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Abstract

We propose a tensorial expansion of high resolution diffusion imag-
ing (HARDI) data on the unit sphere into a sum of self-similar poly-
nomials, i.e. polynomials that retain their form up to a scaling under
the act of lowering resolution via the diffusion semigroup generated
by the Laplace-Beltrami operator on the sphere. In this way we ar-
rive at a hierarchy of HARDI degrees of freedom into contravariant
tensors of successive ranks, each characterized by a corresponding
level of detail. We provide a closed-form expression for the scaling
behaviour of each homogeneous term in the expansion, and show
that classical diffusion tensor imaging (DTI) arises as an asymptotic
state of almost vanishing resolution.
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1 Introduction

High angular resolution diffusion imaging (HARDI) has become a
popular magnetic resonance imaging (MRI) technique for imaging
apparent water diffusion processes in fibrous tissues in vivo, such
as brain white matter and muscle. Diffusion MRI is based on the
assumption that Brownian motion of H2O molecules is facilitated
along the direction of fibers (axons or muscles). In classic diffu-
sion tensor imaging (DTI), introduced by Basser et al. [Basser et al.
1994a; Basser et al. 1994b], cf. also Le Bihan et al. [Le Bihan et al.
2001], the diffusivity profile is modeled by a rank-2 contravariant
diffusion tensor. Although the DTI representation is inherently lim-
ited by this restrictive assumption on the diffusivity profile, it does
have the advantage that it enables one to view a spatial section of
local diffusivity profiles as a (dual) Riemannian metric field. In
turn, this view has led to the geometric rationale, in which fibers
are modeled as (subsets of) geodesics induced by parallel trans-
port under the corresponding metric connection [Astola et al. 2007;
Fillard et al. 2007; Lenglet et al. 2004; Pennec et al. 2006; Pra-
dos et al. 2006]. Congruences of geodesics can be studied like-
wise in the geometric framework of Hamilton-Jacobi theory [Rund
1973], which has led to efficient algorithms for connectivity analy-
sis (eikonal equation, fast marching schemes, and the like).
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For simplicity we use the term HARDI to collectively denote
schemes that employ functions on the sphere, including Tuch’s ori-
entation distribution function (ODF) [Tuch 2004], the higher or-
der diffusion tensor model and the diffusion orientation transform
(DOT) by Özarslan et al. [Özarslan and Mareci 2003; Özarslan et al.
2006], Q-Ball imaging [Descoteaux et al. 2007], and the diffusion
tensor distribution model by Jian et al. [Jian et al. 2007].

Because the general HARDI model accounts for arbitrarily com-
plex diffusivity profiles, it raises a concomitant demand for regular-
ization [Descoteaux et al. 2006; Descoteaux et al. 2007; Hess et al.
2006; Pennec et al. 2006; Tikhonov and Arseninn 1977], since there
is no a priori smoothness of acquisition data. Indeed, in the context
of regularization schemes, DTI can be seen as an asymptotic regu-
larization of the actual diffusivity profile.

A natural way to combine the conceptual advantage of DTI (notably
its connection to a Riemannian framework) with the superior data
modeling capability of HARDI, is to consider a polynomial expan-
sion of the diffusivity function on the sphere that can be likewise
represented in terms of a contravariant rank-2 tensor field, which
can then be used so as to obtain a generalized, orientation depen-
dent Finsler metric [Melonakos et al. 2008]. A polynomial expan-
sion of HARDI data on the sphere has been proposed previously
by Özarslan and Mareci [Özarslan and Mareci 2003]. However,
these authors consider a homogeneous expansion, containing terms
of some fixed order only. They point out that any (again homoge-
neous) model of lower order can be obtained in analytically closed
form from the result, i.e. without the need for a data refit. This is
true, and indeed a sensible approach, since (even/odd) monomials
of fixed order, N say, confined to the unit sphere, can be linearly
combined so as to produce any lower order (even/odd) monomial
by virtue of the radial constraint r = 1 of the unit sphere embedded
in Euclidean n-space (in our case, n = 3).

