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Abstract 
The paper concerns the method of disparity estimation and 
refinement based on iterative filtration of raw disparity estimate. 
Raw disparity estimate is obtained by conventional stereo-
matching methods. In suggested algorithm, 6-8 iterations are 
sufficient to compute high-quality disparity map, suitable for 
virtual views rendering, which is essential step of any 3D 
reproduction system. The method is suitable for highly-parallel 
processing on modern GPU. In contrast to previous methods of 
stereo matching implemented on GPU, the proposed approach 
provides correct disparity computation for “problem areas”, i.e. 
large uniform areas, occlusion areas and areas with repetitive 
patterns. Presented method was implemented in a real-time 3D 
acquisition and reproduction system. For GPU programming, an 
extension of C programming language provided by NVIDIA 
Compute Unified Device Architecture (CUDA) was used. 
Experimental results confirm the usefulness and robustness of the 
method. 
Keywords: disparity estimation, real-time processing, GPU 
computing, 3D reproduction, video processing. 

1. INTRODUCTION 

Nowadays, humanity enters new era of digital television, i.e. the 
3D television. The attention of academic and business 
environment is absorbed by the great opportunities for new 
application possibilities, which advanced techniques may provide. 
The 3D TV may bring an effect of real presence of participants in 
real-time video conferences. Also, the reality of computer games 
can be significantly improved by playing in 3D. Any synthetic 
video rendered by computer graphics applications can be 
immediately viewed on modern 3D auto-stereoscopic displays. 
However, for the real scenes, captured by stereo-camera or multi-
camera setups there are still a lot of tasks to be solved. For 
example, for video-conferencing, all calculations should be 
computed in real-time. The necessary computations include 
cameras calibration, disparity estimation, and several views 
generation according to 3D reproduction device requirements. 
Cameras calibration could be performed off-line, if the cameras 
geometry is fixed. However, the disparity estimation of 
participants, and simultaneous view rendering should be 
performed on acceptable frame-rate, convenient to the users.  
To cope with high volumes of calculations, some researches have 
tried to realize stereo-matching algorithms on modern GPU of 
video-boards. Recent works aiming stereo analysis proposed to 
exploit very efficient parallel Single Instruction Multiple Data 

(SIMD) architecture of modern GPU. Real-time implementation 
of computationally intensive methods of disparity estimation 
becomes possible thanks to SIMD architecture. J. Mairal et al. [1] 
reported that he achieved nearly video frame rate stereo 
reconstruction. The approach is from family of variational 
methods based on deformable models. Proposed method 
computes dense stereo from 3 cameras and entirely implemented 
on a GPU.  
R. Yang et al. in [2], tried to force OpenGL toward conventional 
stereo computation, based on SAD window calculation with WTA 
optimization. The authors applied several OpenGL features for 
speeding-up of the algorithm, namely mip-map mechanism of 
texture generation for aggregation raw costs of different scale; p-
buffers, which are the user-allocated off-screen buffers for 
fragment output. Unlike the frame buffers, they can be used 
directly as a texture, thereby eliminating excessive CPU memory 
read-ins. 
One more example of using GPU for stereo analysis is the work 
of A. Brunton et all [3], which presents a novel implementation of 
Bayesian belief propagation for graphics processing units found 
in most modern desktop and notebook computers.  
Most recent results of disparity estimation are obtained using 
NVIDIA CUDA technology. S. Grauer-Gray et all [4] described 
an efficient CUDA-based GPU implementation of the belief 
propagation algorithm that can be used to speed up stereo image 
processing and motion tracking calculations without loss of 
accuracy. Achieved acceleration in comparing with CPU 
realization is reported as a factor of five. 
J. Gibson et al. [5] described how to accelerate the calculation of 
depth from stereo images by using a GPU. The CUDA was 
employed in novel ways to compute disparity using BT 
(Birchfield–Tomasi) cost matching. The challenges of mapping a 
sequential algorithm to a massively parallel thread environment 
and performance optimization techniques were considered. 

