
Surface Reconstruction: An Improved Marching Triangle Algorithm
for Scalar and Vector Implicit Field Representations

Marc Fournier
Quebec University in Montreal

CP 8888, Succ. Downtown, Montreal, Canada H3C 3P8
fournier.marc@uqam.ca

Abstract
In this paper we propose a new polygonization method based on
the classic Marching Triangle algorithm. It is an improved and
efficient version of the basic algorithm which produces a
complete mesh without any cracks. Our method is useful in the
surface reconstruction process of digitized objects. It works over
the discrete distance transform of the object to produce the
resulting triangle mesh. The new algorithm is also adapted to a
recently introduced vector field distance transform model which
is more accurate than the classic scalar field discrete distance
transform of meshes. Our polygonization method is simplified
and it produces better results compared to Marching Triangle
basic algorithm while working on the vector field distance
transform model. We use relevant error metric tools to compare
results and show our new method is more accurate than Marching
Cube which is the most widely used triangulation algorithm in the
surface reconstruction process of digitized objects.
Keywords: Marching Triangle, Discrete distance transform,
Polygonization algorithm, Surface reconstruction, Digitized
objects, Triangle mesh surface.

1. INTRODUCTION

In the past decade a lot of improvements have been made in the
field of 3D scanners to acquire and to digitize real world objects.
The advancement in computer technologies have made possible
the design of 3D scanners to respond to the increasing needs in
many fields such as digitizing precious cultural heritage [1]. The
most common output data structure produced by 3D scanners is
range images. From these raw data, many operations are needed
in order to produce the final mesh which represents the real object
geometry. All these operations can be achieved in the scalar field
distance transform (SFDT) domain which is often used because it
produces good results for each step of the reconstruction
procedure.
To perform surface reconstruction in the SFDT domain, one needs
to convert the explicit range images, or other initial triangle
meshes dataset, by computing their SFDT discrete implicit field
which is defined over a regular 3D grid created inside a mesh
bounding box. The cubic grid cells are called voxels and for each
voxel, the closest point on the mesh surface is found and the
shortest distance to the mesh is saved in the voxel. For a given
surface S⊂ℜ3 this volume representation consist of a scalar value
function ƒ:ℜ3→ℜ such as the zero-set ƒ(x,y,z)=0 defines the
surface and in that case [x,y,z]∈S. To obtain a unique volumetric
description for a given surface, this distance field is also signed
according to surface normal vectors.
The surface reconstruction process begins with a mesh
registration procedure [2] which is performed to express all range

images in the same coordinates system. The first operation in the
SFDT domain is mesh fusion [3] to integrate all initial range
images into a unique representation, followed by mesh repair [4]
to fill holes in the model, and then mesh smoothing [5] to remove
acquisition noise introduced by the scanner and finally mesh
simplification [6] to produce a more compact model without loss
of details. Since the SFDT is an implicit representation, at the end
of the reconstruction process a polygonization algorithm such as
Marching Cube [7] or Marching Triangle [8] is needed to produce
the final explicit mesh which describes the digitized object
surface geometry.
In this paper we introduce a new polygonization method to
triangulate the resulting mesh of the surface reconstruction
process in the SFDT domain. We propose a set of improvements
based on the Marching Triangle algorithm to obtain an efficient
method which overcomes some crack problems in the basic
version to produce a higher quality resulting mesh. We also adapt
our method to the vector field distance transform (VFDT) implicit
representation which allows a simplification and a more accurate
result using the Marching Triangle algorithm. The remaining parts
of the paper are organized as follows: Section 2 overviews related
work. Section 3 presents our new improved triangulation
algorithm. Section 4 describes the Marching Triangle adaptation
to the VFDT representation. And in Section 5, before concluding,
we show and compare our triangulation method results with
previously introduced algorithms.