However, in this paper we propose an inhomogeneous expansion,
including all (even) orders up to some fixed N , and exploit the re-
dundancy of such a representation. (Odd terms are of no interest,
as the HARDI profile is assumed to be symmetric.) The idea is to
construct a polynomial on the sphere in such a way that the higher
order terms capture residual information of the HARDI profile only,
i.e. the additional structure that cannot be revealed by a lower or-
der polynomial. As such the polynomial expansion can in theory
be continued to a series expansion of infinite order. We construct
this polynomial representation order by order, in such a way that
adding a higher order term does not affect already established lower
order terms. As a consequence the information in the HARDI data
is distributed hierarchically over diffusion tensor coefficients of all
ranks.

The polynomial representation admits regularization. This provides
control over complexity and angular resolution. Above all, it re-
veals the data hierarchy alluded to above, in the sense that the col-
lective terms of fixed order are self-similar under canonical resolu-
tion degradation induced by the Laplace-Beltrami operator on the
sphere (cf. Koenderink for a physical motivation of this paradigm in
the Euclidean setting [Koenderink 1984]), with a characteristic de-
cay that depends on order. In this sense they constitute the tensorial
counterparts of the canonical eigensystem of spherical harmonics
with corresponding discrete spectrum.



Finally, we point out the explicit relationship between HARDI and
DTI via asymptotic regularization. This is of interest, as it permits
one to extend and apply established geometric techniques for con-
nectivity analysis and tractography that have been successfully used
in the context of classical rank-2 DTI.

2 Theory

We consider the unit sphere embedded in Euclidean 3-space, given
in terms of the vector components gi, i = 1, . . . , n (with n = 3 in
our application of interest):

ηij g
i gj = 1 . (1)

Einstein summation convention applies to pairs of identical upper
and lower indices. The components of the Euclidean metric and
corresponding dual metric of the embedding space are given by
ηij , respectively ηij , with the help of which indices can be lowered
or raised. We have, for instance1, gi = ηij g

j , the dual covector
components corresponding to gi. The corresponding analogue of
Eq. (1) is therefore

ηij gi gj = 1 . (2)

In Cartesian coordinates we have ηij = ηij = 1 iff i = j for i, j =
1, . . . , n, otherwise 0, so that Eq. (2) reduces to g2

1 + g2
2 + g2

3 = 1,
and similarly for the vectorial representation, Eq. (1).

The Riemannian metric of the embedded unit sphere is given in
terms of the components

gµν =
∂gi

∂ξµ
ηij

∂gj

∂ξν
, (3)

in which ξµ (µ = 1, . . . , n − 1) parameterize the sphere. Recall
that the canonical parametrization of the sphere in terms of the usual
polar angles, (θ, φ) ∈ [0, π]× [0, 2π), is as follows:

Ω :

 g1 = sin θ cosφ ,
g2 = sin θ sinφ ,
g3 = cos θ .

(4)

The corresponding measure is abbreviated by dg = sin θ dθ dφ.

We consider a higher order DTI representation of the form

D(g) =

∞∑
k=0

Di1...ik gi1 . . . gik . (5)

(Under the stipulated symmetry, D(g) = D(−g), only even orders
will be of interest.) The collection of polynomials on the sphere,

B =
⋃

k∈N∪{0}

Bk , (6)

spanned by the monomial subsets

Bk = {gi1 . . . gik | k ∈ N ∪ {0} fixed} , (7)

is complete, but redundant. Apart from the fact that odd order
monomials are of no interest, redundancy is evident from the fact
that lower order even monomials can be reproduced from higher
order ones through contractions as a consequence of the quadratic
constraint that defines the embedded unit sphere, recall Eq. (2). As
a result, we have, e.g.,

gi1 . . . gik = ηik+1ik+2 gi1 . . . gik+2 , (8)

1The covector model reflects the physical nature of the components as
normalized diffusion sensitizing gradients, i.e. covectors.

and, by recursion, we find similar dependencies for all lower order
monomials in terms of higher order ones. Thus any monomial of
order k ≤ N ∈ N ∪ {0} is linearly dependent on the set of N -th
order monomials of equal (even/odd) parity. This, of course, jus-
tifies the approach by Özarslan and Mareci [Özarslan and Mareci
2003], in which the data are fitted only against linear combinations
of N -th order monomials, discarding all lower order terms. In par-
ticular, the larger N is, the better the approximation of the data will
be. However, in the process of updating N , all HARDI data in-
formation will migrate to the tensor coefficients of corresponding
rank. The reader is referred to the seminal paper by Özarslan and
Mareci [Özarslan and Mareci 2003] for further details and physical
background.

