
Efficient acceleration structures layout for rendering on 32- and 64-bit
many-core architectures

Maxim Shevtsov, Alexei Soupikov and Alexander Reshetov
Intel Corporation

{maxim.y.shevtsov, alexei.soupikov,alexander.reshetov}@intel.com

Figure 1. 64-bit extension overhead for large models. Models are ray-traced with shadows at 1024x1024 on
a 2-way 3GHz Intel ®Core™2 Duo machine (4 threads for construction/render ing) with 8 GB RAM

ABSTRACT
Any rendering solution needs fast acceleration structures to

reduce the complexity of solving search problems. We address the
following problems of constructing acceleration structures for the
large number of primitives: compact memory layout, efficient
traversal capability, memory address space independence, parallel
construction capability and 32/64 bit efficiency.
This proposed kd-tree layout solution solves the above problems
completely with highest possible efficiency. It is easily applied to
other hierarchical acceleration structure types as well.

KEYWORDS: Rendering, acceleration structure, kd-tree, ray-
tracing, proximity search.

1. Introduction
Rendering algorithms use acceleration structures to reduce the
complexity of solving search problems [1]. Making their usage
practical for high-speed parallel requires addressing of the
following problems:

• Efficient traversal capability – compact representation
should not slow down the traversal step

• Memory address space independence –an acceleration
structure could be saved/loaded/transferred easily

• Parallel construction capability - the data format of
acceleration structure should support creation in
multiple parallel threads

• 32 and 64 bit efficiency – the acceleration structure size
should not explode on 64 bit architectures. The 32 bit
mode acceleration structure mode should have exactly
the same binary representation on 64 bit architectures.

In this paper we propose specific memory layout solving the
above problems. We use kd-tree as example, but the solution we
proposed is also applicable to a wide range of partitioning
hierarchies.

2. Previous work
The kd-tree is basically a binary tree in which each node

corresponds to a spatial cell. Inner node of kd-tree represents
splitting plane and refers to the two child nodes. Each leaf node,
in contrast, stores primitives counter and refers to a corresponding
list of primitives.

A compact kd-tree layout has been proposed in [3]. It uses only
eight bytes per node. Storing offsets instead of pointers makes the
data structure independent of the base address changes:

3. Solution

Efficient leaf/node test
During traversal the leaf/internal node test is executed at each
traversal step and the branch depends on its results, so its
performance is critical. Having 0 as a leaf indicator allows
reducing the test to exactly 1 instruction before branch:

and Node, 0x03
jz ProcessLeaf

/* basic 8-byte layout for a kd-tree node */
struct KDTreeNode {

union{
//position of axis-aligned split plane
float split_position;
// or number of leaf primitives
unsigned int items;

}
unsigned int dim_offset_flag;

//’dim_offset_flag’ bits encode multiple data:
// bits[0..1]: encode the split plane dimension
// bits[2..30]: encode an unsigned address offset
// bit[31]: encodes whether node is an inner node or
leaf
};
// macros for extracting node information
#define DIMENSION(n) (n->dim_offset_flag & 0x3)
#define ISLEAF(n) (n->dim_offset_flag & (UINT)(1<<31))
#define OFFSET(n) (n->dim_offset_flag & 0x7FFFFFFC)

a) Asian Dragon model, 7.2M triangles,
64-bit extension consumes only 2Mb of
1.3Gb acceleration structure,
extension processing time is <0.5% of
rendering time

b) Thai Statue model, 10M triangles,
64-bit extension consumes only 2.1Mb of
1.4Gb acceleration structure,
extension processing time is <0.5% of
rendering time

d) Thai Statue model replicated 7 times
(70M triangles total)
64-bit extension consumes only 4Mb of
7Gb acceleration structure, extension
processing time is <0.5% of rendering time

32 and 64 bit efficiency
To handle an unpredictability of resulting tree size a

construction algorithm usually allocates memory by continuous
regions. The number of links between those sub-trees is relatively
small (<<1% of total number of total number of kd-tree nodes).

The typical region size is way smaller than 4GBs. So the nodes
can use 32-bit offsets to reference children within the same
region. The only nodes that need 64-bit offsets are the nodes
having children located in another memory region. Since the
number of such nodes is small they are encoded as extensions of
32-bit nodes. We use negative values of the primitive counter to
indicate that the leaf is special, and it is a 64-bit extended node.

Multiple threads construction
 When the tree is constructed in multiple threads each thread

builds some sub-tree [2]. Thus different threads may create a
parent node and its children nodes. So when a parent is created the
offset to children nodes may be unknown. That fact prevents from
allocating 64-bit offset data next to a node. The 64-bit extended
node data (actual 64-bit offset, actual leaf/axis and actual
counter/split fields) is stored in a special per-thread table.
64-bit extension node is a special type of leaf with the following
values of its fields:

a) -(entry+1), where entry is a table entry number, is
stored in items field;

a) (tbl)<<2 where tbl is a table number, is stored in
dim_offset_flag field; note that 2 least-significant bits
are zeroed, indicating a leaf.