2. REAL-TIME 3D ACQUISITION AND 
REPRODUCTION SYSTEM 

We developed the system for acquisition of the dynamic 3D scene 
and simultaneous reproduction on auto-stereoscopic display 
(Figure 1). To manage the high demands on computation, the 
system uses parallel computation architecture of modern GPU and 
proposed method on disparity estimation was highly optimized 
for such architecture.  
A system for three-dimensional video acquisition and 
reproduction includes a stereo content acquisition stage, disparity  



 
estimation stage, virtual view synthesis stage and 3D reproduction 
stage. The acquisition stage includes stereo cameras to acquire 
multiple video streams of dynamic scene. The disparity estimation 
stage includes computation units for real-time disparity estimation 
using obtained video streams. The view synthesis stage includes 
computation units for real-time virtual views synthesis on the 
basis of the computed disparity. The 3D reproduction stage 
includes computation units and 3D display for volumetric 
reproduction based on several virtual views generated on the 
previous stage.  
The present system provides high-quality real-time 3D video 
acquisition and reproduction on 3D display. 
Developed 3D acquisition and reproduction system includes 
stereo-camera Bumblebee 2 by Point Grey Research, modern PC 
with video-board NVIDIA GeForce 8800GTX, which has 128 
stream processors, and auto-stereoscopic 3D monitor by Phillips. 
For effective control, playback and record of 3D video, the 
corresponding software was developed. The acquisition part was 
written on the basis of Point Grey Research SDK. The stereo-
matching, i.e. disparity/depth estimation was implemented using 
CUDA technology. This is the software/hardware architecture, 
which grants access to GPU stream processors for development of 
any tasks which could be effectively parallelized. Stereo-
matching as image and video processing technique is the 
exemplar of application, which is well suited for the parallel-
computation architecture. Since every pixel of image or video 
frame could be processed independently of other pixels. One of 
the main benefits of CUDA is a support of programmers-friendly 
environment for easy application development. 
To decrease excessive memory reads/writes the CUDA 
application result was mapped to OpenGL Pixel Buffer Object 
(PBO) with simultaneous rendering on 3D monitor.  

3. PROPOSED METHOD FOR DISPARITY 
ESTIMATION AND REFINEMENT 

The dense disparity estimation problem consists of finding a 
unique mapping between the points belonging to the two images 
of the same scene (stereo pair). This is an ill-posed problem 
especially for textureless and occluded image areas. The mapping 
between corresponding points is called a disparity vector. In case 
of rectified geometry, the vector is scalar, and it is called a 
disparity. Thus, a depth is function of disparity with invert 
proportional dependence.  
According to recent taxonomy [6], disparity estimation (stereo 
matching) algorithms generally perform the following four steps:  

 
 
 
 
 
 
 
 
 
 
1. matching cost computation; 
2. cost (support) aggregation; 
3. disparity computation / optimization;  
4. disparity refinement. 
According to taxonomy, proposed method of disparity estimation 
concerns to the methods of disparity refinement. And could be 
applied for raw disparity estimate, obtained by disparity 
computation with matching cost calculation.  
Proposed method relies on an idea of convergence from rough 
estimate toward the consistent disparity map through subsequent 
iterations of the disparity filter. On each iteration, the current 
disparity estimate is refined by filtration with accordance to 
images from stereo-pair. The reference image is defined as a color 
image from a stereo-pair, for which the disparity is estimated. 
And, the matched image is defined as other color image from the 
stereo-pair.  
The disparity filter applies weighted average of neighboring 
pixels to current pixel of disparity map. Pixels, which are 
participated in filtration, are defined as disparity reference pixels. 
Corresponding pixels of color image are defined as color 
reference pixels. And pixels which are mapped by disparity 
values of color reference pixels are defined as target pixels.  
In previous approaches the filter weights were reflected by 
proximity and similarity measures [7-8]. Proximity measure 
assigns weight of reference pixel, based on distance between 
current and reference pixels in spatial domain. While similarity 
measure assigns weight of reference pixel based on similarity 
between pixels of color image corresponding to reference and 
current disparity pixels. 
During our development we concluded that proximity measure is 
less important, than similarity one. Since the filter usually 
operates in small local area of the image, the spatial measure 
constraint could be defined implicitly. And more attention should 
be paid on color similarity evaluation. 
We propose the following methods for similarity computation.  

1. Similarity computation with two pixel area comparison. 
2. Similarity computation with one pixel area comparison. 
3. Similarity computation with two single pixels 

comparison. 
First two methods of similarity computation are concern to pixel 
area comparison rather then comparison of single pixels. This is 
done to strengthen the pixel similarity criterion. We studied that 
similarity computation based on pixel areas comparison gives 
more visually pleasant results, rather than individual pixels 
comparison. 