Still, it is not necessary to employ a basis of fixed order monomials.
One can actually exploit the redundancy in B, Eq. (6). For instance,
we have

FN =

(
N + 2
N

)
(9)

independent N -th order basis monomials due to symmetry, as op-
posed to N ! for an arbitrary rank-N tensor. It also follows that FN

is in fact the exact number of degrees of freedom of our full N -th
order polynomial expansion, i.e. including all monomials of orders
less than N . Consequently, if we retain all lower order monomials,
it follows from Eq. (8) that the effective number of independent de-
grees of freedom in our N -th order term must be lower than FN ,
recall Eq. (9), viz. equal to the number of independent components
of the symmetric rank-N tensor minus the number of degrees of
freedom already contained in the lower order terms:

F residual
N = FN −FN−2 = 2N + 1 . (10)

This number therefore corresponds to the dimensionality of the
residual degrees of freedom. If, in case of even N , we count all
spherical harmonics Y m` for even ` = N,N − 2, . . . , 0, and all
m ∈ {−`, . . . , `}—let us call this number GN—then we reobtain
Eq. (9), since

GN =

N∑
`=0 ,` even

(2`+ 1) =
(N + 1)(N + 2)

2
= FN . (11)

(The same result holds for N odd, in which case summation should
be restricted to odd `-values only, but this is not relevant for us.)
Notice that, in particular, the number of independent degrees of
freedom of the spherical harmonics of order N , G residual

N say, like-
wise equals

G residual
N = GN − GN−2 = 2N + 1 = F residual

N . (12)

These counting arguments suggest an intimate relationship between
the rank-k tensor coefficients of Eq. (5) in our scheme, v.i., and the
spherical harmonics of order k.

Model redundancy may be beneficial, to the extent that it enables us
to distribute the HARDI degrees of freedom hierarchically over the
various orders involved, in such a way that only residual informa-
tion is encoded in the higher order tensor coefficients. As N →∞
this residual tends to zero, while all established tensor coefficients
of lower rank than N remain fixed in the process of incrementing
N . (The hierarchy implicit in Özarslan and Mareci’s scheme is of a
different nature.) We return to the potential benefit of our inhomo-
geneous polynomial expansion below.

We construct the coefficients as follows. Suppose we are in pos-
session of Di1...ik for all k = 0, . . . , N − 1, then we consider the



function

EN (Dj1...jN ) =

∫ (
D(g)−

N∑
k=0

Di1...ikgi1 . . . gik

)2

dg ,

(13)
and find the N -th order coefficients by minimization. Setting

∂EN (Dj1...jN )

∂Di1...iN
= 0 , (14)

one obtains the following linear system:

Γi1...iN j1...jND
j1...jN = (15)∫

D(g) gi1 . . . giN dg −
N−1∑
k=0

Γi1...iN j1...jkD
j1...jk ,

with symmetric covariant tensor coefficients

Γi1...ik =

∫
gi1 . . . gik dg . (16)

The appearance of the second inhomogeneous term on the r.h.s. of
Eq. (15), absent in the scheme proposed by Özarslan and Mareci,
reflects the fact that in our scheme higher order coefficients encode
residual information only.

It is immediately evident that

Γi1...i2k+1 = 0 (k ∈ N ∪ {0}) , (17)

since no odd-rank tensors with covariantly constant coefficients ex-
ist. All even-rank tensors of this type must be products of the Eu-
clidean metric tensor, so we stipulate

Γi1...i2k = γk η(i1i2 . . . ηi2k−1i2k) , (18)

for some constant γk. Parentheses denote index symmetrization.
The constant γk needs to be determined for each k ∈ N ∪ {0}.