2. RELATED WORK

The most widely used algorithm to triangulate a SFDT is
Marching Cube [7]. It is a volume-based approach which is very
suitable to triangulate discrete implicit fields such as SFDT in the
surface reconstruction process of digitized objects. The original
Marching Cube method has some ambiguities and many other
algorithms, based on the original one, have been proposed to
improve the resulting mesh quality. For example the original
algorithm has 14 cube triangulation configurations which lead to
face ambiguities resolved in [9], and [10] in which the 14 basic
configurations are expended in 32 different cases. A remaining
cube ambiguity was then solved in [11] to guaranty the resulting
mesh topology.
Methods derived from the basic Marching Cube algorithm have
been proposed to also resolve the ambiguities. Cubical Marching
Squares [12] which opens the cubes into six squares and
Marching Tetrahedron [13] which divides the cubes into
tetrahedrons are two examples of cube configurations which
resolve original ambiguities. Other algorithms have been
introduced to improve the resulting mesh quality. The Extended
Marching Cube [14] provides a sensitivity feature to better
recover sharp edges and Dual Contouring [15] focus on
preserving the resulting mesh topology. More recently, the VFDT

model [16] which is a vector extension of the SFDT has been
proposed to improve the implicit field accuracy and the Marching
Cube algorithm has been adapted to this new representation in
order to produce a higher quality resulting mesh.
Another well known algorithm to triangulate a SFDT is Marching
Triangle [8]. It is a surface-based approach built on Delaunay
triangulation definition. Starting from a seed triangle, a region-
growing process enables the creation of triangles following the
SFDT isosurface. This surface tracking process has been designed
to triangulate discrete SFDT of digitized objects and it has also
been applied to continuous implicit surfaces describing virtual
objects with a set of equations such as parametric ones. The basic
Marching Triangle algorithm leaves some part of the model un-
triangulated creating cracks in the resulting mesh as shown in
Figure 1.

Figure 1: Basic Marching Triangle algorithm
result on the Half-Sphere model

In Figure 1a) a Half-Sphere model lying on a plane is used and its
SFDT is computed. Figure 1b) shows the basic Marching Triangle
algorithm result which contains cracks in the triangulated
resulting mesh. Theses cracks occur because of different reasons
which will be detailed in next section.
Beside the classic Marching Triangle, other methods based on a
region-growing and surface tracking process have been proposed
such as Gopi algorithm [17] which works over a set of
unorganized points and Hartmann algorithm [18] which works on
continuous implicit surfaces. In this paper we focus on improving
the steps of the original Marching Triangle to directly triangulate
discrete SFDT of digitized objects. The methods designed to work
over point clouds are also suitable for discrete SFDT as described
in the Ball-Pivoting method [19] in which a first pass generate
points from the SFDT before applying the triangulation on the set
of generated points. This Ball-Pivoting method is similar to
Marching Triangle, it also uses the Delaunay sphere test but the
constraint is applied on the sphere radius instead of the sphere
center as for the original Marching Triangle algorithm. In this
paper we also modify the Delaunay sphere for the triangulating
test which contributes to reduce the resulting mesh cracks.
Previous methods [20, 21, 22] applied to continuous implicit
surfaces have been introduced to overcome the basic Marching
Triangle algorithm cracks problem. These method triangulations
are adaptive to local implicit curvature to obtain variable size
triangles. In this paper we also modify the basic algorithm with a
variable projection distance to obtain a better adaptive result over

discrete SFDT. Some of these methods [20, 21] operate in two
passes. They first triangulate a resulting mesh according to the
basic algorithm which contains cracks and then they introduce a
crack filling algorithm to complete the resulting mesh. The other
method [22] introduces a different region-growing algorithm
compared to the original Marching Triangle. It is based on a
hexagonal triangulation expansion pattern which is able to resolve
cracks and to produce a complete resulting mesh in a single pass.
In this paper we use the original Marching Triangle algorithm
procedure and we propose improvements to several steps of the
method. Our new triangulation works over a discrete SFDT in a
single pass, as for the original algorithm, and produce a complete
mesh without cracks. We do not need a second specific post-
processing crack filling pass but instead we introduce an iterative
process on our single pass to obtain a complete mesh.
Other algorithms have been proposed to improve the basic
Marching Triangle triangulation over discrete implicit surfaces
and to achieve specific goals. A topology preserving method [23]
introduces a normal consistency constraint which guaranties the
resulting mesh topology. An edge constrained method [24] detects
discontinuities in the implicit surface and constrains triangle
edges to match and better preserve these sharp features in the
resulting mesh. In this paper we have a more global approach to
produce a higher quality mesh by improving the entire original
Marching Triangle algorithm. We also adapt our new
triangulation method to the VFDT model [16] which is more
accurate than the SFDT. Therefore we obtain a more globally
accurate resulting mesh including a better sharp features
preserving compared to the original Marching Triangle algorithm.

