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Abstract 

Tikhonov regularization approach and block motion model are 

used to solve super-resolution problem for face video data. Video 

is preprocessed by 2-D empirical mode decomposition method to 

suppress illumination artifacts for super-resolution.  
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1. INTRODUCTION 

The problem of super-resolution is to recover a high-resolution 

image from a set of several degraded low-resolution images. This 

problem is very helpful for face detection in human surveillance, 

biometrics, etc. because it can significantly improve image 

quality. 

Face super-resolution algorithms can be divided into two groups: 

learning-based and reconstruction-based. 

Learning-based algorithms collect the information about 

correspondence between low- and high-resolution images and use 

the gathered information for resolution enhancement. These 

methods are not actually super-resolution methods, because they 

operate with a single image. They do not reconstruct missed data, 

they only predict it using learning database. Several input images 

do not significantly improves the resolution and only help to 

reduce the probability of using incorrect information from the 

database. The most popular method is Baker method [1], [2] 

which decomposes the image into a Laplacian pyramid and 

predicts its values for high-resolution image. Patch-based methods 

are popular too. They divide low- and high-resolution images into 

a set of pairs of fixed size rectangles called patches and substitutes 

the most appropriate patches into high-resolution image. They 

vary by learning and substitution methods, for example, neural 

networks [3], locality preserving projections [4], asymmetric 

associative learning [5], locally linear embedding [6], etc. 

Principal component analysis is also used for learning-based 

super-resolution [7]. 

Reconstruction-based algorithms use only low-resolution images 

to construct high-resolution image. Most reconstruction-based 

algorithms use camera models [8] for downsampling the high-

resolution image. The problem is formulated as error 

minimization problem 
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where z  is unknown high-resolution image, kv  is k-th low-

resolution image, kA  is an operator which transforms high-

resolution image into low-resolution. Various norms are used. The 

operator can be  generally represented as 

nzHFDHzA atmkcamk  , where atmH  is atmosphere 

turbulence effect which is often neglected, kF  is a warping 

operator like motion blur or image shift for k-th image, camH  is 

camera lens blur which is usually modeled as Gauss filter, D  is 

the downsampling operator, n  is a noise, usually Gaussian. In 

many cases, only translation model is considered and noise is 

ignored, so kF  can be merged with camH  and the transform 

operator is simplified as zDHzA kk  , where kH  is a shifted 

Gauss filter with the kernel 
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where kx  and ky  are shifts of high-resolution image relatively to 

k-th low-resolution image along x and y axis respectively. 

There are different methods to solve (1). The most widely-used 

methods are [9]: iterated error back-projection which minimizes 

the error functional using error upsampling and subtraction from 

high-resolution image [10], [11], stochastic reconstruction 

methods [12], projections onto convex set [13], [14], Tikhonov 

regularization [8] and single-pass filtering which approximates the 

solution of (1) [15], [16]. 

Linear translation model is usually insufficient for super-

resolution problem, because the motion is non-linear. Different 

motion models are used [4], [15]. It is computational ineffective 

to calculate the motion for every pixel. The motion of adjacent 

pixels is usually similar, so, the motion of only several pixels is 

calculated. The motion of other pixels is interpolated. The 

simplest model is regular motion field [4]. For large images, it is 

effective to calculate the motion of pixels which belong to edges 

and corners [15]. 

2. OUR APPROACH 

We consider the task of face image super-resolution from video 

data. We use Tikhonov regularization approach [8] and block 

motion model. The reason is that the problem (1) is ill-

conditioned or either ill-posed. We use 1l  norm 
ji

jizz
,
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instead of standard Euclidian norm, because it has shown better 

results. 
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We choose total variation functional 
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)(zf , yxS ,  is a shift operator along horizontal and vertical axis 

for x and y pixels respectively, 8.0 , 2or1p . )(zTV  can 

be also represented as 
11,010,1)( zzSzzSzTV  . 

All the images are considered as the results of motion of the first 

image. Both first and target images are convolved with Gauss 

filter to suppress noise. For motion estimation, we calculate the 

motion on a regular grid G  with a step within 8 to 16 pixels 

range. For every point from the grid G , we take a small square 

block (8–16 pixels width) from the first image centered in this 

point. Then we find the optimal shift of this block in target image 

with pixel accuracy using least mean square approach. To 

calculate the motion with subpixel accuracy, we convolve the first 

image with shifted Gauss filter (2). 