One way to determine γk is to perform a full contraction of indices
in Eq. (18), which, with the help of Eqs. (2) and (16), yields

γk =
Γ

η(i1i2 . . . ηi2k−1i2k) ηi1i2 . . . η
i2k−1i2k

. (19)

To find the denominator on the r.h.s. is an exercise in combi-
natorics [Grimaldi 1993], and requires the basic trace property
ηijη

ij = δii = n. A simpler way to find γk is to evaluate Eq. (18)
for i1 = . . . = i2k = 1 in a Cartesian coordinate system, since the
symmetric product of metric tensors on the r.h.s. evaluates to 1 for
this case:

γk = Γ1...←2k indices→...1 =

∫
g2k

1 dg . (20)

This integral is a special case of the closed-form multi-index rep-
resentation of Eq. (16), cf. Folland [Folland 2001] and Johnston
[Johnston 1960], viz.:∫

gα1
1 . . . gαn

n dg =
2

Γ( 1
2
|α|+ n

2
)

n∏
i=1

Γ(
1

2
αi +

1

2
) , (21)

if all αj are even (otherwise the integral vanishes). Here |α| =
α1 + . . .+ αn = 2k denotes the norm of the multi-index, and

Γ(t) =

∫ ∞
0

st−1 e−s ds = 2

∫ ∞
0

r2t−1 e−r
2
dr (22)

is the gamma function. Recall Γ(`) = (` − 1)! and Γ(` + 1
2
) =

(` − 1
2
) . . . 1

2

√
π = (2`)!

√
π/(4` `!) for non-negative integers

` ∈ N ∪ {0}. For the specific monomial in Eq. (20) we have α =
(2k, 0, . . . , 0) ∈ Zn.

Result 1 Recall Eqs. (16–18). For general n we have

γk =
2 Γ(k + 1

2
)Γ( 1

2
)n−1

Γ(k + n
2

)
,

in other words,

Γi1...i2k =
2 Γ(k + 1

2
)Γ( 1

2
)n−1

Γ(k + n
2

)
η(i1i2 . . . ηi2k−1i2k) .

For n = 3 in particular, we obtain

γk =
2π

k + 1
2

,

whence
Γi1...i2k =

2π

k + 1
2

η(i1i2 . . . ηi2k−1i2k) .

This result is the tensorial counterpart of Eq. (21). Some examples
(n = 3):

k = 0 : Γ = 4π

k = 1 : Γij =
4π

3
ηij

k = 2 : Γijk` =
4π

15
(ηij ηk` + ηik ηj` + ηi` ηjk) .

The corresponding linear systems, recall Eq. (15), are as follows:

ΓD =

∫
D(g) dg ,

Γij D
j =

∫
D(g) gi dg − ΓiD ,

Γijk`D
k` =

∫
D(g) gi gj dg − Γij D − ΓijkD

k .

It follows that the scalar constant D is just the average diffusivity
over the unit sphere:

D =

∫
D(g) dg∫
dg

. (23)

The constant vector Di vanishes identically, as it should. For the
rank-2 tensor coefficients we find the traceless matrix

Dij =
15
∫
D(g) gi gj dg − 5

∫
D(g) dg ηij

2
∫
dg

, (24)

and so forth. If, instead, we fit a homogeneous second order poly-
nomial to the data (by formally omitting the second term on the
r.h.s. of Eq. (15)), as proposed by Özarslan and Mareci, we obtain
the following rank-2 tensor coefficients:

DÖ.M.
ij =

15
∫
D(g) gi gj dg − 3

∫
D(g) dg ηij

2
∫
dg

, (25)

which is clearly different. However, Özarslan and Mareci’s homo-
geneous polynomial expansion should be compared to our inhomo-
geneous expansion. Indeed, if we compare the respective second
order expansions in this way we observe that DÖ.M.

2 (g) = D2(g).
The difference in coefficients, in this example, is explained by the
contribution already contained in the lowest order term of our poly-
nomial, which in Özarslan and Mareci’s scheme has to migrate to
the second order tensor.

In general we raise the conjecture that to any order N we have
equality.



Theorem 1 Let DN (g) denote the truncated expansion of Eq. (5)
including monomials of orders k ≤ N only, and letDÖ.M.

N (g) denote
the N -th order homogeneous polynomial expansion proposed by
Özarslan and Mareci, loc. cit., then

DÖ.M.
N (g) = DN (g) .

However, the interesting claim we wish to make is the following,
which shows exactly what we mean by the hierarchical ordering of
degrees of freedom in our inhomogeneous expansion:

Theorem 2 If ∆ denotes the Laplace-Beltrami operator on the unit
sphere, then for any N ∈ N ∪ {0,∞}

DN (g, t) ≡ et∆ DN (g) =

N∑
k=0

Di1...ik (t) gi1 . . . gik ,

with
Di1...ik (t) = e−k(k+1)tDi1...ik .