3. MARCHING TRIANGLE IMPROVED
ALGORITHM

In this section we describe our new Marching Triangle improved
algorithm. We refer to the original algorithm [8] procedure
numbering to identify the steps to improve. In Subsection 3.1 we
improve steps 1 and 2 of the original algorithm in finding a new
vertex. In Subsection 3.2 we improve step 4 in testing a new
triangle. In Subsection 3.3 we improve step 6 in considering new
triangles. Finally in Subsection 3.4 we introduce an edge
processing sequence to improve the overall algorithm.

3.1 Variable Projection Distance and Vertex
Interpolation

The first and second steps of Marching Triangle algorithm are
illustrated in Figure 2. The first step is the estimation of a new
vertex position P’ with a projection perpendicular to the mid-point
P of the boundary edge C in the plane of the model boundary
triangle ABC by a constant distance PP’. The second step is the
evaluation of the nearest point to P’ which is on the implicit
surface. That new potential vertex is V2 in Figure 2 example.
The constant distance projection contributes to produce cracks in
the mesh. In high curvature regions the projection can be further
away from the isosurface and the new vertex estimation may
cause either a test failure resulting in a crack beginning or a bad
approximation of the surface local geometry. To correct this
problem we propose a variable projection distance which is equal
to √3/2 times the length of the boundary edge. This projection
distance corresponds to the height of the equilateral triangle
composed of the boundary edge. This improvement contributes to
obtain more equilateral triangles which are less deformed and
which sizes adapt gradually to local geometry curvature.

 a) Original model b) Marching Triangle result

From the projection point P’ on Figure 2 example, we suppose the
nearest voxel which is considered on the isosurface is V2. While
working with a discrete SFDT a threshold distance comparison is
needed to find this nearest voxel. To consider that a voxel is on
the isosurface it must contain a distance smaller than half the grid
resolution. This approximation introduces a significant error in
the vertex position according to the underlying implicit surface
and this error can also contributes to a crack in the mesh if the
new triangle test fails. To correct this problem we propose a linear
vertex position interpolation between the nearest voxel found and
its closest neighbor with opposite distance sign. The interpolation
finds the new vertex position which corresponds to a distance
equal to zero between the two distances of opposite sign. This
interpolation uses the implicit surface definition to obtain a more
accurate approximation of the isosurface.

Figure 2: Marching Triangle projection and
nearest vertex on the isosurface

3.2 Modified Delaunay Sphere Test
Step 4 of the original algorithm suggests testing the new potential
triangle according to the Delaunay sphere which is circumscribed
to the new triangle as shown in Figure 3a) in which the current
boundary edge Eb forms a new triangle with the new estimated
vertex A. In Figure 3a) example the test would fail because there
are parts of the six numbered triangles inside the sphere.
According to the original algorithm, further tests would be made
with edge Eb and vertices B, C and D to consider these three new
triangles. These tests would also fail because the Delaunay sphere
would still contain parts of neighbor triangles. This test limits the
original algorithm performances and contributes to produce
cracks in the mesh. The Delaunay test sphere was designed to
triangulate a set of unorganized points which is not exactly the
same situation in the case of a region-growing algorithm over a
SFDT.
We propose the modified sphere shown in Figure 3b) for new
triangles testing. The modified sphere passes through the mid-
point M of the current boundary edge and the new estimated
vertex C. Its diameter is equal to the distance between these two
points and its center is the mid-point between M and C. The
modified sphere is smaller than the original one and it allows
obtaining more successful tests which improve the algorithm and
reduce the cracks in the resulting mesh. Since some parts of the
new triangle are outside the sphere, we also need to test if there is
no intersection between the new triangle and other triangles of the
mesh. We test all triangles which have parts inside the original

Delaunay sphere with the new triangle according to Moller
intersection test [25] which is fast and efficient.

Figure 3: Interfering triangles with the original
Delaunay sphere and modified test sphere

3.3 New Triangles to Consider
Step 6 of the original algorithm suggests considering two new
potential triangles illustrated in Figure 3a) if the first new triangle
test fails at step 4. These new triangles are composed of the
current boundary edge Eb and vertices B or D which are the
previous and the next vertices along the boundary from the
current boundary edge Eb. If the sphere test fails for these two
new triangles, other new triangles should be tested to improve the
algorithm. The original algorithm was upgraded in [26] with a
seventh step which suggests to test another new triangle
composed of the current boundary edge Eb and vertex C in
reference of Figure 3a). Vertex C is the nearest boundary vertex
of overlapping triangles number 5 and 6 in the sphere test. This
new potential triangle contributes to reduce the cracks in the mesh
compared to the original algorithm but if the test fails with this
triangle other triangles should be tested to better improve the
algorithm.
We propose to test not only the nearest but all boundary vertices
of overlapping triangles if they exist. In some particular cases as
the one shown in Figure 4 the sphere test would fail with the
nearest boundary vertex leaving a part of the mesh un-triangulated
and a new triangle could be added to the mesh if another
boundary vertex of the overlapping triangle was considered. In
Figure 4 Eb is the current boundary edge and V1 is the triangle
nearest vertex from Eb. The new potential triangle composed of Eb
and V1 would fail the test but another triangle composed of Eb and
V2 would be a better candidate even if the distance between Eb
and V2 is greater than the distance between Eb and V1.

