complex maxima shape on sono-
gram. Otherwise, when Hough transform is applied to all the 4 
quadrants, the line to be found always moves through image cen-
ter and the distance parameter is zero. The maximum shape looks 
like symmetric butterfly and it is easy to achieve subpixel accu-
racy in peak detection. Due to O(Nlog(N)) complexity of the Fast 
Hough transform algorithm computational losses are not large. It 
has no sense to perform computation on steps 2 and 3 for all four 
quadrants, because data is the same there. The reflection at step 4 
is only necessary.  
If we suppose a reasonable range of skew angle ψ to be found, it 
is possible to transform only a proper part of data to polar axes at 
the algorithm step 6. This restriction should be taken in account at 



step 10 when the value of angle ψ is calculated, because it is a 
reverse transform from polar to rectangular coordinate system. 
 

6. RESULTS 

The results of the proposed algorithms 6,7 for pushbroom camera 
registration is presented. Original data is shown on Figure 2 as a 
simple combination of different band images into one RGB im-
age. It is easy to see that images are not registered. Some inter-
mediate results are shown in Figures 3,4.  

 
Figure 2. Three band images superposed before registration. 

 
Figure 3. Registering 1 and 3 bands after step 4 of Algo-
rithm 7. The straight line is clearly visible. 
 

 
Figure 4. Registering 1 and 3 bands after step 8 of Algo-
rithm 7. There is a single peak in sinogram. It is clearly visi-
ble. Only the +/- 11.25° fragment is transformed to polar axes, 
so the peak is lengthy in vertical direction and subpixel angle 
registration is possible.  
 

 
Figure 5. All 3 bands are successfully registered and combined 
into a single color image. 
 
The registration result is presented in Figure 5. The skew angles 
found are 0.24°, 0.57°, and 0.33° between 1-2, 1-3, and 2-3 chan-
nels, respectively. These values are in good agreement (0.33=57-
24). The image sizes were 1000x1000 pixels. Translation was 
found correctly too. A number of tests performed for images suf-
fered from different skew show good results. When algorithm [7] 



was applied to results it increased quality of registration to sub-
pixel accuracy, but the results of such improvements are not visi-
ble on printed page. At this step algorithm [21] was used to calcu-
late gradients. Thus, they haven’t been included into this article. 
The computation time was less than 1 second for a single pair of 
images with Pentium-4 processor at 2.8 GHz. 

7. CONCLUSION 

The improvements to Reddy-Chatterji algorithm [1] are proposed. 
The algorithm inputs and outputs remain the same, but the im-
provements result in 4-5 times speed acceleration. When more 
than two images are to be registered the acceleration grows due to 
the common preprocessing step.  
A new algorithm is proposed for registration of images obtained 
with pushbroom camera. For this special case the algorithm pro-
posed looks more stable than Reddy-Chatterji because its key 
point is finding a line which is clearly visible. As for spectra am-
plitudes, the algorithmic search of rotation scale works good 
enough, but these magnitudes themselves visually seem weakly 
different. 
The algorithm proposed has complexity O(NlogN), the computa-
tion time is equivalent to that of a few Fast Hartley transforms 
applied to the image to be registered. 
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