Figure 1: 3D acquisition and reproduction system 
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In the first method of similarity computation, the weight is 
twofold and reflects the degree of similarity of current pixel with 
reference ones and target ones. First comparison is done between 
current pixel neighborhood with reference pixel neighborhood. 
The second one is carried out between reference pixel 
neighborhood with target pixel neighborhood (Exemplars of 
comparisons are shown in Figure 2 a) by wide white arrows). In 
this case the weights of disparity filter are computed as follows  
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where C1 () stands for a function used for pixel neighborhood 
comparison, rσ and tσ are the parameters of filter strength 
adjustment.  
The second method of similarity computation is based on single 
comparison of pixel neighborhood areas of current and target 
pixels (Exemplar of comparison is shown in Figure 2 b) by wide 
white arrow). This type of similarity computation assumes that 
the current pixel is more or like similar with reference one due to 
their proximity to each other. And penalty is given only when the 
reference pixel is mapped to target pixel which is not similar with 
current pixel. In this case the weights of disparity filter are 
computed as follows  

Figure 2: Pixels similarity measure computation:  a) two comparisons of pixel neighborhoods,  
b) one comparison of pixel neighborhoods 
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where C1() stands for a function used for pixel neighborhood 
comparison. It is defined as 
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where ),( ccT yxI  stands for current pixel intensity with 

coordinates xc and yc for color channel T, ),( rrT yxI  denotes the 
reference pixel intensity with coordinates xr and yr for color 
channel T, N and M – are pixel area dimensions. 
The third method of similarity computation is derived from the 
first one, setting pixel area dimensions to one. The difference 
from the first method is reflected in following equation for 
disparity filter weight computation 
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In comparison with Eq. 1, Eq. 2 uses different function for pixel 
comparison, which is defined as 
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where ),( ccT yxI  stands for current pixel intensity with 

coordinates xc and yc for color channel T, ),( rrT yxI  denotes the 
reference pixel intensity with coordinates xr and yr for color 
channel T. 
According to selected method for similarity computation between 
pixels in filter window the disparity map at k-th iteration is given 
as 
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where ),( cck yxd  stands for the disparity map at k-th iteration for 

current pixel with coordinates ),( cc yx , ),(1 rrk yxd −  denotes the 
disparity map at (k-1)-th iteration for reference pixel with 
coordinates ),( scrpcr yyxx ++ == , rw  denotes the weight of 

reference pixel, normalization factor is computed as  
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4. GPU IMPLEMENTATION OF PROPOSED 
METHOD 

Proposed method was implemented for running on GPU. The 
following modifications of the algorithm were considered: 

1. Adaptation of filter strength according to iteration; 
2. Filter kernel size estimation according to iteration; 
3. Separable processing of image rows and columns; 

4. Histogram-based implementation of post-processing 
median filter. 

Figure 3 represents algorithm flow-chart. According to flow-
chart, the first step of the algorithm is to compute a raw disparity 
estimate. This could be done by utilization of conventional stereo-
matching methods based on window correlation computation. We 
used SAD metric in 5x5 window. The exemplar of raw disparity 
estimate is presented in Figure 7 a). It is worth to mention high 
level of noise presented in raw disparity maps. Such noise will 
cause eye-fatigue when viewing this content on? auto-
stereoscopic displays. 

 
 

Figure 3: Disparity estimation algorithm flow-chart 
 
After computation of raw disparity, the algorithm proceeds to 
series of iteration of disparity filter. On each iteration, filter 
strength ( rσ and tσ are the parameters) is adjusted according to 
following formula 
 



 

 

11)( bkak +⋅=σ ,                     (3) 

where k is a number of iteration, a1, b1 are the linear coefficients.  