Figure 4: New triangles to consider in the
triangulation process

A

B

C

D

E

P

P’
V1

V2

b) Modified test sphere

A B

C

M

a) Interfering triangles with the original sphere

1

2 3
4

5
6

B
A

C

Eb
D

d1 d2

d3 d4 d1 + d2 < d3 + d4
Eb

V1

V2

3.4 Edge Processing Sequence and Iterative
Process

The original Marching Triangle algorithm does not specify any
boundary edges processing sequence. It is only defined as a single
pass into the edge list to process all boundary edges with the
procedure steps including the estimation of a new potential
triangle and its sphere test to determine if it will be added or not
to the mesh. According to the implemented data structure to
triangulate the SFDT and the method to add new edges in the
edge list, the edge processing sequence can be different from one
implementation to another. The resulting mesh from the Marching
Triangle depends on the edge processing sequence and it can be
different if the sequence is changed as shown in Figure 5.

Figure 5: Modified mesh according to the edge
processing sequence

In Figure 5 example we assume the current mesh is composed of
the six bottom triangles, therefore edges A and B are boundary
edges. In Figure 5a) edge A is considered first and triangle 1 is
added then edge B is processed and triangle 2 is added next. In
Figure 5b) edge B is considered first and triangle 1 is added first
then edge A is tested and triangle 2 is also added. In Figure 5
simple example both results are different just because of an edge
permutation. The results would have been more different if for
example after adding triangle 1 in Figure 5a) the new boundary
edges of that triangle were processed before edge B and if that
same processing sequence was applied in Figure 5b) to the new
boundary edges of triangle 1.
We tested different edge sequences and combinations on the
original algorithm and we selected the one which optimizes the
result in terms of minimizing the cracks in the mesh. We propose
the following procedure to improve the resulting mesh quality.
Starting from a boundary edge, an arbitrary direction is selected
and the next edge to consider is the neighbor boundary edge
always in that same direction around the contour of the current
mesh. Newly added boundary edges are not considered
immediately, they will only be considered on the next turn
around. This procedure is illustrated in Figure 6 with Ec
corresponding to the current boundary edge to be processed and
EN the next boundary edge to consider according to the chosen
arrow direction D.
In Figure 6a) New triangle and Figure 6b) Previous triangle cases
the next boundary edge to consider is straight forward. In Figure
6c) Next triangle case if the test is successful and the new triangle
is added then the next boundary edge to consider jumps over edge
A which is lo longer a boundary edge. The new added boundary
edge B will be considered on the next turn around only. In Figure
6d) Overlapping triangle case a bridge is created in the mesh if
the new triangle is added. In that case the next edge to consider is
either EN1 or EN2 depending on the chosen direction D1 or D2
respectively. In that special case the inside contour in the region P
is triangulated in priority immediately after the new triangle is

added to the mesh and before pursuing with the outside contour.
Starting from the new inside boundary edge A an arbitrary
direction is selected and the previously described procedure is
applied to the inside contour until no more triangle can be added.

Figure 6: Next edge to consider according to the
edge processing sequence

The original Marching Triangle is defined as a single pass into the
edge list. Our proposed procedure is iterative and the boundary
edges are tested more than once, until a complete loop is made
around the mesh contour without adding any triangle. A boundary
edge can be tested without adding any triangle to it at the first
pass and at the second pass the test could be successful depending
on the local mesh neighbourhood configuration which can be
different from one pass to another. Our iterative procedure
continues as long as new triangles are added. Compared to the
original algorithm our procedure contributes to add more triangles
and to reduce the cracks in the final resulting mesh.