The motion for other pixels is interpolated linearly (for example, 

using bilinear or Gauss filter). Then a set of matrices 
)(kT  of 2-D 

points ),()(
, ji
k
ji yxT   is constructed. The k-th matrix represents 

the correspondence between pixels from the k-th image and the 

first image. Next we multiply every element of these matrices by 

resampling scale factor, so the matrices represent the 

correspondence of pixels between low-resolution images and 

high-resolution image. 

In this case, transform operator kA  looks as HTA k
k

)( , where 

H  is zero-mean Gauss filter and zTu kk )()(   is motion-

compensated downsampling operator: 
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If ix  or jy  is not integer value, then 
ji yxz ,  is approximated 

using bilinear interpolation. Note: it is better to perform shifted 

Gauss filter to calculate 
ji yxz ,  more precisely, but it would be 

very slow. Gauss filter H  reduces high-band frequencies, so 

bilinear approximation is enough. 

3. NUMERICAL METHOD 

We use iterative subgradient method with non-constant step [17] 

for fast minimization of (3). The iterations look like  
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where )(|)()(
nz

n zFg   is any subgradient of the object 

functional 
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Vector 
)(ng  is an element of subgradient set )(|)( nz

zF  of 

)(zF  at 
)(nz  if it satisfies the condition 

),()()( )()()( nnn zzgzFzF   for all z . Only one 

subgradient exists and it is equal to normal gradient if )(zF  is 

differentiable at 
)(nz . 

The subgradient of 
1

)( uuJ   for the grid points is 
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Thus uuJ sign)(   with sign function applied per each 

element of u . The subgradient of )(zF  can be written in the 

form 
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*H  and 
)*(kT  are standard conjugate operators defined by 

Euclidian scalar product.  For Gauss filter HH *
. 

)(*)()( kkk uTz   is constructed in the following way: first, 
)(kz  

is zero-filled, then for every pixel ),( ji  from 
)(ku  we obtain its 

coordinates in 
)(kz : 
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z . For non-integer coordinates, we add the value to the 

nearest pixels with coefficients obtained by bilinear interpolation. 

For the case of )()( zBTVzf  , the subgradient looks as  
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where I  is unit operator. For )()( zTVzf   the subgradient is 

calculated the same way. 

The coefficients n  in (4) satisfy the condition for step lengths 

n
n

n sg 
1

)( , where step lengths ns  are chosen a priori in the 

form 10,0  qqss n
n . We use 500 s  and choose q  to 

obtain 1.01 Ns  for the last iteration. 

The application of the proposed super-resolution method is shown 

in Figure 1. For sequent video data this method shows better 

results than any single image resampling method. 
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d) e) 

Figure 1: Face super-resolution for the factor of 4 and 10 input 

images. 

a) source low-resolution images; 

b, c, d) single image interpolation using b) nearest neighbor; 

c) bilinear interpolation; d) regularization-based method [26]; 

e) proposed super-resolution result. 

 

4. EMD-BASED ILLUMINATION ARTIFACT 

REMOVAL 

The initial super-resolution video data suffers from the 

illumination artifacts. To overcome this problem we use Empirical 

Mode Decomposition (EMD) method. 

EMD is a multisolution decomposition technique which was first 

introduced by Huang et al. in [18]. This method is appropriate for 

non-linear, non-stationary signal analysis. The concept of EMD is 

to decompose the signal into a set of zero-mean functions called 

Intrinsic Mode Functions (IMF) and a residue. As the increasing 

of decomposition level, the complexion (frequency) of IMF 

decreases. In comparison to other time-frequency analysis tools 

such as Fourier analysis or wavelet analysis, EMD is fully data-

driven i.e. there are no pre-determined basis functions. 

At first we describe the algorithm for 1-D signals. 

Huang et al. defined IMF as function that satisfies two conditions: 

a) the number of extrema equals the number of zero-crossing or 

differs at most by one; b) at any point, the mean value of upper 

envelope defined by local maxima and lower envelope defined by 

local minima is zero. Let )(tf be the signal to be decomposed. 

Using this definition we can describe EMD algorithm as follows: 

1. Identify all local extrema of )(tf . 

2. Interpolate all local maxima to get upper-envelope )(max te  

and all local minima to get lower-envelope )(min te . 

3. Compute the local mean 
2

)()(
)( minmax tete

tm


 . 

4. Compute )()()( tmtftd  . )(td  is the candidate to be 

an IMF. 

5. If )(td  satisfies the definition of IMF, subtract it from the 

signal )()()( tdtftr   and go to step 6. 

If )(td  does not satisfy the definition of IMF, go to step 1 

and use )(td  instead of )(tf . Steps 1-5 are repeated until 

)(td  satisfies the definition of IMF. 