For brevity we set D(g, t) = D∞(g, t).

This is nontrivial, since the monomials gi1 . . . gin are themselves
not eigenfunctions of the Laplace-Beltrami operator. The construc-
tion of the coefficients in the linear combinations as they occur in
the inhomogeneous expansion, implicitly defined by Eq. (15), is ap-
parently crucial. For instance, the scaling of the second order term
in Theorem 2 is a direct consequence of the fact that the coefficient
matrix in Eq. (24) is traceless, as opposed to Eq. (25).

Proof of Theorems 1–2. Consider the following closed linear sub-
space of L2(Ω) for even N :

XN = span {gi1 . . . giN } =

N/2⊕
k=0

S2k ,

in which S2k=span {Y m2k |m = −2k,−2k+1, . . . 2k−1, 2k}.
Set φN (g) = D(g) − DN−2(g), with induction hypothesis
PS2kφN = 0 for all k = 0, . . . , N/2 − 1, in which PS2k denotes
orthogonal projection onto S2k. In other words, by hypothesis,

φN ∈
∞⊕

k=N/2

S2k .

Let ψN ∈ XN be such as to minimize E(ψ) = ‖φN − ψ‖L2(Ω)

for ψ ∈ XN . Obviously PSNφN ∈ XN , so that by definition of
ψN we obtain

‖φN − ψN‖L2(Ω) ≤ ‖φN − PSNφN‖L2(Ω) .

On the other hand, since φN − PSNφN ⊥ PSNφN − ψN , we also
have

‖φN − ψN‖2L2(Ω) = ‖φN − PSNφN + PSNφN − ψN‖
2
L2(Ω) =

‖φN − PSNφN‖
2
L2(Ω) + ‖PSNφN − ψN‖

2
L2(Ω)

≥ ‖φN − PSNφN‖
2
L2(Ω) .

We conclude that

‖φN − ψN‖L2(Ω) = ‖φN − PSNφN‖L2(Ω) ,

in other words, ψN = PSNφN , so that apparently ψN ∈ SN .
Note that Sk is precisely the degenerate eigenspace of the Laplace-
Beltrami operator, ∆, with corresponding eigenvalue −k(k + 1),
whence the eigenvalue of exp(t∆) equals exp(−k(k + 1)t). This
completes the proof. �

The significance of Theorem 2 is that it segregates degrees of free-
dom in the polynomial expansion in such a way that we may in-
terpret each homogeneous higher order term as an incremental re-
finement of detail relative to that of the lower order expansion. To
see this, note that DN (g, t) satisfies the heat equation on the unit
sphere, recall Eq. (3):

∂u

∂t
=

1
√
g
∂µ (gµν

√
g∂νu) = ∆u , (26)

in which the initial condition corresponds to the N -th order expan-
sion of the raw data, DN (g, 0) = DN (g). Recall that in the usual
polar coordinates in n = 3 dimensions we have for a scalar function
on the unit sphere:

∆u(θ, φ) =

(
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
u(θ, φ) .

(27)
The remarkable fact is thus that the linear combinations
Di1...ik gi1 . . . gik , unlike the monomials gi1 . . . gik separately, are
eigenfunctions of the heat operator exp(t∆), i.e. self-similar poly-
nomials on the sphere, which admit a reformulation in terms of
purely k-th order spherical harmonics, with eigenvalues e−k(k+1)t.
The heat operator can be seen as the canonical resolution degrading
semigroup operator [Koenderink 1984; Florack 1997]. The param-
eter t denotes the (square of) angular scale, or inverse resolution, at
which the raw data are resolved. Indeed, the classical rank-2 DTI
representation, defined via the Stejskal-Tanner formula [Özarslan
and Mareci 2003; Stejskal and Tanner 1965]:

S(g) = S0 exp (−bD(g)) , (28)

arises not merely as an approximation under the assumption that the
diffusion attenuation can be written as

D(g) ≈ DDTI(g) = Dij
DTI gi gj , (29)

but expresses the exact asymptotic behaviour ofD(g, t) as t→∞,
recall Eq. (2) and Theorem 2:

D(g, t) =
(
Dηij + e−6tDij

)
gi gj︸ ︷︷ ︸

DDTI(g, t) = Dij
DTI(t) gi gj

+O(e−12t) (t→∞) .