4. VECTOR FIELD AND ERROR METRIC
ADAPTATION

We also adapt our improved Marching Triangle algorithm as
defined in Section 3 to the VFDT [16]. The discrete vector field
distance transform is an extension of the SFDT. Instead of saving
in each voxel only the scalar shortest distance to the surface as in
the SFDT, in the VFDT a vector is saved in each voxel. This
vector gives the shortest distance to the surface and in addition it
also gives the orientation of the closest point on the surface. This
new representation is more accurate than the classic SFDT and it
is used in the surface reconstruction process of digitized objects.
Marching Cube algorithm was previously adapted to the VFDT
and this adaptation produces better triangulation results than other
Marching Cube versions over the SFDT. Our Marching Triangle
adaptation to the VFDT is simple and it has two advantages. First
it saves computation time and second it also produces more
accurate results compared to the scalar version over the SFDT.
Figure 7 illustrates our Marching Triangle adaptation to the
VFDT.
Figure 7 shows steps 1 and 2 of the Marching Triangle algorithm
with a) the SFDT and b) the VFDT. Step 1 is the same for both
representations; a projection is made from the boundary edge

a) First possible mesh b) Second possible mesh

1 2
A B

2 1
A B

a) New triangle

c) Next triangle

Ec EN

D

Ec
EN

D

A
B

b) Previous triangle

d) Overlapping triangle

Ec EN

D

Ec

EN1

EN2
D1

D2

P A

mid-point to estimate a new vertex position. Step 2 is different
and a search is needed with the SFDT to find the nearest voxel
which is considered on the isosurface. In Figure 7a) example the
search stopped on voxel D which is the nearest voxel from the
projection point to contain a distance smaller than half the grid
resolution. In the original Marching Triangle algorithm, voxel D
coordinates are used as the new vertex which forms the new
potential triangle to be tested. This is a coarse approximation of
the isosurface. In Section 3.1 of this paper we propose a linear
interpolation to obtain a better estimation of the isosurface. This is
an improvement from the original algorithm but the result still is
an approximation. In Figure 7b) there is no need for a search and
interpolation with the VFDT. From the projection point which is
in voxel A, the vector saved in that voxel is used and a simple
redirection gives immediately the coordinates of the new vertex.
According to the VFDT definition, this new vertex is the nearest
point from the projection point which is exactly on the isosurface.
With the VFDT, step 2 of the Marching Triangle is simplified and
upgraded to a better result. The algorithm other steps are exactly
the same as for the SFDT.

Figure 7: Comparison of the new vertex estimation
with the SFDT and the VFDT

In order to evaluate and compare our improved algorithm on the
SFDT, we use the vertex to surface error metric defined in [5] to
quantify the relative quality of the triangulation algorithms tested.
This error metric is based on the minimal Hausdorff distance
between two meshes. We start from a reference mesh and
compute its SFDT. Then we triangulate the SFDT with different
algorithms. The resulting meshes are compared to the reference
mesh using this vertex to surface error metric which gives a scalar
value of the average distance or error between two meshes. The
smallest distance from each vertex of the triangulated result to the
surface of the reference mesh is evaluated and a weighted average
of these distances gives the associated error of the triangulation
result compared to the reference mesh. Then the triangulation
result errors of different algorithms from the same reference mesh
can be compared together to evaluate the relative quality of each
result.
The vertex to surface error metric is not suitable to evaluate and
compare our adapted algorithm to the VFDT because the resulting
triangulation vertices are exactly on the reference mesh surface.
Using the vertex to surface error metric with our adaptation would
produce an error equal to zero even if our result and the reference
mesh are different. In order to evaluate and compare our VFDT
adaptation, we define a triangle to surface error metric which is
based on the previous vertex to surface error metric. The
difference is instead of computing the distance from the resulting
mesh vertices to the reference mesh surface, we compute the

distance from each triangle centroid of the resulting mesh to the
reference mesh surface. Our triangle to surface error metric is
defined by:

∑
=

=
N

i
iit MctdisttA

MA 1

2),'()'(
)'(

1ε (1)

M is the initial reference mesh and M' is the triangulated result to
evaluate. A(M') is the total area of M'. A(t'i) is the area of each
triangle t'i of the resulting mesh. ct'i are the resulting mesh
triangles centroid. dist(ct'i , M) is the minimal distance between
the centroid ct'i and the initial reference mesh M. This triangle to
surface error metric is used to compare all results when our
Marching Triangle VFDT adaptation is evaluated.