After filter strength adaptation the algorithm for disparity 
refinement estimate the filter kernel radius by following formula 

22)( bkakR +⋅= ,                                   (4) 

where k is a number of iteration, a2, b2 are the linear coefficients. 
Since we did not interested in abrupt change of parameters from 
iteration to iteration, a linear dependency has provided us with 
simple solution to make parameters adaptable.  
The idea behind the adaptation of parameters is the following. 
Since the reliability of source disparity is low, the algorithm starts 
with smallest filter strength and smallest kernel size. Then, the 
filter strength and kernel size are increased from iteration to 
iteration, allowing more resembling pixels to participate in 
filtration process. Also the adaptation of filter radius leads to 
decreasing of computational cost. This will be shown by concrete 
example in Section 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After adaptation of parameters the disparity refinement filter is 
applied. For speeding up of calculation the disparity filter could 
be defined in separable manner formulated in two passes. The 
first pass is row-wise processing. The second pass is column-wise 
one. The parameters of computational grid for CUDA framework 
is represented in Figure 4. The figure shows separable 
configuration of disparity processing. The host side resided on 
CPU has two kernels, which invoke corresponding two-
dimensional grids of threaded blocks on the device (GPU). In the 
first grid, the blocks are organized to process rows of image. 
Parameters of blocks are set as (blockDim.x = width / n, 
blockDim.y = 1), where n is usually set to halfwarp value. This is 
HW-dependent parameter and it designates a number of stream 
processors on the multiprocessor. We set this value to 16, since 
we have used the NVIDIA GeForce 8800GTX. For the future 
generation of graphics boards this value will increase. 
Since the method was implemented in GPU, it gave us the 
possibility of immediate rendering of disparity estimation results 
through CUDA – OpenGL interoperability option. More 
precisely, the disparity estimation results with reference image 
were locked in pixel-buffer object by CUDA. Then the OpenGL 
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Figure 4: Computational grid arrangement for CUDA framework 
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Figure 5: Data flow in proposed implementation  
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part of program used that buffers for rendering. This operation has 
excluded additional data flow to CPU and again to GPU for 
rendering. Proposed data flow is described in Figure 5. Note that 
we used textures for storing the stereo-pair. The memory latency 
during fetching from texture is less, than from global memory. 
This happens due to texture caching. 

5. EXPERIMENTAL RESULTS 

Figure 6 represents result of disparity estimation from live stereo-
video, while Figure 7 presents the result of disparity estimation 
for “Tsukuba” image from Middlebury image dataset.  
Table 1 and Table 2 summarize objective evaluations of proposed 
methods. Two metrics were considered: root-mean square (RMS) 
distance to ground truth and bad pixel metric. Bad pixel is 
considered as the one, which differs from ground-truth pixel for 1 
value. In the tables, the “bad_pixels_all” parameter represents the 
number of bad pixels in all image, while the “bad_pixels_nonocc” 
parameter corresponds to the number of bad pixels in non-
occluded areas.  
For “Tsukuba” image 4 types of filter were considered. The first 
three of them are classified according to method of similarity 
computation. For these experiments the radius and filter weight 
were kept constant for all iterations. The fourth method is the 
third method with adaptive parameters setting, according to Eq. 3 
and Eq. 4.  
According to Table 2, the best result for the “Tsukuba” was 
achieved when using third method with normalization. The 
resulted disparity map contains only 4 % of bad pixels. Here 
normalization means the forcing disparity values to neighboring 
disparity level. This operation decreases number of bad pixel 
about 1.5-2 times. However, during rendering into auto-
stereoscopic display, the visual difference was not captured 
between normalized and non-normalized results. In our opinion 
the bad pixel metric does not reflect the quality of disparity 
properly, since resulted disparity map could have strong 
distortions of objects shape, and have small value of bad pixels 
simultaneously.  
Proposed methods increase the quality of disparity map in 
occlusion areas also. This confirms by results in Table 1 and 
Table 2 (The “rms_error_occ” and “bad_pixels_occ” parameters 
correspond to value of RMS and number of bad pixels in 
occlusion areas). According to tables the number of bad pixels in 
occlusion areas is decreased by half in comparison with raw 
disparity map. And the RMS is improved by almost 3 times.  
Correct handling of disparity discontinues, especially in occluded 
regions greatly facilitates virtual view rendering. The comparative 
results of state-of-the-art stereo-matching methods and 
explanation of comparison parameters could be found in [6]. 
The visual quality of rendering results on the auto-stereoscopic 
monitor Phillips was nearly the same for 1-st, 3-rd and 4-th 
methods, while 2-nd method shows the artifacts in the area of 
lamp and bust. The 2-nd requires less computation than 1-st 
method. The method works well for smooth areas, while for 
strong depth discontinues it fails to compute disparity correctly.  
To decrease computational burden without degrading in quality 
the adaption of filter radius was introduced. This means that the 
computational complexity of 4-th method is lower. This could be 
illustrated by following calculation. Since we used 6 iterations 
with radius 20 for the 1-st and 3-rd methods, this requires the 6 x  