Each construction thread creates its own 64-bit node table to

avoid contention. If a table becomes full the correspondent thread
just increases its size by re-allocation and data copy. Since the

table is small it does not affect construction performance. The
tests on models with up to 70M polygons demonstrated that 256-
entry per-thread tables were never full. Storage or transmission of
the tree located in multiple memory regions requires only
adjustment of cross-region offsets in the table.

Modifications of traversal algorithm
The tree constructed by 32-bit code can be rendered by 64-bit

code without any modifications. To avoid testing 64-bit extension
indicator at each traversal step the extended nodes are stored as
leaves. Since the probability of traversing leaf is very small
comparing to probability of traversing internal node the additional
64-bit extension test is performed at a very small fraction of
traversal steps.

4. Memory/Performance considerations
Our experiments with variety of models proved that memory

overhead from using proposed 64-bit extensions is negligible
(refer to Figure 1 for examples models).

Also managing per-thread 64-bit node tables doesn’t affect
construction performance. Our measurements show that
construction slowdown is <1% and thus is negligible too. We also
performed tests for 1-128 construction threads with wide range of
models (1-100M polygons). They demonstrated that 128-entry
per-thread tables are far most than sufficient to connect portions
of a tree constructed with different threads.

The performance of rendering using new layout supporting 64-
bit extensions is the same as of rendering the efficient layout
supporting 32-bits only (see Figure 1 for details). Even on
complex models and high memory regions granularity the
slowdown using the proposed layout was less than 0.5%
comparing with 32-bit only offsets and one continuous memory
region for the whole tree.

REFERENCES
[1] V. Havran: “Heuristic Ray Shooting Algorithms”. PhD thesis, Czech

Technical University in Prague, 2001.
[2] M. Shevtsov, A. Soupikov, and A. Kapustin.: “Highly parallel fast

kd-tree construction for interactive ray tracing of dynamic scenes”.
In Proceedings of Eurographics 2007.

[3] I. Wald, “Realtime ray tracing and interactive global illumination”,
PhD thesis, Saarland University, 2004.

/* 8-byte layout for a kd-tree node */
struct KDTreeNode {

union{
float split_position;
unsigned int items;

}
int dim_offset_flag;

// ’dim_offset_flag’ bits encode data in a new way
// bits[0..1] : indicate either
// • a leaf(if set to 0)
 // if ‘items’ field is >=0 it is true leaf

// otherwise it is 64-bit extension
// • an inner node with split plane dimension
// (if set to 1,2,3 for x,y,z axis corresp.)
// bits[2..31] : encode a signed address offset
};

// relocation table's entries
struct TableEntry{
 //actual leaf/node but with offset==0
 KDTreeNode node;
 //true offset
 __int64 offset;
};
#define ISLEAF(n) (!(n.dim_offset_flag&0x3))
#define DIMENSION(n) ((n.dim_offset_flag&0x3)-1)
#define IS_64BIT_EXT(n) (n.items<0)
#define HASITEMS(n) (n.items)

#define MAKELEAF(n,its,ofs) n.items = its; \

n. dim_offset_flag = ofs;
#define ENCODE64BIT_EXT(n,table_id,entry_id) \

MAKELEAF(n,-(entry_id+1),table_id<<2)

#define DECODE64BIT_EXT(node, newadr) \
 int tab_id = (node.dim_offset_flag)>>2; \
 int entry_id = -node.items-1; \
 TableEntry e = m_tables[tab_id][entry_id]; \
 newadr = &node + e.offset; \
 node = e.node;

register KDTreeNode node = m_root;
// ADRINT is int or __int64 (32/64-bit architectures)
ADRINT newadr = &node;
traverse_loop:
while (!ISLEAF(node)){
 //get dimension, traversal order, etc
 const ADRINT adr0 = newadr+…;//front child
 const ADRINT adr1 = newadr+…;//back child
 //traverse of either back/front child or both
 //…
}
//processing leaves
const int nitems = HASITEMS(node);
if(nitems>0){
 //...
}
#ifndef _M_X64
else if(IS_64BIT_EXT(node)){
//64-bit extensions processing:
//newadr is patched using relocation table
 DECODE64BIT_EXT(node, newadr);
 goto traverse_loop;
 }
#endif// _M_X64
//popping from stack etc

	Efficient acceleration structures layout for rendering on 32- and 64-bit many-core architectures
	Abstract
	Introduction
	Previous work
	Solution
	Efficient leaf/node test
	32 and 64 bit efficiency
	Multiple threads construction
	Modifications of traversal algorithm
	Memory/Performance considerations
	References