5. RESULTS

In this section we evaluate our improved algorithm on both SFDT
and VFDT representations and we compare our results with
Marching Cube triangulation using the vertex to surface and the
triangle to surface error metrics with the procedure described in
the previous section. Regarding the Marching Cube results, we
implemented the Cubical Marching Squares [12] and the
Extended Marching Cube [14] algorithms which are two recent
and efficient versions and we kept the one showing the best result
for each model tested.
First we used the Venus model reference mesh shown in Figure
8a) to compute its SFDT with an appropriate grid resolution
according to the model level of details. Then we triangulated the
SFDT with Marching Cube and our improved Marching Triangle
algorithms and these results are shown in Figure 8. We compared
these two results to the reference mesh using the vertex to surface
error metric and Table 1 shows these error values along with the
number of triangles and the triangulation computing times for
both results. The timing measures were made using a Pentium 4
CPU computer with a 3.03GHz clock.
In Figure 8 both results are of good quality but we see that the
triangles of Marching Cube result are more dependent on the
voxels size. Figure 8b) result also shows small degenerated
triangles forming elevation lines depending on the grid resolution
which is the classic signature of Marching Cube algorithm.
Marching Triangle result in Figure 8c) shows a more
homogeneous triangulation and sharp edges such as the one at the
bottom are better preserved compared to Marching Cube result.
Table 1 also shows that Marching Triangle result is of better
quality according to the error metric. Our result also contains
fewer triangles, thus optimizing the model quality, storage and
memory space with almost one third less triangles than Marching
Cube result. The drawback of our algorithm is the computation
time which is almost the double compared to Marching Cube. The
triangulation time is still reasonable for this model but it could
make a difference for example in real time applications on large
models.

a) SFDT search

A B

C D

Projection
Boundary edge

New vertex
b) VFDT redirection

A

a

Projection
Boundary edge

New vertex

Figure 8: Triangulation results on the Venus model

Table 1: Triangulation parameters for the Venus model

We used a Genus3 virtual model to compare our algorithm
adaptation to the VFDT and results are shown in Figure 9. For
this evaluation a coarse grid resolution was used to highlight the

advantage of the vector field adaptation. Starting with the initial
model in Figure 9a) we computed both SFDT and VFDT of the
model at same resolution. Then we triangulated both implicit
representations with our Marching Triangle improved algorithm.
Results in Figure 9b) and 9c) were compared to the initial model
using our triangle to surface error metric definition and Table 2
shows the results for this model.
In Figure 9 we see that our VFDT adaptation is of better quality
compared to the algorithm applied to the SFDT. Using the exact
isosurface point at step 2 in the VFDT adaptation produces a more
accurate result than the approximation of the isosurface with the
SFDT. Table 2 error metric values show that our adaptation takes
advantage of the VFDT improved representation to obtain a better
result. The timings in Table 2 show that the simplification of step
2 in the algorithm adaptation to the VFDT is faster than with the
SFDT but the difference is not significant compared to the overall
algorithm timing. The resulting meshes numbers of triangles are
very similar with both representations; our VFDT adaptation
produced a few more triangles compared to the SFDT version.

Figure 9: Triangulation results on the Genus3 model

Parameters Marching Cube Marching Triangle Difference

Nb Triangle 7 465 5 152 31.0%

Error 7.58x10-3 6.88x10-3 9.23%
Time (ms) 26.7 48.5 81.6%

a) Reference mesh

 b) Marching Cube c) Marching Triangle

a) Reference mesh

b) SFDT triangulation

c) VFDT triangulation

Table 2: Triangulation parameters for the Genus3 model

The Horse model shown in Figure 10 was used to compare
previously introduced Marching Cube adaptation to the VFDT
and our Marching Triangle adaptation to the VFDT. The voxel
grid size shown in Figure 10b) was used to compute the VFDT of
the initial mesh in Figure 10a). Figure 10c) and 10e) show both
triangulation results over the VFDT.

Figure 10: Triangulation results on the Horse model

The triangle to surface error metric was used to compare Figure
10 triangulations to the initial mesh and results are listed in Table
3 along with the other relevant parameters for this model. The
local triangle to surface error metric computed at each triangle
centroid has been converted into an error colormap in which red
corresponds to the greatest and blue to the lowest error. These two
colormaps are shown in Figure 10d) and 10f) for both
triangulations.
Figure 10c) shows that Marching Cube adaptation to the VFDT is
of better quality than the algorithm applied to the SFDT. The
result contains no more small degenerated triangle. But the
triangle sizes are still very dependent on the grid resolution and
Marching Cube result still contains significantly more triangles
compared to our Marching Triangle adaptation. Marching Cube
adaptation to the VFDT provides a better approximation than the
SFDT version but vertices positions are not exactly on the
isosurface, they still are approximations. Therefore our Marching
Triangle adaptation which takes fully advantage of the VFDT
representation with exact vertices positions on the isosurface
produces a more accurate result according to the error metric in
Table 3. Visually in Figure 10 we also see that Marching Triangle
colormap contains less red color errors compared to Marching
Cube colormap. Even if our algorithm processing time is a bit
faster over the VFDT compared to the SFDT, it is still much
slower than Marching Cube adaptation to the VFDT.