(30)
It shows that the DTI tensor is not self-similar, but has a bimodal
resolution dependence. The actual limit of truly vanishing resolu-
tion is of course given by a complete averaging over the sphere:

lim
t→∞

D(g, t) = lim
t→∞

DDTI(g, t) = D , (31)

recall Eq. (23). See Figs. 1–2 for an illustration of Theorem 2 for
N = 8 on a synthetic image with Rician noise.

3 Conclusion

We have proposed a tensorial representation of high angular reso-
lution diffusion images (HARDI), or derived functions defined on
the unit sphere, in terms of a family of inhomogeneous polynomials
on the sphere. The resulting polynomial representation, truncated
at some arbitrary order, or formally extended into an infinite series,
may be regarded as the canonical way of decomposing HARDI data
into “higher order diffusion tensors”, to the extent that the succes-
sive homogeneous terms capture residual information only, i.e. de-
grees of freedom that cannot be detailed by a lower order expansion.
In this sense they form the tensorial counterpart of the spherical har-
monic decomposition. A related consequence is that the inhomo-
geneous polynomial expansion neatly segregates the HARDI signal



into a hierarchy of homogeneous polynomials that are self-similar
under the act of graceful resolution degradation induced by heat op-
erator, exp(t∆), generated by the isotropic Laplace-Beltrami oper-
ator ∆ on the sphere, with a characteristic decay that depends on
order (for fixed t ∈ R+). The asymptotic case of almost vanish-
ing resolution (t → ∞) reproduces the diffusion tensor of clas-
sical diffusion tensor imaging (DTI), with one constant and one
resolution-dependent mode. The true asymptotic case leads to a
complete averaging over the sphere, as expected. The general N -th
order expansion provides control over the trade-off between reg-
ularity (choice of t) and complexity (choice of N ), i.e. descriptive
power. Finally, we have related our result to the homogeneous poly-
nomial expansion proposed by Özarslan and Mareci [Özarslan and
Mareci 2003], and argued that the expansions lead to identical re-
sults despite the differences in coefficients. We have stressed the
fact that this is possible by virtue of the redundancy inherent in the
use of an inhomogeneous polynomial representation.
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JIAN, B., VEMURI, B. C., ÖZARSLAN, E., CARNEY, P. R., AND
MARECI, T. H. 2007. A novel tensor distribution model for the
diffusion-weighted MR signal. NeuroImage 37, 164–176.

JOHNSTON, T. W. 1960. Cartesian tensor scalar product and spher-
ical harmonic expansions in Boltzmann’s equation. Physical Re-
view 120, 1103–1111.

KOENDERINK, J. J. 1984. The structure of images. Biological
Cybernetics 50, 363–370.

LE BIHAN, D., MANGIN, J.-F., POUPON, C., CLARK, C. A.,
PAPPATA, S., MOLKO, N., AND CHABRIAT, H. 2001. Diffusion
tensor imaging: Concepts and applications. Journal of Magnetic
Resonance Imaging 13, 534–546.

LENGLET, C., DERICHE, R., AND FAUGERAS, O. 2004. Inferring
white matter geometry from diffusion tensor MRI: Application
to connectivity mapping. In Proceedings of the Eighth Euro-
pean Conference on Computer Vision (Prague, Czech Republic,
May 2004), Springer-Verlag, Berlin, T. Pajdla and J. Matas, Eds.,
vol. 3021–3024 of Lecture Notes in Computer Science, 127–140.

MELONAKOS, J., PICHON, E., ANGENENT, S., AND TANNEN-
BAUM, A. 2008. Finsler active contours. IEEE Transactions on
Pattern Analysis and Machine Intelligence 30, 3, 412–423.
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Figure 1: Left: Synthetic noise-free profile induced by two crossing fibers at right angle. Right: Same, but with Rician noise.

Figure 2: Regularized profiles produced from the right image in Fig. 1 using Theorem 2 for N = 8. The regularization parameter t increases
exponentially from top left to bottom right over the range 0.007–1.0.