6. If residue )(tr  is a monotone function, the decomposition 

process is complete. 

If residue )(tr  is not a monotone function, go to step 1 and 

use )(tr  instead of )(tf . 

The process of getting each IMF (steps 1-4) is called sifting 

process. When the decomposition is complete we can write )(tf  

as follows: 
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where )(tk  is the k-th IMF and )(tr  is the residue. 

There are several crucial points in the algorithm: the interpolation 

method for upper- and lower-envelopes calculation, boundary 

processing method, the stopping criterion and number of 

iterations in sifting process. 

Huang et al. uses cubic spline interpolation to estimate the upper- 

and lower-envelopes [18]. Other methods for estimation are also 

used: B-splines [19], an optimization process based method [20], 

etc. 

Several methods to process boundary points for interpolation of 

the envelopes were suggested. One of the ways to solve this 

problem is to consider the end points of the signal as the 

maximum and the minimum at the same time. Another way is to 

extend the signal, make envelopes for extended signal and then 

use only its original definition domain part [21]. 

In practice it is very difficult to get the physical meanfull IMF 

function that is strongly satisfies the definition. So different 

sifting process stopping criteria were introduced. Often the size of 

standard deviation SD  computed from two consecutive sifting 

results [18, 22] is used as the criterion: 
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The typical used value of SD  is between 0.2 and 0.3. 

The limiting of the local mean value of sifting result )(tm in each 

point is also used [23]. The number of iterations in sifting process 

can be restricted [22, 24]. 

2-D case of EMD is still an open problem but it has the same 

crucial points: extrema points locating process, the interpolation 

method for upper- and lower-envelopes estimation, boundary 

processing method, the stopping criterion and number of 

iterations in sifting process.  

In our approach we locate local maxima and minima as follows: 

),( jif  is local maxima if ),(),( lkfjif  , where 

11,11  jljiki , ),( jif  is local minima if 

),(),( lkfjif   where 11,11  jljiki . We 

use Delaunay triangulation-based linear interpolation to estimate 

envelopes and even extension for boundary processing. This even 

extension for boundary processing is illustrated in Figure 2. 

 

 

     a)                                      b) 

Figure 2: Boundary processing — a) original image; b) extended 

image for envelope construction. 

 

As a stopping criterion we use the limitation of local mean in 

conjunction with restriction of the number of iterations in sifting 

process. An example of EMD applied to a face image from video 

is shown in Figure 3. The histogram of the IMF and residue 

images was adjusted to illustrate the behavior of these functions. 
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d) e) f) 

Figure 3: EMD example. a) original image; b) 1-st IMF; c) 2-nd 

IMF; d) 3-rd IMF; e) 4-th IMF; f) residue. 

 

EMD method can be used for illumination artifact removal. The 

idea to remove illumination artifacts from image is based on the 

decomposition of the initial image using EMD 
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 . Illumination artifacts are 

considered as low frequency information which can be eliminated 

from the image. We obtain the enhanced image using several first 

IMFs 



M

k
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),(),(  , where NM  which are the 

highest frequency components [25].  

In [25] the authors use 1-D EMD for illumination correction 

representing the image as 1-D signal. In our approach we use 

more effective 2-D EMD (see a result in Figure 4). 
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c) d) 

Figure 4: Illumination artifact removal — a,b) original images; 

c,d) processed images. 

 



5. RESULTS 

The results of super-resolution method depend drastically on the 

taken face video data. Serious enhancement of the tracked face by 

super-resolution method with EMD algorithm for illumination 

correction is typically obtained. To illustrate the general effect of 

the EMD enhancement we used a set of non-sequent images with 

artificially degraded illumination. This set is not typical for 

practical video data where the illumination change is continuous, 

but even in this case the EMD based result is reasonable (see 

Figure 5).  Our tests show that the single image regularization 

resampling method [26] with EMD enhancement for the case of 

non-sequent images gives better result than the above super-

resolution method. 
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Figure 5: An application of illumination artifact removal for 

super-resolution. a) original images; b) super-resolution result; c) 

EMD processed images; d) super-resolution result for EMD 

processed images. 

 

6. CONCLUSION 

Super-resolution method based on Tikhonov regularization 

approach and block motion model for face video data has been 

proposed. The approach was found promising to be used in real 

applications. The performance of the method has been improved 

by 2-D empirical mode decomposition method application to 

suppress illumination artifacts of video. The research on use of 

2-D intrinsic mode functions inside super-resolution algorithm is 

under work. 
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