Table 3: Triangulation parameters for the Horse model

6. CONCLUSION AND FUTURE WORK

In this paper we designed a new Marching Triangle algorithm to
improve the triangulation result of such method over the SFDT of
digitized objects in their surface reconstruction process. Our
contribution focused on improving several steps of the original
algorithm to overcome the crack forming problem. We proposed a
variable projection distance and a vertex position interpolation to
provide a better isosurface approximation. We introduced a
modified sphere for testing potential triangles geometry
consistency before adding them to the resulting mesh. We also
proposed testing new potential triangles which can lead to more
complete results in particular cases. We structured an edge
processing sequence which is more efficient during the
triangulation process. Our new algorithm was simplified and
adapted to the VFDT to provide more accurate results based on
this improved representation. We compared our algorithm results
to Marching Cube triangulation and demonstrated its relevancy
based on error metric measurements. In that comparison
procedure we also designed a new error metric which is more
suitable for our algorithm adaptation to the VFDT.
Future work will include optimizing the processing time of every
step of our new algorithm since it is a drawback compared to
Marching Cube performances. We will mainly focus on the
triangle geometry consistency testing step since it is the most time

Parameters Marching Cube Marching Triangle Difference

Nb Triangle 57 251 46 716 18.4%
Error 3.40x10-3 3.19x10-3 6.18%

Time (ms) 245.4 429.7 75.1%

Parameters SFDT Imp. Rep. VFDT Imp. Rep. Difference

Nb Triangle 3 481 3 615 3.71%

Error 6.14x10-2 5.63x10-2 8.31%
Time (ms) 33.6 32.7 2,68%

 a) Initial reference mesh b) Voxel grid

 c) Marching Cube result d) Marching Cube error

 e) Marching Triangle result f) Marching Triangle error

consuming one of the overall algorithm. We will also work on
adapting our new algorithm to other representations such as
continuous implicit surfaces, point clouds and 3D volumetric
datasets for medical and related applications. Adapting our
algorithm to these representations will provide a useful tool to a
wider range of applications in computer graphics. Surface-based
triangulation algorithms such as Marching Triangle are more
complex to design to obtain efficient results but in general their
resulting meshes are of higher quality compared to volume-based
methods which are usually simpler to implement.

7. REFERENCES

[1] Rocchini C., Cignoni P., Montani C., Pingi P., Scopigno R.:
A Low Cost 3D Scanner Based on Structured Light.
EUROGRAPHICS 2001, Manchester, UK, Computer Graphics
Forum, Vol. 20, No. 3, 2001, 299-308.
[2] Besl P.J., McKay N.D.: A Method of Registration of 3D
Shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 14, No. 2, 1992, 239-256.
[3] Hilton A., Stoddart A.J., Illingworth J., Windeatt T.: Implicit
Surface-Based Geometric Fusion. Computer Vision and Image
Understanding, Vol. 69, No. 3, 1998, 273-291.
[4] Davis J., Marschner S., Garr M., Levoy M.: Filling Holes in
Complex Surfaces Using Volumetric Diffusion. First International
Symposium on 3D Data Processing, Visualization, and
Transmission, Padua, Italy, 2002, 428-438.
[5] Fournier M., Dischler J-M., Bechmann D.: 3D Distance
Transform Adaptive Filtering for Smoothing and Denoising
Triangle Meshes. International Conference on Computer Graphics
and Interactive Techniques, Kuala Lumpur, Malaysia, 2006, 407-
416.
[6] Nooruddin F.S., Turk G.: Simplification and Repair of
Polygonal Models Using Volumetric Techniques. IEEE
Transactions on Visualization and Computer Graphics, Vol. 9,
No. 2, 2003, 191-205.
[7] Lorensen W.E., Cline H.E.: Marching Cubes: A High
Resolution 3D Surface Reconstruction Algorithm. ACM
SIGGRAPH 1987, Anaheim, USA, 1987, Computer Graphics,
163-169.
[8] Hilton A., Stoddart A.J., Illingworth J., Windeatt T.:
Marching Triangles: Range Image Fusion for Complex Object
Modelling. International Conference on Image Processing,
Lausanne, Switzerland, 1996, Vol. 1.
[9] Nielson G.M., Hamann B.: The Asymptotic Decider:
Resolving the Ambiguity in Marching Cubes. IEEE Conference
on Visualization 1991, San Diego, USA, 1991, 83-91.
[10] Chernyaev E.V.: Marching Cubes 33: Construction of
Topologically Correct Isosurfaces. Tech. Report, No. CN/95-17,
CERN, Geneva, Switzerland, 1995.
[11] Lewiner T., Lopes H., Vieira A.W., Tavares G.: Efficient
Implementation of Marching Cubes Cases with Topological
Guarantees. Journal of Graphics Tools, Vol. 8, No. 2, 2003, 1-15.
[12] Chien-Chang H., Fu-Che W., Bing-Yu C., Yung-Yu C.,
Ming O.: Cubical Marching Squares: Adaptive Feature Preserving
Surface Extraction from Volume Data. EUROGRAPHICS 2005,
Dublin, Ireland, 2005, Computer Graphics Forum, Vol. 24, No. 3,
537-545.

