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Abstract 

Caustics are patterns of light formed by refraction or reflection of 

light from objects, and several methods have been developed to 

render this effect. Some methods are used to render caustics on 

plane, others – on arbitrary surface.  

Practically no methods have been developed to render spectrum 

caustics, which appear when refracting material has too high 

refraction index or ray suffers multiple refractions and reflections 

before it exits the object. Existing methods, like photon mapping 

[11] either produce non-smooth results for few wavelengths 

number or work offline. 

We propose a method for rendering spectrum caustics on plane. 

The caustics are calculated using forward vertex ray-tracing 

algorithm and rendered using conventional scanline rasterization 

(OpenGL). Besides, we propose a technique that allows rendering 

smooth caustics, even when only 3 rays per vertex are traced, of 

wavelengths roughly corresponding to conventional color 

components (R, G, B).  
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1. INTRODUCTION 

Rendering caustics is a tricky problem because of multiple 

factors. First, if an object is refractive (and diacaustic is 

supposed), one or more refractions should be simulated, which 

could be time-consuming. 

Then, there is a problem of projecting caustics on the desired 

surface. This can become difficult if the surface is non-planar. 

Finally, the problem of rendering caustics arises. Even in case of 

per-pixel ray-casting, the surface would be irregularly lit (due to 

curvature of the caustic producing object) and methods of 

interpolation between single photons are required. 

In our work we limit ourselves to the case of polyhedron object 

and a planar surface, on which caustics are projected. Our model 

doesn’t differentiate between reflection and refraction cases, that 

is why it is possible to render both catacaustics and diacaustics 

using it. 

Our contributions are an algorithm for spectrum caustics 

rendering and an algorithm for rendering smooth spectrum 

caustics tracing only few rays. 

2. RELATED WORK 

Caustic effect now is widely used in high-quality computer 

graphics, be it interactive [1-4, 7-10] or not [6]. There is also a 

difference in assumptions that are made to obtain desired quality. 

While rendering diacaustics, the method of refraction calculation 

is vital. The fastest methods only take one refraction into account 

[2, 4]. [1] introduces a tricky technique which allows approximate 

rendering of up to two refractions without using ray-tracing or 

ray-casting. Techniques based on photon mapping or ray-depth 

map intersection algorithms [8] can handle multiple reflections 

and refractions within the object. 

Different assumptions about caustics receiver are made. Some 

works [2] assume it to be a plane. Other techniques render 

caustics on plane and then use it as a projective texture [1]. 

Finally, two-plane parameterization (2PP) is used to render 

caustics most precisely [8]. 

Practically no methods have been proposed recently for 

interactive rendering of spectrum caustics. Usually, in case of few 

reflections/refractions, only white caustics appear, but this was 

not our case. 

We have developed a method for rendering spectrum caustics, 

casted from a polyhedron object onto a plane. We use a forward 

vertex ray-tracing algorithm to trace a ray through a reflective 

object with high accuracy, which is described in Section 3.  

Caustic rendering algorithm itself is shown in Section 4. 

High-quality version of our algorithm produces smooth caustics 

even from three rays. It is discussed in Section 5. 

We conclude and summarize our plans for nearest future research 

in Section 7. 

 

Figure 1: Example of caustics on a plane for 3 rays for typical 

object with high refraction index. 

3. FORWARD VERTEX RAY-TRACING 

The ray tracing algorithm used is a conventional physically-

correct polyhedron ray tracer. Actual Fresnel formulas are used to 



calculate ray reflection and refraction at every ray-polygon hit. 

Each single ray has a specific wavelength and intensity assigned 

to it. Provided with a set of physical properties of the polyhedron 

material, the algorithm can accurately calculate light distribution 

within the object, and provide us with directions and intensities of 

exiting rays. 

Using this algorithm, we can obtain the data needed to render 

caustics, cast by a number of light sources with given spectral 

characteristics. For each such light source, a spectrum can be 

divided into a number of zones, and each one of them is assigned 

a ray with certain parameters. Passing this set of rays to the ray 

tracer, we receive back a set of ray-cones, corresponding to beams 

of light which exited the object after a number of internal 

reflections and splittings. An entering ray-cone is shaped in a 

form of corresponding model side. Due to dispersion and multiple 

internal reflections it is split into a number of sub-cones. When 

one of the sub-cones exits the model, the outline of a cone-model 

intersection forms a polygon which we call a virtual facet. Thus, 

each exiting ray-cone corresponds to a specific wavelength and is 

shaped by a virtual facet, which, quite obviously, also determines 

the shape of a single-wavelength caustic cast on a plane. Obtained 

data can be split into a number of ray-cone batches, where in each 

batch all the ray-cones have originated from the same entering 

cone and have different wavelengths and intensities. Such a batch 

of ray-cones forms a “rainbow” of caustic rays. As you can easily 

figure out, for models with planar sides all cones from a single 

batch intersect a plane in a straight line, if any, due to the nature 

of dispersion. 

4. CAUSTICS RENDERING 

4.1 Projecting Caustics on Plane 

After we got a ray exit positions and directions (a ray-cone), we 

can project this beam onto desired surface. Due to rendering 

pipeline specifics, projection is done in the view space. 

 

Figure 2: Tracing a ray and projecting a ray cone on a plane. 

 

After we have applied the knowledge about the beam brightness 

falloff due to refractions and reflections, we should take in 

consideration the square actually lit by the particular caustic. This 

is described in the next subsection. 

4.2 Using Size Estimation for Correct Lighting 

 

Figure 3: Projecting the same ray cone on two parallel planes. 