Figure 6: Live 3D capture from stereo camera: 
Reference image with correspond disparity 

 
20 = 120 computations of weights. For the 4-th method with 
adaptive parameters a2 = 5 and b2 = 1, we get the following 
computation for the 6 iterations: 1+6+11+16+21+26 = 81. The 
computation of weight includes calculation of two color distances 
with exponent. So decreasing the number of weight computation 
introduces theoretical performance boost about 30% (1 – 81/120). 
This confirms by software execution time also (Table 3). 
Table 3 shows that maximum performance gain was achieved for 
3-rd method. GPU implementation of the method executes 656 
times faster than CPU one with float point arithmetic. Also the 
adaptation of radius in the 4-th method has lead to the least 
execution time with only 18 msec for frame. This corresponds to 
50 fps. Correspondingly, the MDE (Million disparity estimation, 
MDE = width*height*disp_levels*fps) for tsukuba image with 
width=384, height =288 and disp_levels = 16 is equal to 97. At 
the same time, proposed approach shows higher throughput for 
real-time stereo-matching, and MDE is equal to 294 in this case. 

6. CONCLUSION 

Recent multi-view 3D displays require multiple views to be 
synthesized and rendered for 3D scene reproduction. Such virtual 
views can be generated from stereo content and disparity map. 
The key factor of high quality virtual view generation is a 
usability of disparity map which determined by the correct 
disparities values. 
Proposed method of disparity estimation outputs disparity map of 
high quality computed on TV frame rates. Thus, developed 
technique could be used for various real-time applications, such 
as immersive videoconferencing or augmented reality. 
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Table 1. Comparative results for Tsukuba image 

Evaluation criteria* 
Raw depth 
(SAD 5x5 
window) 

1-st method 
(2 pixel areas 
comparison, 
radius 20) 

2-nd method 
(1 pixel area 
comparison, 
radius 10) 

3-rd method 
(2 pixels 

comparison 
radius 20) 

4-th method 
(with adaptive 

parameters 
a2=5, b2=1) 

rms_error_all 1.89 0.955 1.163 0.865 0.998 
rms_error_nonocc 1.732 0.931 1.143 0.832 0.976 
rms_error_occ 5.029 1.62 1.743 1.694 1.619 
bad_pixels_all 0.154 0.099 0.159 0.096 0.135 
bad_pixels_nonocc 0.137 0.09 0.149 0.086 0.126 
bad_pixels_occ 0.826 0.444 0.573 0.458 0.478 

*) For explanation of the evaluation criteria, i.e. “rms_error_all” etc. see [6]  
 
Table 2. Comparative results for Tsukuba image with normalization 

Evaluation criteria 
Raw depth 
(SAD 5x5 
window) 

1-st method 2-nd method 3-rd method 4-th method  

rms_error_all 1.89 0.972 1.176 0.932 1.039 
rms_error_nonocc 1.732 0.946 1.156 0.899 1.018 
rms_error_occ 5.029 1.683 1.777 1.775 1.646 
bad_pixels_all 0.154 0.073 0.092 0.042 0.073 
bad_pixels_nonocc 0.137 0.065 0.083 0.034 0.065 
bad_pixels_occ 0.826 0.382 0.434 0.323 0.361 

 
Table 3. Performance analysis of Tsukuba image stereo matching 

Time (msec) 
 

1-st 
method 

2-nd 
method 

3-rd 
method 

4-th 
method 

GPU implementation 
(nVidia 8800GTX) 

3031.5 504.47 24.5 18.33 

CPU implementation– 1 core 
(INTEL Core2Quad Q6600, 2.4 GHz) 

720305.5 126290.6 16069.2 11024.32 

Performance gain (times) 237 250 656 601 
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Figure 7: Experimental results for Tsukuba image a) color image, ground truth, raw depth (SAD with 5x5 aggregation window) 

(from left to right) b) proposed 1-st, 2-nd 3-rd methods according to Table 1 (from left to right) c) proposed 1-st, 2-nd 3-rd 

methods with normalization (from left to right) d) proposed 4-st method without and with normalization (from left to right)   

d) 