[13] Chan S.L., Purisima E.O.: A New Tetrahedral Tesselation
Scheme for Isosurface Generation. Computers and Graphics, Vol.
22, No. 1, 1998, 83-90.
[14] Kobbelt L.P., Botsch M., Schwanecke U., Seidel H.P.:
Feature Sensitive Surface Extraction from Volume Data. ACM
SIGGRAPH 2001, Los Angeles, USA, 2001, Computer Graphics,
57-66.
[15] Zhang N., Hong W., Kaufman A.: Dual Contouring with
Topology-Preserving Simplification Using Enhanced Cell
Representation. IEEE Visualization, Austin, USA, 2004, 505-512.
[16] Fournier M., Dischler J-M., Bechmann D.: A New Vector
Field Distance Transform and its Application to Mesh Processing
from 3D Scanned Data. The Visual Computer Journal, Vol. 23,
No. 9-11, 2007, 915-924.
[17] Gopi M., Krishnan S., Silva C.T: Surface Reconstruction
Based on Lower Dimensional Localized Delaunay Triangulation.
Computer Graphics Forum, Vol. 19, No. 3, 2000, 467-478.
[18] Hartmann E.: A Marching Method for the Triangulation of
Surfaces. The Visual Computer, Vol. 14, No. 3, 1998, 95-108.
[19] Bernardini F., Mittleman J., Rushmeier H., Silva C., Taubin
G.: The Ball-Pivoting Algorithm for Surface Reconstruction.
IEEE Transactions on Visualization and Computer Graphics, Vol.
5, No. 4, 1999, 349-359.
[20] Akkouche S., Galin E.: Adaptive Implicit Surface
Polygonization Using Marching Triangles. Computer Graphics
Forum, Vol. 20, No. 2, 2001, 67-80.
[21] Karkanis T., Stewart A.J.: Curvature-Dependent
Triangulation of Implicit Surfaces. IEEE Computer Graphics and
Applications, Vol. 21, No. 2, 2001, 60-69.
[22] Araujo B.R., Jorge J.A.P.: Curvature Dependent
Polygonization of Implicit Surfaces. Brazilian Symposium on
Computer Graphics and Image Processing, Curitiba, Brazil, 2004,
266-273.
[23] Xi Y., Duan Y.: A Region-Growing Based Iso-Surface
Extraction Algorithm. IEEE International Conference on
Computer-Aided Design and Computer Graphics, Beijing, China,
2007, 120-125.
[24] McCormick N.H., Fisher R.B.: Edge-Constrained Marching
Triangles. International Symposium on 3D Data Processing
Visualization and Transmission, Padova, Italy, 2002, 348-351.
[25] Moller T.: A Fast Triangle-Triangle Intersection Test.
Journal of Graphics Tools, Vol. 2, No. 2, 1997, 25-30.
[26] Hilton A., Illingworth J.: Marching Triangles: Delaunay
Implicit Surface Triangulation. Tech. Rep. EPSRC-GR/K04569,
Centre for Vision Speech and Signal Processing, University of
Surrey, Guildford, UK, 1997, 1-12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