 

As could be seen from Figure 3, square of the same ray cone's 

projection on parallel planes can vary greatly. The cosine between 

rays and plane normal is constant so we cannot use it to estimate 

the square. Instead we estimate the square of the ray cone section 

and its projection using Geron’s equation. 

Another problem (which hasn’t yet been solved) is that the light 

intensity is non-uniformly distributed across the streak. We are 

going to solve this in future by means of per-pixel lighting with 

GPU. 

5. SMOOTH CAUSTICS 

When one traces rays, corresponding to finite (low) number of 

wavelengths, problem of gaps between caustics, corresponding to 

different wavelengths but same vertex can occur. Increasing the 

number of wavelengths, traced per vertex, reduces frame rate 

dramatically. Besides, a problem of visible gaps between ray-

plane hits occurs even for the case of 20 rays. So, an adaptive 

solution is needed, which process correct caustics in both cases 

when different wavelengths hit the surface close to each other and 

when they are at the considerable distance from each other. 

5.1 Interpolation and Integration 

First, let’s consider a case of three rays (R, G, B). It is easily 

generalized on the case of more rays. 

 

 

Figure 4: Interpolation of spectrum caustics. Arrow ends are 

pointing to the point where color is considered to be R, G or B. 

 

As shown in Figure 4, color is interpolated between pairs of 

neighboring wavelengths. Unfortunately, these values couldn’t be 

used straightforward. One of the possible reasons is shown in 

Figure 5. 

 

Figure 5: Interference of light between different wavelengths. 

Consider the image in Figure 5. Due to the interference of 

different triangles, resulting energy in each point may vary 



according to the distribution of caustics, corresponding to 

different wavelengths on the surface. We cannot achieve this 

effect using interpolation only (e. g. we can never obtain white 

light, even if caustics are directly mapped onto each other). 

We propose to integrate these interpolation results in each point to 

solve this problem. In Figure 6 you can see the set of polygons 

which contribute to the yellow point (utmost left and right 

triangles are shown in dashed). 

 

Figure 6: Integration of interpolation results. 

In the current realization, integration is performed via additive 

blending. We render all the interpolating triangles with a given 

step (the step is taken in the coordinates of the view space) and 

divide their brightness by the number of actually drawn triangles. 

The results are shown in Figure 7. 

  

Figure 7: Results of caustics interpolation. From left to right, the 

distance between caustics is increasing. 

 

5.2 3-Ray Energy Conservation Problem and 
Solution 

While interpolating between red-green and green-blue 

wavelengths, another artifact occurs. When you integrate these 

results together, it turns out that the green component is two times 

brighter than the red or the blue one (because it is actually added 

twice).  

We solve this problem by adding virtual black caustics ‘before’ 

red one and ‘after’ blue one. We extrapolate position of red and 

blue components using Equation 1 and 2: 

greenblueblackblue PPP −=
−

2                                                   (1) 

greenredblackred PPP −=
−

2                                                     (2) 

where P stands for position of corresponding caustics. 

As a matter of fact, the same problem arises when more rays are 

traced, but it is practically undetectable in that case, because 

boundary wavelengths make a very low-weight (approximately 

1/20th of the energy) contribution to the brightness (in case of 20 

rays) or even less (due to their proximity to ultraviolet/infrared 

color). 

6. CONCLUSION AND FUTURE WORK 

6.1 Results 

We have developed a method for rendering smooth spectrum 

caustics on plane surfaces. Although it works for arbitrary number 

of rays and produces accurate results interactively, we have vast 

plans for optimization and enhancement of this technique. 

Integration using additive blending is extremely time-consuming. 

It is possible to evaluate this integral analytically if a linear 

interpolation is supposed. In this case, color would be a square 

function of coordinate. This makes it possible to shade each 

caustic with a pixel shader, which needs to evaluate only a square 

function in each fragment. 

Caustics are usually produced by a volume light source, rather 

than a point one. That is why they shouldn’t be as rough-edged as 

they are now. The blurriness of the caustics depends on the light 

source size, the distance between caustics emitter and the plane 

and the distance that light had actually travelled within the solid 

object during multiple refractions and reflections. In our ray 

tracing model, these lengths could be accurately evaluated, which 

makes it possible to apply a physically-based blurring of caustics.  
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Figure 8: 3-ray discontinuous caustics. Note the discontinuities 

between R, G and B wavelengths. 

 

Figure 9: 20-ray discontinuous caustics. Note the discontinuities 

on the red-green caustic in the top left corner. 

 

 

Figure 10: 3-ray smooth caustics. Note absence of discontinuities 

comparing to Figure 8.  

 

Figure 11: 20-ray smooth caustics. Note the difference with 

Figure 10 – e. g. the blue color is darker due to more precise 

calculations. 

 

 

 

 

 

Figure 12: Close-up of single caustic. Quality of rendering is in 

the same order as Figures 8-11 go. Note the sharp alias border on 

the most left picture and difference on borders of caustic between 

3-rays and 20-rays versions. Difference between 20-rays smooth 

and sharp version is practically invisible due to close distribution 

of wavelengths along the surface. 

 

 

Figure 13: Time of caustics rendering (given in milliseconds, 

528×491, camera orthogonal to paper). As could be observed, 

rendering itself is very fast, so more work should be done on 

optimizing the pre-processing. 

Test configuration: Dell Inspiron 1520, Intel Core 2 Duo T7500 

(2.2 GHz), GeForce 8600 M GT, 2 Gb RAM 

 


